
1

X-13 Toolbox for Matlab

By Yvan Lengwiler
University of Basel, Switzerland
yvan.lengwiler@unibas.ch

March 10, 2023, Version 1.54

Please reference the software as

Yvan Lengwiler, 'X-13 Toolbox for Matlab, Version 1.54', Mathworks File
Exchange, 2021, http://ch.mathworks.com/matlabcentral/fileexchange/49120-x-13-
toolbox-for-seasonal-filtering

if you use it for your reports or publications. It’s only fair to give proper
credit :-)

 NOTE: This version of the toolbox works with version 1.1 build 57 of the

X-13ARIMA-SEATS program of the Census Bureau. If you have older versions of the
Census programs, be sure to issue the InstallMissingCensusProgram command
before using this toolbox.

 Also, if you have an older version of the X-13 Toolbox for Matbab, it is

recommended that you delete it first (or rename the directory containing the
old toolbox). Some of the files have changed location in the new version and
having an old and a new version of the same file in different branches of your
path can lead to problems.

2

Contents

Basic Procedures .. 5

guix .. 6

makespec .. 8

x13 .. 11

InstallMissingCensusProgram .. 17

x13spec class .. 21

x13spec .. 22

x13series class .. 30

x13series .. 31

table .. 35

showvariable ... 36

plot ... 37

seasbreaks ... 41

x13toxls ... 42

addASC ... 43

addCDT ... 44

addacf ... 45

addpcf ... 46

addspectrum .. 47

addMatlabSpectrum .. 48

preadjustOnePeriod ... 49

x13minus ... 50

Internally used method ... 51

x13composite class ... 52

x13composite ... 53

plot ... 55

seasbreaks ... 57

Internally used methods .. 58

Seasonal adjustment without the Census program 59

seas ... 61

x11 .. 64

method1 .. 66

fixedseas .. 68

3

camplet .. 72

spr .. 75

fillholes .. 77

normalize_seas ... 78

trendfilter .. 79

seasfilter ... 81

splitperiods ... 82

joinperiods .. 83

kernelweights .. 84

wmean .. 86

Tools for working with dates ... 87

makedates .. 88

yqmd ... 90

TakeDayOff ... 91

EasterDate ... 92

Casting .. 93

structtox13 .. 94

addstructtox13 ... 95

Backward Compatibility Issues .. 96

Only one algorithm per x13series instance 96

seas.m ... 96

x11.m and method1.m .. 97

calendar adjustments ... 97

add, logadd, mult .. 97

A new 'custom' section in x13spec ... 99

Some properties have been removed from x13series, some have been added to
x13spec .. 99

x13series.keyv ... 99

DEMO for X13 Toolbox: Single Series Run 100

Preliminaries ... 101

Loading Data .. 102

Step 1: Quick and Dirty ... 103

Step 2: Calendar Dummies .. 105

Step 3: Automatic detection of structural breaks and outliers 109

Step 4: Tweaking the ARIMA .. 110

Step 5: Do the Seasonal Filtering ... 113

4

Step 6: Check Stability ... 115

Step 7: Adjust Length Of Filter ... 118

Final Step: specification for production 121

COMPARING VARIOUS ALGORITHMS .. 128

Load Data and Specs ... 129

Computations .. 130

Correlation between seasonal factors .. 131

Charts .. 132

Demo of a Composite Run ... 136

DEMO for X13 Toolbox: Composite Run ... 137

PRELIMINARIES ... 138

LOADING DATA .. 139

COMPOSITE RUN ... 140

REPORT SOME RESULTS ... 142

COMPARE DIRECT WITH INDIRECT ADJUSTMENTS 150

PLOT NORMALIZED LOG GDP FOR ALL COUNTRIES 152

STUDY CORRELATIONS OF HIGH FREQUENCY COMPONENTS 154

CLUSTER d10 ... 156

finish up ... 158

5

Basic Procedures

The toolbox is an interface that makes it relatively easy to use the
X-13ARIMA-SEATS program from the US Census Bureau with Matlab. This part of the
documentation describes the basic procedures you will use whenever you use this
toolbox.

Before going into any detail, note that there is a graphical user interface called
guix that allows you to do (almost) anything the toolbox can do. The interface is
self-explanatory as far as possible (there are many options, so some knowledge of
the process of seasonal adjustment will be helpful), so if you do not like reading
the documentation, just fire up guix and use the toolbox that way.

. . .

Still here? Ok, so let’s explain the basic ingredients.

The toolbox relies on three custom data classes, x13spec, x13series, and
x13composite. x13spec contains all the specifications that instruct the
X-13ARIMA-SEATS program about what it should do. For instance, it specifies the
algorithm that is used for performing the seasonal adjustment and which variables
and tables should be generated.

The Census program can do two types of adjustments. The first type is an adjustment
to a single time series. Doing this produces a variable of class x13series. The
second is an adjustment to a whole collection of timeseries, that also adjusts the
aggregate of these series. X-13 calls this a composite, and the Matlab toolbox
creates a variable of class x13composite to hold such a seasonal adjustment.

If you want to work on the command-line instead of using guix, or wish to use the
toolbox in a script you develop, you first need to create a specification. You can
do this with x13spec directly. You can also use makespec, which is a bit more
convenient. After that, x13 can be used to invoke the Census program.

Finally, there is a method, InstallMissingCensusProgram that is called in the
background whenever a needed component is missing. It attempts to install that
component on the fly. However, you can also manually install pieces of software
using this method.

We now provide the documentation of guix, makespec, x13, and
InstallMissingCensusProgram. Not many users will need more than that.

6

guix

 guix is a graphical user interface that allows you to easily create a
 specification for a seasonal adjustment, perform the computations, and
 view the results in the GUI. guix supports only single time series
 (x13series), not composites (x13composite).

 Usage:
 guix
 guix('style')
 guix 'style'
 guix('variable')
 guix('variable','style')
 guix variable
 guix variable 'style'
 h = guix(['style'],['variable'])

 Inputs and Outputs:
 'style' Can be 'normal', 'modal', or 'docked' (or 'n', 'm', or
 'd', for short), indicating the WindowStyle of the GUI.
 Default is 'normal'.
 variable A x13series variable in the main workspace.
 'variable' The name of a x13series variable in the main workspace, as
 string.
 h A struct containing handles to the GUI and to its
 components.

 Usage of this GUI should be self-explanatory (if you are familiar with
 the outputs that X-13ARIMA-SEATS generates). X-13 requires a vector of
 observation dates and the corresponding data. Dates can be specified by
 entering the start date and the period (e.g., monthly). Alternatively, it
 is also possible to use a vector of datenums. The data that are to be
 worked on are given by a vector of floats. The data vector and, if used,
 dates vector, must be present in the calling workspace. You can also
 import an x13series object existing in the calling workspace into guix
 with the 'Import' button.

 The 'Run' button performs the computations. You can export the resulting
 x13series object to the calling workspace with the 'Export' button.

 With the 'Text/Chart' button you can switch between viewing tables and
 text items on the one hand, and plots on the other.

 The 'Copy' button copies the current output window (text or chart) to
 Windows' clipboard. You can then paste it into some other program.

 NOTE: This GUI was programmatically created, without GUIDE. Other than
 the code generated with GUIDE, it uses nested functions, which has the

7

 advantage that all variables that are defined in the main function are
 also in the scope of the nested functions. Moreover, the code is more
 transparent.

8

makespec

 makespec produces x13 specification structures. It makes the use of
 x13spec easier by providing quick access to meaningful specification
 combinations.

 Usage:
 spec = makespec(shortcut, [shortcut2, ...])
 spec = makespec([shortcut], [section, key, value], ...)
 spec = makespec([shortcut], [section, key, value], [spec1], ...)

 Available shortcuts are:
 'DIAGNOSTIC' produce ACF and spectra of the data; this is useful to
 determine if the data is seasonal at all
 'ACF' subset of 'DIAGNOSTIC' without spectra (for quarterly
 data); saves (partial) auto-correlation functions
 'SPECTRUM' save some spectra
 'STOCK' Data is a stock variable. (This is relevant for the types of
 calendar dummies.)
 'FLOW' Data is a flow variable.
 'AUTO' let program select additive vs multiplicative filtering
 'MULTIPLICATIVE' force multiplicative filtering
 'ADDITIVE' force additive filtering
 'ESTIMATE' estimate ARIMA, even if no seasonal adjustment is
 computed
 'TRAMO' use TRAMO to select model
 'TRAMOPURE' use TRAMO, but do not consider mixed models
 'PICKFIRST' use Census X-11 procedure to select model; pick the first
 or 'PICK' that meets the criteria
 'PICKBEST' use Census X-11 procedure to select model; check all
 models and pick the best
 'CONSTANT' adds a constant to the regARIMA model
 'AO' allow additive outliers
 'LS' allow level shifts
 'TC' allow temporary changes
 'NO OUTLIERS' do not detect outliers
 'TDAYS' add trading day dummies to the regression and keep them
 if they are significant
 'FORCETDAYS' force seven trading day dummies on the regression
 (even if not significant)
 'EASTER' add an Easter dummy and keep it if significant
 'FCT' compute forecast with default confidence bands
 'FCT50' compute forecast with 50% confidence bands
 'X11' compute Trend-Cycle and Seasonality using X-11
 'FULLX11' same as X11, but save all available variables, except
 intermediary iteration results
 'TOTALX11' same as X11, but save all available variables,
 including intermediary iteration results

9

 'SEATS' compute Trend-Cycle and Seasonality using SEATS
 'FULLSEATS' same as SEATS, but save all available variables
 'FIXEDSEASONAL' compute simple seasonal filtering with fixedseas
 'CAMPLET' compute filtering with camplet algorithm
 'SLIDINGSPANS' produces sliding span analysis to gauge the stability
 of the estimation and filtered series
 'FULLSLIDINGSPANS' same as SLIDINGSPANS, but save all available variables
 'HISTORY' another stability analysis that computes the amount of
 revisions that would have occurred in the past
 'FULLHISTORY' same as HISTORY, but save all available variables

 Moreover, makespec also accepts shortcuts that affect the tables that are
 printed throughout. The default is to print only those tables that are
 explicity requested ('PRINTREQUESTED'). Alternatives are
 'PRINTNONE' Do not print any tables (except some basic ones in series
 or composite, respectively).
 'PRINTBRIEF' Print a restricted set of tables.
 'PRINTDEFAULT' Use the default as defined by the X-13 program.
 'PRINTALLTABLES' Print all tables, but no graphs.
 'PRINTALL' Print all tables and graphs.

 There are also meta-shortcuts:
 'DEFAULT' is equal to {'AUTO','TRAMOPURE','X11' ,'AO','TDAYS','DIAG'}
 'X' is equal to {'AUTO','PICKBEST' ,'X11' ,'AO','TDAYS','DIAG'}
 'S' is equal to {'AUTO','TRAMOPURE','SEATS','AO','TDAYS','DIAG'}
 If no argument is used (spec = makespec()), 'DEFAULT' is used.
 You are free to add further meta-shortcuts according to your needs; see
 the program text right at the beginning after the 'function' statement.

 Note that shortcuts can be abbreviated but they are case sensitive; they
 must be given in upper case letter. (This is so in order to distinguish
 the shortcut 'X11' from the spec section 'x11', and shortcut 'SEATS' from
 the spec section 'seats').

 Multiple shortcuts can be combined, though some combinations are
 non-sensical (such as X11 and SEATS, or TRAMO and PICK together).

 No selection of shortcuts will ever accommodate all needs, unless the
 shortcuts are as detailed as the original specification possibilities,
 which would defy their purpose. Therefore, one can also add normal
 section-key-value triples as in x13spec (the second usage form above).
 These settings are simply merged, working from left to right. This means
 that later arguments overwrite earlier arguments.

 So, makespec('NO OUTLIERS','AO') is the same as makespec('AO'), and in
 makespec('AUTO','transform','function','none') the 'AUTO' shortcut is
 overruled. Likewise, makespec('X','MULT') is the same as the 'X'
 meta-shortcut, but forcing the logarithmic transformation of the data

10

 ('X' sets this to 'auto' and therefore lets x13as choose between no
 transformation and the log).

 You can also use an existing spec (created with makespec or with x13spec) as
 an argument in makespec (thirtd usage form above). The contents of this
 spec-variable will again be merged.

 Example:
 spec = makespec('DIAG','AUTO','TRAMOPURE','AO');
 x1 = x13(dates,data,makespec(spec, 'X11', ...
 'series','name','Using X11'));
 x2 = x13(dates,data,makespec(spec, 'SEATS', ...
 'series','name','Using SEATS'));
 plot(x1,x2,'d11','s11','comb')

 Most users will never use x13spec directly, but will always create their
 specs with makespec, because everything you can do with x13spec you can
 also do with makespec, plus you have the added convenience of the
 shortcuts (and even meta-shortcuts).

11

x13

 x13 calls the x13as program of the US Census Bureau / Bank of Spain to
 perform seasonal and extreme value adjustments.

 Usage (single time series):
 x = x13([dates,data])
 x = x13([dates,data],spec)
 x = x13(dates,data)
 x = x13(dates,data,spec
 x = x13(ts,spec)
 x = x13(..., 'x-13')
 x = x13(..., 'html')
 x = x13(..., 'x-12')
 x = x13(..., 'x-11')
 x = x13(..., 'method1') or x = x13(..., 'method I')
 x = x13(..., 'camplet')
 x = x13(..., 'fixedseas')
 x = x13(..., 'prog',filename)
 x = x13(..., 'progloc',path)
 x = x13(..., 'quiet')
 x = x13(..., '-s', '-c', '-w', ... etc)
 x = x13(..., 'noflags')
 x = x13(..., 'graphicsmode')
 x = x13(..., 'graphicsloc',path)
 x = x13(..., 'fileloc',path)

 'dates' and 'data' are single column or single row vectors with obvious
 meanings. 'dates' must contain dates as datenum codes. Alternatively, use
 a timeseries object ('ts') containing a single time series. In version 3
 and 4 above, dates can also be a datetime class variable (this is
 available in ML 2014b and later).

 'spec' is a x13spec object containing the specifications used by the
 x13as.exe program. If no 'spec' is given, the program uses the
 specification that is produced by makespec('DEFAULT'), see help makespec.

 The output 'x' is a x13series object containing the requested numerical
 results, as well as the data and dates used as input.

 Four switches are available that determine the program that is used to
 perform the seasonal decomposition. The 'x-12' switch uses the x12a
 program instead of the x13as program. The 'x-13' switch enforces the use
 of the x13as program. This is the default.

 The 'html' switch uses the 'accessible version' of the Census program.
 The accessible version formats the tables and log files in html. Using
 this version has the advantage that you can view the output neatly

12

 formatted in your browser. The disadvantage is that the tables are not
 extracted and placed into the x13series (or x13collection) object. So,
 x.listoftables and x.table are empty. Instead, you can inspect the tables
 in the browser with web(x.out) and web(x.log). Note that 'html' has no
 effect if the 'x-12' or 'prog' options are used.

 The 'x-11' switch uses an approximate version of the original Census X-11
 algorithm from 1965. The original Census X-11 program is available, but
 is not compatible with this toolbox because the format of its in- and
 output is very different from X-12 and X-13. Instead, an approximate
 version of X-11 is implemented in Matlab and this is used when you set
 the 'x-11' switch. This has many limitations and its use may be limited.
 It has one important advantage, however, in that the simplifiex X11
 implementation can deal with arbitrary frequencies (so not only monthly
 or quarterly data as the Census programs do). See help x11 for further
 information.

 Finally, 'method1' is similar to 'x-11', but uses an approximate version
 of the original Method I argorithm that was developed by

 Normally, all warnings of the x13as/x12a program are shown on the console
 as Matlab warnings (for instance when a variable was requested but is not
 available). The switch 'quiet' suppresses warnings. The corresponding
 messages will still be contained in the resulting object, but they will
 not show up on the screen at runtime.

 Any string arguments starting with a hyphen are flags passed on to x13as.exe
 through the command line. Section 2.7 of the X-13ARIMA-SEATS Reference Manual
 explains the meanings of the different flags. Some flags are dealt with by the
 x13 Matlab program, so they should not be used by the user (in particular,
 using -g, -d, -i, -m, or -o is likely to mess up the functioning of the
 program).

 The most relevant flags are
 -n (No tables) Only tables specifically requested in the input
 specification file will be printed out
 -r Produce reduced X-13ARIMA-SEATS output (as in GiveWin version of
 X-13ARIMA-SEATS)
 -w Wide (132 character) format is used in main output file
 -c Sum each of the components of a composite adjustment, but only
 perform modeling or seasonal adjustment on the total
 -v Only check input specification file(s) for errors; no other
 processing
 -q Run X-13ARIMA-SEATS in quiet-mode (warning messages are not sent to
 the console). This is equivalent to the 'quiet' switch.
 -s Store seasonal adjustment and regARIMA model diagnostics in a file
 -t Same as -s

13

 The -q flag as defined by x13as.exe suppresses all messages. It is
 preferrable to use the 'quiet' switch instead, because then the messages
 are not shown on the console (as would be the case with '-q'), but they
 are still available as messages stored in the x13series object.

 To use flags, use one of the following syntaxes,
 x = x13(..., '-w'), or
 x = x13(..., '-w', '-n'), or
 x = x13(..., '-w -n'),
 or x = x13(..., 'noflags')
 If no flag is set by the user, the default is to set the ' -n' flag,
 so that only the requested tables (-n) are written to the .out property.
 The 'noflags' option removes all the flags, including the default.

 Please note that the '-s' flag triggers a call to the x12diag.exe
 program, which produces some additional reporting. However, as of 2022,
 the x12dag.exe program is no longer available for download from the U.S.
 Census Bureau website. Thus, if you do not have this program already,
 adding the '-s' flag will now create an error.

 Four optional arguments can be provided in name-value style: The argument
 following the 'fileloc' keyword is the location where all the files
 should be stored that are used and generated by the x13as program. If
 this optional argument is not used, these files will be located in a
 subdirectory 'x13' of the system's temporary files directory
 (%tempdir%\x13).

 The argument following the 'graphicsloc' keyword is the location where
 all the files should be stored that can be used with the separately
 available X-13-Graph program (see
 https://www.census.gov/srd/www/x13graph/). If this optional argument is
 used, x13as will run 'in graphics mode' and these files will be
 generated. If this argument is not used or set to [], the
 graphics-related files will not be generated. If 'graphicsloc' is set to
 '' (i.e. an empty string), then the graphics files will be created in a
 subdirectory called 'graphics' of the fileloc directory. The same is
 achieved with the switch 'graphicsmode'.

 The arguments following 'progloc' and 'prog', respectively, allow you to
 specify the location of the executables that do the computations. 'prog'
 is the name of the executable. By default, this is 'x13as', or 'x12a' (or
 'x12a64' on a 64-bit computer) if the 'x-12' option is set. But it is
 also possible to specify a m-file that perfoms the necessary seasonal
 adjustment computations.

 'progloc' indicates the folder where the executables can be found. In the
 argument following 'progloc', the term '%tbx%' is replaced by the root
 directory of this toolbox. By default, 'progloc' is '%tbx%\exe', i.e.

14

 the 'exe' subdirectity of the X-13 toolbox. If 'prog' is an m-file then
 the default 'progloc' is '%tbx%\seas'.

 So what is the 'prog' option really used for? You could, in principle,
 specify alternative executables, other than the ones provided by the US
 Census Bureau. The output of such an alternative program would have to be
 compatible with the output generated by the Census Bureau program. So, in
 practice, the only two conceivable options here are that either you have
 an older version of the Census Bureau software that you want to use, or
 you have a beta version which is in development. For instance, a previous
 version of x13as was version 1.1 build 9. If you have a copy of it, and
 you called it 'x13asv11b9.exe' on your harddisk (in the exe subdirectory
 of the toolbox), then
 x = x13(..., 'prog','x13asv11b9');
 uses the previous version of the Census program.

 Another application is to use a seasonal adjustment algorithm in Matlab's
 language. seas.m is an example or this. By setting
 x = x13(..., 'prog','seas.m'),
 you use this self-made seasonal adjustment algorithm in place of the
 Census programs. The advantage is that you have more freedom to
 experiment. Also, you are not constrained to mopnthly or quarterly
 frequencies.

 Usage (composite time series):
 x = x13([dates1,data1],spec1, [dates2,data2],spec2, [...], compositespec)
 x = x13(dates1,data1 ,spec1, dates2,data2 ,spec2, [...], compositespec)
 x = x13([dates,data] ,{spec1,spec2,...},compositespec)
 x = x13(dates,data ,{spec1,spec2,...},compositespec)
 x = x13(ts,{spec1,spec2,...},compositespec)
 x = x13(ts,spec1,[dates,data],spec2,dates,data,spec3,compositespec)
 x = x13(..., 'x-12')
 x = x13(..., 'x-13')
 x = x13(..., 'html')
 x = x13(..., '-s', '-c', '-w', ... etc)
 x = x13(..., 'noflags')
 x = x13(..., 'graphicsmode')
 x = x13(..., 'graphicsloc',path)
 x = x13(..., 'fileloc',path)
 x = x13(..., 'progloc',path)
 x = x13(..., 'prog',filename)

 In the first and second version you can set different specifications for
 the individual time series. Alternatively, in the third and fourth usage
 form, 'data' may be an array with m columns, where each column is
 interpreted as one timeseries. In the fifth usage form, all variables in
 the timeseries object 'ts' are interpreted as time series of the
 composite run. You can also combine the syntax as seen in the sixth usage

15

 form.

 For composite runs, the last argument (except possible optional
 arguments) is always the specification of the composite series
 ('compositespec' cannot contain the 'series' section, but must contain
 the 'composite' section).

 Example 1:
 spec = makespec('DIAG','PICK','X11');
 x = x13(dates,data,spec);
 Then, 'x' is a x13series object with several variables, such as x.dat
 (containing the original data), x.d10, x.d11, x.d12, x.d13 (containing
 the results of the X-11 filtering as produced by the x13as program), as
 well as different tables (essentially plain text). See the help of
 x13series for further explanation.

 Example 2:
 Let C, I, G, NX now be components of components of GDP of a country,
 measured at quarterly frequency (Y=C+I+G+NX), and D be the common dates
 vector when the components were measured.
 spec = makespec('AUTO','TRAMO','SEATS','series','comptype','add');
 x = x13(...
 [D,C], x13spec(spec,'series','name','C'), ...
 [D,I], x13spec(spec,'series','name','I'), ...
 [D,G], x13spec(spec,'series','name','G'), ...
 [D,NX],x13spec(spec,makespec('ADDITIVE'),'series','name','NX'), ...
 makespec('AUTO','TRAMO','SEATS','composite','name','Y'));
 Then, 'x' is a x13composite object containing x13series C, I, G, NX, and
 Y. Again, see the help of x13composite and x13series for further
 explanation.

 Alternatively, you can produce the same result as follows:
 spec = makespec('AUTO','TRAMO','SEATS','series','comptype','add');
 allspec = { ...
 x13spec(spec,'series','name','C'), ...
 x13spec(spec,'series','name','I'), ...
 x13spec(spec,'series','name','G'), ...
 makespec(spec,'ADDITIVE','series','name','NX')};
 compspec = makespec('AUTO','TRAMO','SEATS','composite','name','Y');
 x = x13(D,[C,I,G,NX],allspec,compspec);

 Requirements: The program requires the X-13 programs of the US Census
 Bureau to be in the directory of the toolbox. The toolbox attempts to
 download the required programs itself. Should that attempt fail, you can
 download this software yourself for free from the US Census Bureau
 website. Download http://www.census.gov/ts/x13as/pc/x13as_V1.1_B26.zip
 and unpack the x13as.exe file to the 'exe' subdirectory of this toolbox.

16

 To install all programs and tools from the US Census Bureau that are
 supported by the X-13 Toolbox, issue the command
 InstallMissingCensusProgram once. The program will then attempt to
 download and install all files in one go.

 Acknowledgments: Detailed comments by Carlos Galindo helped me make the
 Toolbox backward compatible.

17

InstallMissingCensusProgram

 InstallMissingCensusProgram installs pieces of software from the US
 Census Bureau that are necessary to perform the seasonal filtering.

 *** NORMAL OPERATION

 Normally, x13.m will download and install any missing piece of software
 from the US Census Bureau as soon as it is required. You can, however,
 also install such software and documentation "manually" by invoking
 InstallMissingCensusProgam.

 Usage:
 InstallMissingCensusProgram()
 InstallMissingCensusProgram(arg, [arg2], [...])
 success = InstallMissingCensusProgram([...])
 InstallMissingCensusProgram('all')

 If called with no argument, the program tries to install all usable
 files. Alternatively, an argument or a list of arguments can be provided.
 Choices are:
 'x13prog' X-13 software, ascii and html versions
 'x13doc' documentation of X-13 program
 'x12diag' X-12 diagnostic utility
 'x12prog' X-12 software, 64 bit and 32 bit versions
 'x12doc' documentation of X-12 program
 'campletdoc' the original working paper presenting the CAMPLET
 algorithm
 The function returns a vector of booleans, indicating which installations
 were successful.

 Using this function with no arguments
 InstallMissingCensusProgram;
 should produce the following result:
 Downloading 'x13as-v1-1-b57.zip' from US Census Bureau website ... success.
 Downloading 'x13ashtml-v1-1-b57.zip' from US Census Bureau website ... success.
 Downloading 'docsx13.zip' from US Census Bureau website ... success.
 Downloading 'docsx13acc.zip' from US Census Bureau website ... success.
 Downloading 'dt9628e.pdf' from Banco d'Espagna website ... success.
 Downloading 'itoolsv03.zip' from US Census Bureau website ... success.
 Downloading 'omega64v03.zip' from US Census Bureau website ... success.
 Downloading 'omegav03.zip' from US Census Bureau website ... success.
 Downloading 'docsv03.zip' from US Census Bureau website ... success.
 Downloading 'gettingstartedx12.pdf' from US Census Bureau website ... success.
 Downloading 'ffc2000.pdf' from SAS Institute website ... success.
 Downloading '25_2015_abeln_jacobs.pdf' from Australian National University
website ... success.
 *** 12 of 12 requested packages installed. ***

18

 After that, all programs of the US Census Bureau website that are supported
 by the X-13 Toolbox are installed on your computer.

 *** IF IT DOES NOT WORK

 Normally, this program will download the specific pieces of software and
 documentation that are provided by the U.S. Census Bureau and copy them
 to the appropriate locations. This assumes, however, that your computer
 allows you to download and run software from the internet. This may not
 apply to a professional environment where IT security issues are managed
 centrally. If you cannot download and run externally-acquired software,
 you will need help from an IT administrator at your workplace.

 Also, this utility works only with Windows computers. If you use a
 different operating system, you will have to download and place the
 necessary files manually.

 You find all the files you need at the the U.S.Census website
 (https://www.census.gov/data/software/x13as.X-13ARIMA-SEATS.html). Search
 in the different ZIP available there to locate the correct files. Also,
 it may be possible to obtain the source code of the X-13 program so that
 you may be able to compile this for so far unsupported operating systems.
 (If you do that, please let me know; I would be interested about this.)

 If all usable files are present, the exe sub-direcory should contain the
 following files:
 (**) x13as.exe
 x13ashtml.exe
 (*) x12diag03.exe
 x12a64.exe
 x12a.exe
 (*) libjpeg.6.dll
 (*) libpng3.dll
 (*) zlib1.dll
 In addition, the doc sub-directory should contain
 (*) docX13AS.pdf
 docX13ASHTML.pdf
 Only the double-starred file is essential. The single-starred files are
 the documentation and the files needed for a small addition (which is,
 incidentally, used by X13DemoComposite.m). The unstarred files give you
 access to the vintage X-12 version.

 *** OTHER THINGS YOU CAN DOWNLOAD WITH THIS UTILITY
 (these are of only marginal interest)

 In addition, five other programs that are related to X-13ARIMA-SEATS can
 also be downloaded:

19

 'x13graph' The JAVA version of the X-13 graph program.
 'genhol' A program that allows the user to create variable files
 for holidays.
 'x11prog' An early version of the Census program.
 'x11doc' Some documentation of the early X-11 version.
 'winx13' Windows version of the X-13ARIMA-SEATS program.
 'x13data' A utility to transform data in an Excel sheet into
 files usable by x13as.exe, as well as for collecting
 x13as.exe output and storing it in an Excel file.
 'cnv' A utility to convert X-12 specification files to the
 X-13 format.
 'sam' A utility to change several spec files at once.

 These programs are not directly supported by the Matlab-Toolbox. The
 x13graph java program can be used if you add the 'graphicsmode' switch
 when calling x13, but you need to start the graph program outside of
 Matlab. Likewise, genhol, or the version with a GUI called wingenhol, is
 not used by the toolbox directly. You can create holiday variable files
 with it, and then use these files with the toolbox. But the interaction
 with genhol does not happen from within the toolbox. X-11 is not
 supported because its syntax is completely different from X-13ARIMA-SEATS
 and it is potentially prone to Y2K problems. The remaining programs
 winx13, x13data, cnv, and sam have no clear use for users of the toolbox.
 The download option provided here is only for completeness and may be
 useful for users who interact with the Census program also outside of
 Matlab.

 Calling InstallMissingPrograms('all') installs everything, including
 these eight additional sets of programs and files.

 Using this function with the 'all' argument yields
 Downloading 'x13as-v1-1-b57.zip' from US Census Bureau website ... success.
 Downloading 'x13ashtml-v1-1-b57.zip' from US Census Bureau website ... success.
 Downloading 'docsx13.zip' from US Census Bureau website ... success.
 Downloading 'docsx13acc.zip' from US Census Bureau website ... success.
 Downloading 'dt9628e.pdf' from Banco d'Espagna website ... success.
 Downloading 'itoolsv03.zip' from US Census Bureau website ... success.
 Downloading 'omega64v03.zip' from US Census Bureau website ... success.
 Downloading 'omegav03.zip' from US Census Bureau website ... success.
 Downloading 'docsv03.zip' from US Census Bureau website ... success.
 Downloading 'gettingstartedx12.pdf' from US Census Bureau website ... success.
 Downloading 'ffc2000.pdf' from SAS Institute website ... success.
 Downloading '25_2015_abeln_jacobs.pdf' from Australian National University
website ... success.
 Downloading 'x11.zip' from EViews(R) website ... success.
 Downloading 'ShiskinYoungMusgrave1967.pdf' from US Census Bureau website ...
success.

20

 Downloading 'x11_french.pdf' from US Census Bureau website ... success.
 Downloading 'x11_spanish.pdf' from US Census Bureau website ... success.
 Downloading '1980X11ARIMAManual.pdf' from US Census Bureau website ... success.
 Downloading 'Emanual.pdf' from US Census Bureau website ... success.
 Downloading 'genhol_V1.0_B9.zip' from US Census Bureau website ... success.
 Downloading 'wingenhol-v1.0-B3.zip' from US Census Bureau website ... success.
 Downloading 'winx13-v3.0.zip' from US Census Bureau website ... success.
 Downloading 'X13GraphJava_V3.0.zip' from US Census Bureau website ... success.
 Downloading 'X13GraphJavaDoc.pdf' from US Census Bureau website ... success.
 Downloading 'x13data-v2-0.zip' from US Census Bureau website ... success.
 Downloading 'X13sam-v1.1.zip' from US Census Bureau website ... success.
 Downloading 'toolsx13.zip' from US Census Bureau website ... success.
 *** 26 of 26 requested packages installed. ***

21

x13spec class

x13spec is a class that contains a specification for a run of the X-13ARIMA-SEATS
program. An x13spec can be created directly with the x13spec function, or, more
conveniently, with makespec, see above. An x13spec variable has several methods
that can be applied to it. The most important being display (short form display of
the content) and disp (long form display of the content). There is also a method
str = displaystring(spec) (where spec is an x13spec variable) that stores the
long form display to a string.

22

x13spec

 x13spec is the class definition for x13spec objects. Such an object is
 used to set all specifications of a run of the X-13ARIMA-SEATS program.

 Usage:
 Specifications are entered as triples: section-key-value.
 spec = x13spec(section,key,value, section,key,value, ...);
 spec2 = x13spec(spec1, section,key,value, section,key,value, ...);
 spec3 = x13spec(spec1, section,key,value, spec2, section,key,value, ...);

 Remark 1: section-key-value syntax --------------------------------------
 spec = x13spec('series','title','rainfall','transform','function','auto')
 would set title = rainfall in the series section, and function = auto in the
 transform section. When using this with x13.m, this creates the following
 .spc file on the harddrive:
 series{
 title = rainfall
 }
 transform{
 function = auto
 }
 which is then used by the x13as.exe program.

 Remark 2: merging existing specs --
 If existing x13spec objects are entered as arguments (second and third
 usage form above), the specifications are merged, from left to right,
 i.e. later section-key-value pairs or settings in later specs overwrite
 earlier ones.
 Example:
 spec1 = x13spec('series','title','rainfall','x11','save','d10');
 spec2 = x13spec(spec1,'series','title','snowfall');
 then spec2 contains save = d10 in the x11-section (inherited from spec1),
 but title = snowfall in the series-section (the title rainfall was
 overwritten).

 Remark 3: accumulating keys ---
 The keys 'save','savelog','print','variables','aictest','types','user',
 'usertype','keys','values','smoothmethod','methodarg' behave differently.
 These keys are accumulated,
 spec = x13spec('x11','save','d10');
 spec = x13spec(spec,'x11','save','d11');
 This does not overwrite the 'd10' value. Instead, 'd11' is added to the
 list of variables that ought to be saved, and spec contains
 save = (d10 d11) in the x11-section. To remove an item from one of these
 special keys, use the RemoveRequests function. There are also
 AddRequests and SaveRequests (to overwrite keys) methods.

23

 Multiple entries can be added to an accumulating key using different,
 equivalent syntaxes,
 x13spec('x11','save','d10 d11 d13');
 x13spec('x11','save','(d10 d11 d13)');
 x13spec('x11','save',{'d10','d11','d13'});

 Remark 4: creating empty sections ---------------------------------------
 An empty section can be added by specifying an empty cell for the key,
 e.g. spec = x13spec('x11',{},{}) produces the entry
 x11{ }
 in the .spc file.

 Remark 5: removing sections or keys from a spec -------------------------
 To remove a section completely, use an [] in place of the key, i.e. if
 spec has an 'x11' section, then spec = x13spec(spec,'x11',[],[]) removes
 the 'x11' section completely from this spec.

 To remove a key from a section, use an [] as value, as follows:
 spec = x13spec('x11','save','d10','x11','savelog','q') produces
 x11{
 save = d10
 savelog = q
 }
 Then spec = x13spec(spec,'x11','save',[]) removes the 'save' key and
 produces
 x11{
 savelog = q
 }
 spec = x13spec(spec,'x11','save',{}), on the other hand, leaves the value
 of x11-save unchanged.

 Remark 6: user-defined variable ---
 The 'regression' and 'x11regression' sections allow the user to specify
 exogenous variables in the regressions that are not built in (like Easter
 or TD or AO2003.Jan). The names of such variables are added with the
 'user' key, the type of the variables is specified with the 'usertype'
 key, and the exogenous variables themeselves are provided either with the
 'data' key (in which case the data are part of the spec), or they are
 defined in an extra file and then the name of the file is specified with
 the 'file' key. You can use 'user', 'usertype', and 'data' in this
 fashion with x13spec. You could also use the 'file' key, but in that case
 you would have to make sure that your variables are stored as a table in
 plain ascii text in a file and then provide the path to this file in the
 spec. All of this is rather cumbersome.

 For this reason, x13spec provides a more convenient way. Suppose your
 exogenous variable is called 'strike' and is in your Matlab workspace.
 You can then simply say

24

 spec = x13spec(..., 'regression','user','strike', ...);
 The program will then create a file filename.udv containing the strike
 data in a form that is readable by the x13as program, and also adds the
 correct entries to the spec-file.

 If you have more than one user-definied exogenous variable, use this
 syntax,
 spec = x13spec(..., 'regression','user','(strike oilprice)', ...);

 Remark 7: error checking --
 x13spec allows you to set only sections that are known to the x13as
 program, and keys fitting to the respective sections. It does not check,
 however, if the values you assign are legal. If you assign illegal
 values you are likely to throw a runtime error by x13as.exe.

 For an explanation of all available options and settings, consult the
 documentation of the x13as program provided by the US Census Bureau.

 There is also a method spec.enforce(prog), where prog is the name of one
 of the US Census Bureau seasonal adjustment executable files, or a custom
 m-file that performs a seasonal adjustment. The procedure removes items
 from the spec that are not compatible with the program that is specified.
 Normally the user does not have to deal with this, as the .enforce method
 is automatically applied by x13.m whenever needed.

 Remark 8: short vs long names of saveable variables ---------------------
 CAUTION: USE ONLY THE THREE-LETTER CODES FOR THE 'SAVE' KEY.
 The x13as program uses a long name and a short three-letter name for
 variables or tables (e.g. 'save = levelshift' in the .spc file is
 equivalent to 'save = ls'). For the 'save' key, the Matlab X-13 toolbox
 recognizes ONLY the short two-or-three-letter versions of these variable
 names,
 x13spec('regression','save','ls')
 Using the long name,
 x13spec('regression','save','levelshift')
 will cause problems, so avoid it.

 Remark 9: pickmdl file lists --
 If the X-11 'pickmdl' method is used to select the regARIMA model, a list
 of models to choose from should be supplied. You can create such a model
 list file yourself, or use one of the files provided for you by the
 toolbox. The selection of these ready-to-use model files includes:
 - StatisticsCanada.pml The default of Statistics Canada, contains
 5 models.
 - Hussain-McLaren-Stuttard.pml 5 models proposed by these authors.
 - ONS.pml Default of the Office of National Statistics,
 United Kingdom. 8 models. It's the union of
 Hussain-McLaren-Stuttard and StatisticsCanada.

25

 - pure2.pml All ARIMA models (p d q)(P D Q) with p and q
 between 0 and 2, P and Q also between 0 and 2,
 d either 0 or 1, and D always equal to 1. Does
 not include mixed models (50 models).
 - pure3.pml Same as pure2 but with p and q varying from 0
 to 3 (70 models).
 - pure4.pml and pure5.pml Analogue (90 and 110 models, respectively).
 - st-pure2.pml and st-pure3.pml Same as pure2 and pure3, respectively,
 but containing only stationary models (d = 0).
 - int-pure2.pml and int-pure3.pml Same as pure2 and pure3, respectively,
 but containing only integrated models (d = 1).
 - mixed2.pml and mixed3.pml Same as pure2 and pure3, respectively, but
 including mixed models (162 models and
 288 models, respectively).
 - ARIMA.pml ARIMA models with no seasonal ARIMA part; all
 models from (0 0 0) to (3 1 3).
 To use one of these files, include the section-key-value triple
 'pickmdl','file','ONS.pml' (as an example) in your x13spec command.

 You can also use your own model definition files. Your file must have
 the .pml extension and must be in the current directory, or you must
 provide the full path.

 If the pickmdl section is set but no file name is provided by the user,
 the toolbox will use pure3.pml.

 Remark 10: the fixedseas and camplet and custom sections ----------------
 x13spec also accommodates three sections that have no meaning for the
 x13as program. These sections are 'fixedseas', 'camplet', and 'custom'.
 The contents of these sections are not transmitted to x13as. Instead,
 they are passed to separate Matlab programs (fixedseas.m or camplet.m or
 a custom program specified in the x13 call by 'prog','name.m').

 fixedseas computes a trend and seasonal adjustment using a much simpler
 method than X-13ARIMA-SEATS. The results are embedded into the x13series
 object as variables 'tr' (for trend), 'sf' (for seasonal factor), 'sa'
 (for seasonally adjusted), and 'ir' (for irregular). fixedseas is much
 less successful in removing seasonality that X-13ARIMA-SEATS is, but it
 has the advantage of producing seasonal factors that do not change over
 time. It is also computationally much cheaper, and works with arbitrary
 frequencies.

 The 'fixedseas' section supports the following keys:
 - 'period' This is a single positive integer or a vector of
 positive integers. It determines the frequencies that are
 filtered out. If this key is not given, it is set equal to
 obj.period (i.e. typically 4 or 12).
 - 'mode' fixedseas does an additive or a multiplicative

26

 (log-additive) decomposition of the data. You can specify
 here which one to use. If this argument is omitted, the
 decomposition is log-additive if obj.isLog is true and
 additive otherwise.
 - 'save' This is the list of variables that should be saved.
 Possible values are ''tr', sa', 'sf', 'ir', and 'si'.
 - 'type' Determines how the trend is computed. Default is 'ma' for
 moving averages. Alternatives are 'hp' (for Hodrick-Prescott),
 'detrend' (using Matlab's detrend function), 'spline', and
 'polynomial'.
 - 'typearg' Additional arguments for 'type' can be specified here. For
 'hp', 'spline', and 'polynomial', see help fixedseas for
 an explanation. With 'detrend', the additional argument
 must be a date or datevector, indicating where breaks in
 the trend should be allowed.

 camplet computes a seasonal adjustment proposed by Abeln and Jacobs, 2015.
 The results are embedded into the x13series object as variables 'sf'
 (seasonal factor), 'sa' (seasonally adjusted), as well as a couple of
 series unique to this algorithm (seee 'help camplet'). camplet is less
 successful in removing seasonality than X-13ARIMA-SEATS is, but it has
 the advantage that it is computationally much cheaper and works with
 arbitrary frequencies. Also, unlike fixedseas, it does allow for
 seasonality that is changing over time.

 The 'camplet' section supports the following keys:
 - 'period' This is a single positive integer that determines the
 frequency that is filtered out. If this key is not given,
 it is set equal to obj.period (i.e. typically 4 or 12).
 Unlike fixedseas, camplet does not support a vector for
 'period', To perform multiple camplet filterings, run them
 sequentially, using the original data first, and then the
 output of the first filtering round (for the first frequency)
 as the input for filtering out the second frequency, and so
 on.
 - 'save' This is the list of variables that should be saved.
 Possible values are 'sa', 'sf', 'bar', 'fcs', 'fer', 'rer',
 'gra', 'g', 'nol', 'psh', 'cca', 'ca', 'm', 'lle', 't'.

 - 'options'
 The following parameters are the ones defining the CAMPLET algorithm, see
 the working paper for explanations:
 - 'CA' CA parameter (Common Adjustment).
 - 'M' M parameter (Multiplier).
 - 'P' P parameter (Pattern).
 - 'LE' LE parameter (Limit to Error).
 - 'T' T parameter (Times).
 - 'INITYEARS' The number of years used to initialize the algorithm. The

27

 CAMPLET algorithms sets this to 3, but you can override this
 choice.
 If set by the user, these are stored in the 'options' key of the struct.

 Note that camplet.m does an additive or a log-additive decomposition of
 the data. This choice is not stored in the camplet-transform or
 camplet-mode keys (which both do not exist), but rather in the
 transform-function key (outside of the camplet section).

 You can also define your own, custom m-file that performs a seasonal
 adjustment. You have to observe a few restrictions on the form of your
 output, so that it is readable for the toolbox. seas.m in the seas
 subfolder is an example of such a custom algorithm.

 The 'custom' section supports the following keys: 'period', 'mode',
 'save', 'options'. What these mean and which values are legit depends on
 the custom m-file you use, and whose name is stored on the .prog property
 of the x13series object. The seas.m file is an example of such a custom
 file. It accepts in the 'mode' section either 'none', 'add', 'logadd',
 or 'mult'. In the 'save' section it accepts the same as fixedseas. seas.m
 does not use for the 'period' and 'options' sections (but your own m-file
 could use these sections).

 PROPERTIES and METHODS

 The resulting spec-object contains one property for each section entered.
 In addition, it also has the following properties:
 - isempty boolean spec.isempty returns true if the spec
 contains no sections.
 - isComposite boolean True if 'composite' is one of the series.
 - adjmethod char The name of the method used for seasonal
 adjustment, e.g. 'x11', 'seats',
 'fixedseas', ...
 - transfunc char The function stored in
 spec.transform.function. If that is
 missing, the content of
 spec.transform.power is mapped to either
 'none' or 'log' (or noting, if no mapping
 is sensible).
 - adjmode char Typically 'add' or 'logadd' or 'mult'.
 - requesteditems cells All the variables requested for saving
 anywhere in the spec (with the 'save' key).
 - mainsec char Either 'series' or 'composite', depending
 on whether the spec belongs to composite
 data or not.

 Several methods are available with a x13spec. Most of them are mainly used

28

 internally, and called by makespec.m, x13series.m, or x13.m, but they
 could also be used by a user:

 spec.addtriplet(section,key,value) adds one section-key-value entry.
 - merge spec3 = spec1.merge(spec2) makes spec3 that contains
 the contents of spec1 and spec2.
 - specminus spec3 = spec1.specminus(spec2) removes all
 components in spec1 that are also present in spec2
 and places the remainder into spec3.
 - copy obj2 = obj.copy creates an exact, but intependent
 copy of obj. Note that simply assigning obj2 = obj
 does not create an independent copy of obj, but
 only creates a handle to the same object, If you
 change properties of obj, they will also show up in
 obj2, and vice versa. the copy methods allows you
 to create independent instances.
 - AddRequests spec.AddRequests(series,key,value1,[value2, ...])
 adds values to an accumulating key.

 The following methods have the same syntax:
 - SaveRequests sets values to an accumulating key, overwriting existing
 values.
 - KeepRequests removes all values not in the list of arguments.
 - RemoveRequests removes all the values in the arguments list.
 - RemoveKeys removes a whole key (or multiple keys) from a series.
 - KeepKeys removes all keys except the ones in the arguments list.
 - RemoveSections removes a whole series (or multiple series) from a spec.
 - KeepSections removes all sections not in the arguments list.
 - AddSections adds empty section(s).

 spec.RemoveInconsistentSpecs cleans up spec so that it does not contain
 obvious inconsistencies. For instance, save-requests that only make
 sense for composites or for multiplicative decomopitions are removed if
 the conditions are not met. Many more cases are covered and cleaned
 up, although it is still possible that some inconsistencies remain.
 spec.enforce(progname) changes a spec so that it is conformant with a
 particular program. For instance, spec.enforce('x12a.exe') makes the
 spec compatible with the X-12 version. spec.enforce('fixedseas.m')
 makes it compatible with fixedseas.m, etc.

 spec.TransformPowerToFunction uses transform-power to set
 transform-function to either 'none' or 'log'.
 spec.ExtractModeFormTransform uses transform-function to guess x11-mode
 (or custom-mode etc, depending on the adjustment method that is
 chosen).
 ExtractValues extracts values from a spec and returns them in the correct
 format (as char, numerical, or cells).
 disp displays a nicely formated content of the spec.

29

 display is a short form of disp.
 dispstring is the same as disp but returns a string that can be assigned
 to a variable.

 Some static methods are also available:
 [section,key] = legalize(section,key)
 This checks is a section is legal and is paired with a legal key
 belonging to that section. The input arguments can be abbreviated. The
 non-abbreviated versions are returned.
 .toNum, .toCell, .toParen
 These methods transform any input (if possible) into a numeric, a cell
 or cellarray, and a char surrounded by parenthesis if there are
 multiple components, where the components are separated by spaces.
 (This is the way multiple values are stored in an .spc file).

30

x13series class

A x13series variable contains a seasonal adjustment of a single time series. It
contains all the inputs, all the computed time series, and all the tables that are
created in the process by the Census program. Like x13spec, the x13series has
methods display, disp, and dispstring.

31

x13series

 x13series is the class definition for x13series objects.
 Such an object is the home of the input to and the output of the US
 Bureau of the Census X13ARIMA-SEATS program as applied to a single time
 series.

 Properties:
 - name string name of the series
 - fileloc string path to location of data files
 - graphicsloc string path to location of files for the
 x13graph program; if this is an
 empty string (''), the graphics
 files are created in a subdirectory
 of the temporary files directory;
 if this property is empty ([]), no
 graphics files are produced by the
 .Run method.
 - flags string flags to be used in the x13as
 run. Do not set the -g or the -m
 flags here; they are taken care
 of automatically. You could, for
 instance, set the -r or the -n
 flags to affect the .out
 property, and set the -s switch to
 generate the diagnostics summary
 file.
 - specgiven x13spec specification provided when calling the
 x13 function
 - spec x13spec specgiven is adapted by the program to
 remove inconsistencies. Also, some
 entries are added automatically.
 obj.spec the the final specification
 that is used for the estimation by
 x13as.
 - isLog boolean True is decomposition is
 multiplicative, false if additive,
 empty if something else or unclear.
 - period int periodicity (typically 4 or 12)
 - span string dates spanned by variable
 - arima string specification of seasonal ARIMA
 model
 - coef struct stuct with one to three elements.
 obj.coef.arma contains the
 coefficients, standard errors, and
 t-values of the estimated ARMA
 process, obj.coef.regr contains the
 same for the preadjustment

32

 regression (if present). The two
 elements are Matlab tables and are
 available only with R2013a or
 later. obj.coef.lks contains the quality
 statistics (likelihood and the like) of
 the regression in a struct for easy
 access.
 - regression string result of regression as text
 (removed, use .table('regression') (extracted from .out)
 - prog string name of executable used for the
 computation
 - progloc string path to the x13as/x12a program
 - ishtml boolean false if text version of executable
 is used, true if html version is
 used (in that case, obj.tbl is
 empty)
 - progversion string version and build number of the
 Census program used
 - timeofrun 1x2 array time of running of program,
 duration of run
 - con string console output of x13as.exe
 - msg string errors, warnings, and notes during
 run
 - listofitems array names of variables, ACF/PACF,
 spectra, and text items in the
 object (the items themselves are
 not hard-wired, but are dynamic
 properties)
 - isempty boolean returns true if listofitems is
 empty
 - hitem cells array of handles to the dynamic
 properties
 - tbl struct content of tables stored in the
 .out property
 - version double version of the toolbox

 .spec, .prog, .progloc, .ishtml, .fileloc, .graphicsloc, .flags, and
 .timeofrun are freely accessible properties (they can be read and set
 from anywhere). The other properties are either protected or dependent,
 which means that you cannot easily set them (e.g., setting
 obj.period = 12 throws an error).

 Important methods:
 - disp and display Show the content of the object (extensive and
 compact versions).
 - dispstring Same as disp, but does not print to the console.
 Instead, the disp output is returned as a string
 variable.

33

 - plot An overloaded method for this object class.
 - table Returns a particular table. table(obj,'F2A')
 returns table F2.A. table(obj,'F2') returns all
 tables starting with 'F2' (i.e. F2 and F2.A to
 F2.I) as one string. If no argument is given, a
 list of all tables in the object is returned.
 - showmsg Returns the content of the .msg property (which is
 a cell array) as a string.

 Rarely used methods: The following methods are normally not useful for
 regular users. They are used by x13.m to perform its work. Be careful if
 you employ these methods. It is possible to create unusable x13series
 objects if you don't know what you are doing.
 - additem Used to add a general item to the object, obj =
 obj.additem(name,content), where name is a string with
 at most three letters.
 - addvariable Adds a time series to the object. Note, however,
 that time series must have names with at most three
 characters. Syntax: obj = obj.addvariable(vname, ...
 dates,data,header,type), where vname is the name of
 the new item (at most three characters), dates is a
 (nx1) column vector containing datecodes, data is
 an (nxm) array containing the data, header is a
 (1xm) cell array containing the titles of the
 individual series (if there is only one variable,
 m = 1, it is a good idea to use the name of the
 variable as the single header), and type is an
 integer with this meaning: type = 1 is a time
 series, type = 2 is an ACF/PACF object, type = 3 is
 a spectrum. type = 0 would be a text objects but
 you should use additem to add such contents.
 - rmitem Removes an item or a list of items (or variables) from
 the object.
 - addtable Takes two arguments: the name of the table and the
 content. Creates new table and places it in the object.
 - rmtable Removes the given table.
 - PrepareFiles Takes four arguments: dates, data, spec, and a
 boolean called isComposite which determines if the
 series is supposed to contain the composite series
 of a composite run (the members of a composite have
 isComposite set to false). It adds the items .dat
 and .spc to the object and prepares all the files
 on disk so that the x13as program can process them.
 - Run Runs the x13as program using the files created by
 PrepareFiles.
 - CollectFiles Imports the files produced by the x13as program
 into the Matlab object.
 - RunMfile Runs an m-files that performs a seasonal

34

 adjustment, and packs the result into an x13series
 object.
 - clean Removes all the information that was added by
 CollectFiles.
 - runX12diag Runs the X-12 diagnostic utility on the files
 created with the -s flag.
 - updatemsg Extracts all ERRORS, WARNINGS and NOTES from the
 .err property and places them in the .msg property.
 Also adds a list of variables that were requested
 in the specification (with some 'save' key) but
 that are not available (because the x13 program did
 not produce them, or because they were later
 deleted).
 - updatetables Attempts to parse .out and puts the result into
 .tbl
 - ExtractSection Returns the content of a section in the .spc
 property.
 - ExtractValue Returns the value of a certain key in a certain
 section of the .spc property.

35

table

 table returns the content of one or several tables contained in
 the object.

 Usage:
 Let obj be an x13series object [obj = x13(...)]. Then, ...
 obj.table returns a list of all tables
 obj.table('f') returns all tables whose heading starts with 'f'
 (i.e. 'f2' and 'f3')
 str = obj.table(...) places the output into a string variable

36

showvariable

 showvariable returns a table with the content of a variable. Each column
 is a period (month or quarter) and each row is one year.

 Usage:
 showvariable(obj,name)
 showvariable(obj,name1,name2,...)
 tbl = showvariable(...)

 Inputs:
 obj A x13series of x13composite object.
 name The three-letter name of a variable in obj.

 Outputs:
 tbl A table. If multiple names are given, tbl is a cell array of
 tables.

 Example:

 load BoxJenkinsG;
 x = x13(BoxJenkinsG.dates,BoxJenkinsG.data,makespec('FULLX11'));
 x.showvariable('d9')

 produces
 Jan Feb Mar Apr May ...
 _______ _______ _______ _______ _______

 y1949 NaN NaN NaN NaN NaN ...
 y1950 NaN NaN NaN NaN 0.92568 ...
 y1951 0.91268 NaN 1.0544 NaN NaN ...
 y1952 0.91579 0.94117 NaN NaN NaN ...
 y1953 NaN NaN NaN 0.98245 0.99152 ...
 y1954 NaN 0.88632 NaN NaN NaN ...
 y1955 NaN NaN NaN NaN NaN ...
 y1956 NaN NaN NaN NaN NaN ...
 y1957 NaN NaN NaN NaN NaN ...
 y1958 NaN NaN NaN 0.94755 NaN ...
 y1959 NaN NaN NaN NaN NaN ...
 y1960 NaN 0.83732 0.96048 0.95257 0.98866 ...

37

plot

 plot (overloaded) plots the content of an x13series object

 TO DO: legends and 'nolegend'
 legends are not yet implemented, and 'nolegend' therefore has no effect yet.

 MORE IMPORTANTLY, this code is a mess. It works, but it is extremely
 difficult to maintain because it is not well structured. This requires a
 fundamental overhaul...

 Usage:
 plot(obj)
 plot(obj, 'variable1', 'variable2', ...)
 plot(obj1, obj2, ..., 'variable1', 'variable2', ...)
 plot(h, obj, ...)
 plot(..., 'columnwise'|'rowwise'|'layout',[rows,cols]|'combined')
 plot(..., 'dateticks',['all','d','w','m','q','y','auto','matlab'])
 plot(..., 'dateticks','...', 'multdateticks', integer)
 plot(..., 'selection', boolean vector)
 plot(..., 'logscale')
 plot(..., 'normalized'|'meannormalized')
 plot(..., 'overlapperiods')
 plot(..., 'overlapyears')
 plot(..., 'span')
 plot(..., 'boxplot')
 plot(..., 'byperiod')
 plot(..., 'byperiodnomean')
 plot(..., 'separate')
 plot(..., 'fromdate',date)
 plot(..., 'todate',date)
 plot(..., 'selectdates',boolean vector)
 plot(..., 'nolegend')
 plot(..., 'options',{...})
 plot(..., 'quiet')
 [fh,ax] = plot(...)

 The command can plot variables, ACF/PACF, and spectra contained in an
 x13series object. It plots these types of items differently, and some of
 the options apply only to some types of items.

 The options can be abbreviated. However, at least four characters of the
 option must be specified. Otherwise, the parameter is interpreted as the
 name of an item that is to be plotted. For instance, in
 plot(obj,'dat','log'), the program will try to plot the items 'dat' and
 'log' (if available), but maybe you wanted to plot 'dat' on a log-scale.
 To achieve that, you need to say (at the minimum) plot(obj,'dat,'logs')
 [abbreviation of 'logscale'].

38

 Inputs:
 obj An x13series object.
 variable The name of variables stored in obj. Default is 'dat'.
 h Can be a figure handle or an axis handle. If it is an axes
 handle, then only one x13series and one variable can be
 specified, or the 'combined' keyword must also be used.
 This single variable of this single x13series is then
 plotted to the given axis.
 'rowwise' The variables of an x13series are plotted in one row; each
 column contains the same variable of all x13sereies
 objects. This is the default.
 'columnwise' This option swaps the location of the subaxes. With
 'columnwise', the variables of an x13series are plotted in
 one column; each row contains the same variable of all
 x13series objects.
 'layout',[rows,cols] sets the number of rows and columns of the
 subaxes. If rows or cols is NaN, it will be computed from
 the other one. It is not legal to set both to NaN.
 'combined' Plots all the requested information in one axis.
 'dateticks' This is one of the following: 'all', 'd', 'w', 'm', 'q',
 'y', 'matlab', 'auto', or 'default'. 'auto' makes a choice that
 often works. 'all' means that each datapoint on the dates-axis
 is labelled. 'matlab' means that Matlab's default is used.
 The default is 'auto'.
 'multdateticks' Reduces the number of ticks. Example, if 'dateticks'
 is set to 'y' and 'multdateticks' is set to 3, then there
 is a tick at the beginning of every third year.
 'selection' If a variable contains several time series (such as .fct,
 which conains the forecast as well as the lower and upper
 bounds of the confidence interval), then the vector
 following the 'selection' option determines which time
 series are plotted. For instance, plot(obj, 'fct',
 'selection',[1 0 0]) plots only the forecast without the
 limits of the confidence band. Default is to plot all
 timeseries contained in an item. If the number of entries
 in the selection-vector does not match the number of time
 series contained in a variable, 'selection' is simply
 ignored.
 'logscale' Applies only to variables (not ACF or spectra). Uses a
 logarithmic scale for the values.
 'normalized' Applies only to variables. Normalizes data so that mean
 is zero and standard deviation is one. If 'normalized' and
 'logscale' are used, the log of the data is first taken
 and the logarithmic data are then normalized.
 'meannormalized' Applies only to variables. Same a 'normalized' but
 applies only to the mean.
 'overlapperiods' The x-axis is either 1:12 (for monthly data) or 1:4

39

 (for quarterly data). Each year's values are drawn as a
 separate line.
 'overlapyears' The x-axis is one observation for each year. Each
 period (month or quarter) is drawn as a separate line.
 'span' The x-axis is either 1:12 (for monthly data) or 1:4
 (for quarterly data). Three lines are drawn, one containing
 the average for each month/quater over all years, and one
 showing the respective minimum or maximum.
 'boxplot' Similar to 'overlapperiods', but instead of plotting each
 year as a line, here a boxplot for each month (quarter) is
 produced. You can use 'boxplot' and 'overlapperiods'
 together. This option requires the 'Statistics Toolbox'. If this
 Toolbox is not available, the option will be substituted by
 'span'.
 'byperiod' As with 'overlapperiods', 'span', and 'boxplot', the abscissa
 is either 1:12 or 1:4. For each period, the year-by-year
 development is depicted as a line, so for instance,
 plot(obj,'d10','byperiod') would show the development of
 the Jan, Feb, Mar erc seasonal factor from year to year.
 Also, for each month (quarter), the average factor is shown
 as a horizontal red line. The graph is similar to one of
 the more innovative plots provided by the Census Bureau
 plot utility.
 'byperiodnomean' Same as 'byperiod', except that the average for each
 period is not shown in the graph.
 'separateperiods' Same as 'byperiodnomean', but each month (quarter) gets
 its own axis. Also the same as 'overlapyears', but with each
 line in its own subaxis.
 'fromdate' or 'todate' Boundaries of the dates that are represented on
 the hozizontal date axis in the graph.
 'selectdates' This must be followed by a boolean vector that is as
 long as the time series that is being graphed. Only thos
 datapoints are represented in the graph who have a TRUE
 entry.
 'nolegend' A legend is added when there is more than one variable that is
 printed. This option suppresses the legend.
 'options' This overloaded plot method relies on Matlab?s ordinary
 plot command to actually produce the figure. With
 'options' the user can specify any additional arguments
 that will be passed to the main plot function.
 'quiet' Suppress warnings.

 Outputs:
 fh A handle to the figure that is created.
 ax An array of handles to the individual axes that are
 contained in the figure.

40

 Examples:

 Straigtforward examples:
 plot(obj);
 plot(obj,'d10','d13');
 plot(obj,'dat','d11','combined');
 plot(obj1, obj2, 'd12','combined');

 A more elaborate example:
 figure;
 ah = subplot(2,2,[1 3]);
 plot(ah,x,'dat','options',{'LineWidth',1.0});
 hold on;
 plot(ah,x,'d12','options',{'Color',[1,0,0],'LineWidth',2.0});
 title(ah,'\bfdata and trend');

 ah = subplot(2,2,2);
 plot(ah,x,'d10');

 ah = subplot(2,2,4);
 plot(ah,x,'d10','boxplot');
 title(ah,'\bfdistribution of seasonal factors (d10)');

 To plot all variables in an x13series, try this:
 plot(x,x.listofitems{:});

41

seasbreaks

--- help for x13series/seasbreaks ---

 seasbreaks (overloaded) produces a special plot showing potential seasonal breaks

 Usage:
 seasbreaks(obj)
 seasbreaks(..., plotoptions)
 [fh,ax] = seasbreaks(...)

 The plot produces a chart with one axis for each month (quarter)
 displaying the seasonal factors as lines and the SI ratios as markers.
 Normally, the lines should be relatively close to the markers. If for one
 month (quarter), the markers are all below the line, and then suddenly
 above it (or vice versa), this indicates a break in the seasonal
 structure. The function returns a handle to the figure and a matrix of
 handles to the individual axes.

 The program works only if
 - the X-11 seasonal factors have been computed and 'd10' as well as 'd8'
 or 'd13' have been saved, or
 - the SEATS seasonal factors have been computed and 's10' and 's13' have
 been saved, or
 - any CUSTOM seasonal factors have been computed and 'sf' as well as 'si'
 or 'ir' have been saved.
 If SI (i.e. 'd8' or 's8') are missing, SI is recovered as SI = SF+IR (or
 (SI = SF*IR, depending on the type of adjustment defined in the spec).

 Inputs:
 obj An x13series object.
 h An optional figure handle.
 plotoptions Any options passed on to x13series.plot.

 Outputs:
 fh A handle to the figure that is created.
 ax Handles to the axes in the figure.

42

x13toxls

 x13toxls writes the content of an x13series variable into an Excel file.

 Usage:
 x13toxls(x,filename,['overwrite'])

 x is a x13series object. filename is the name of the Excel workbook that will
 be created. If you add the switch 'overwrite', an existing Excel file with the
 same name will be overwritten.

 There is no function for exporting x13composite objects to Excel, but you can
 use x13toxls to export individual series contained in an x13composite. For
 instance, if x is a x13composite with three series, x.country, x.north,
 x.south, then x13toxls(x.country,'country.xlsx') will write the content of
 x.country into an Excel file.

43

addASC

 addASC computes the absolute seasonal contribution in an x13series object and
 places it into the object as new variable called asc ('absolute seasonal
 contribution').

 Usage:
 obj = addASC(obj)

 obj must be a x13series object with some form of seasonal adjustment (X11,
 SEATS, FIXEDSEAS, or CAMPLET). x13composites are not supported. The returned
 obj contains a new series, called obj.asc. This series contains the absolute
 seasonal contribution.

 If the seasonal adjustment is additive, the absolute seasonal contribution is
 simply the seasonal factor (and there is not much point in applying addASC).
 If the seasonal adjustment is multiplicative, however, then asc = (sf-1)*tr,
 where sf is the multiplicative seasonal factor and tr is the trend component.

44

addCDT

 addCDT removes outliers and holday corrections from dat and stores the result
 as a new variable called cdt ('corrected data').

 Usage:
 obj = addCDT(obj)
 obj = addCDT(obj,'...');
 obj = addCDT(obj,'...','...', ...);

 obj must be a x13series object. (x13composites are not supported.) If only the
 obj is given as argument, then the following series (if present) are removed
 from the data: 'ls','ao','tc','hol','td'. Alternatively, the user can also
 provide a list of series to remove from the data, e.g. addCDT(obj,'ls') will
 remove only level shifts ('ls') from the data. The result is stored as
 obj.cdt.

45

addacf

 addacf computes the autocorrelation function of a variable using the
 Econometrics Toolbox and adds the result to an x13series.

 NOTE: This method requires that Matlab's Econometrics Toolbox is
 installed.

 Usage:
 obj.addacf(v,d,vname,descr);
 obj.addacf(v,d,vname,descr,nlags);

 Inputs:
 obj An x13series object.
 v Variable contained in obj.
 d Number of differences. d=0 means that the ACF of the data
 itself is computed. Setting d=1 computes the ACF of the first
 difference of the variable.
 vname Name of the new variable that is created.
 descr Short text describing the new variable.
 nlags Number of lags to compute (default is 2*obj.period).

 Example: We assume that dates and data contain the dates and the observations
 of a timeseries that will be seasonally adjusted.
 spec = makespec('ADDITIVE','FIXEDSEAS');
 obj = x13([dates,data],spec);
 obj.addacf('ir' ,1,'fai','ACF of fixed irregular');
 plot(obj,'fai');

46

addpcf

 addpcf computes the partial autocorrelation function of a variable using the
 Econometrics Toolbox and adds the result to an x13series.

 NOTE: This method requires that Matlab's Econometrics Toolbox is
 installed.

 Usage:
 obj.addpcf(v,d,vname,descr);
 obj.addpcf(v,d,vname,descr,nlags);

 Inputs:
 obj An x13series object.
 v Variable contained in obj.
 d Number of differences. d=0 means that the PACF of the data
 itself is computed. Setting d=1 computes the PACF of the first
 difference of the variable.
 vname Name of the new variable that is created.
 descr Short text describing the new variable.
 nlags Number of lags to compute (default is 2*obj.period).

 Example: We assume that dates and data contain the dates and the observations
 of a timeseries that will be seasonally adjusted.
 spec = makespec('ADDITIVE','FIXEDSEAS');
 obj = x13([dates,data],spec);
 obj.addpcf('ir' ,1,'fpi','PACF of fixed irregular');
 plot(obj,'fpi');

47

addspectrum

 addspectrum computes the spectrum of a variable using the Signal Processing
 Toolbox and adds the result to an x13series.

 NOTE: This method requires that Matlab's Signal Processing Toolbox is
 installed.

 Usage:
 obj.addspectrum(v,d,vname,descr);

 Inputs:
 obj An x13series object.
 v Variable contained in obj.
 d Number of differences. d=0 means that the spectrum of the data
 itself is computed. Setting d=1 computes the spectrum of the first
 difference of the variable.
 vname Name of the new variable that is created.
 descr Short text describing the new variable.

 Example: We assume that dates and data contain the dates and the observations
 of a timeseries that will be seasonally adjusted.
 spec = makespec('ADDITIVE','FIXEDSEAS','CAMPLET');
 obj = x13([dates,data],spec);
 obj.addspectrum('sa' ,1,'sfa','Spectrum of fixed seasonal adjustment');
 obj.addspectrum('csa',1,'sca','Spectrum of camplet seasonal adjustment');
 plot(obj,'sfa','sca','combined');

48

addMatlabSpectrum

 addMatlabSpectrum computes the spectrum of a variable using the Signal
 Processing. It adds up to four spectra (for Δdat, Δsa, Δir, and rsd). If
 Spectra are already in the variable, they are replaced. Thus, this
 program overwrites the spectra that were generated by x13as.exe.

 NOTE: This method requires that Matlab's Signal Processing Toolbox is
 installed.

 Usage:
 x = x13(dates,data,spec);
 x.addMatlabSpectrum;
 plot(x,'sp0');

49

preadjustOnePeriod

 preadjustOnePeriod replaces the seasonally unadjusted data for one month or
 one quarter, respectively, by the adjusted data, and then recomputes the
 seasonal adjustment.

 Usage:
 obj = preadjustOnePeriod(obj,p)

 obj is a x13series (x13composites are not supported) that contains some
 seasonal adjustment. p is an integer between 1 and obj.period. p can also be a
 vector of such integers.

 Example: Let obj be an x13series object with monthly periodicity and seasonal
 adjustment. Then, obj = preadjustOnePeriod(obj,12) will replace the December
 values with the seasonally adjusted data, and recompute the seasonal
 adjustment. The procedure also removes all outliers (such as ao or ls or hol)
 using addCDT.

 Procedure: The first step is to use addCDT to remove the outliers. The second
 step is to use addASC to compute the additive seasonal contribution (asc).
 Then, the asc of the particular period(s) is removed from the data and the
 seasonal adjustment is computed again.

50

x13minus

 x13minus takes two x13series objects and returns a new x13series object
 that contains all time series both arguments have in common, but
 containing the difference of the values. This is useful to exactly
 compare the differences between two sets of specifications.

 Usage:
 x3 = x13minus(x1,x2)

 x1, x2, x3 are x13series objects. x3 contains all time series objects
 that are common to x1 and x2, but with their differences as values. In
 addition, x3 will contain variables 'tr','sa','sf','ir','si','rsd' that
 contain the differences of the key variables, so that even if the key
 variables have different names in x1 and x2, you can still get a
 difference.

 Example1:
 load BoxJenkinsG; dates = BoxJenkinsG.dates; data = BoxJenkinsG.data;
 spec1 = makespec('PICKFIRST','NOTRANS','EASTER','TD','X11', ...
 'series','name','linear');
 x1 = x13(dates,data,spec1);
 spec2 = makespec(spec1,'LOG','series','name','log');
 x2 = x13(dates,data,spec2);
 x3 = x13minus(x1,x2);
 ah = subplot(2,1,1); plot(ah,x1,x2,'e2','comb');
 ah = subplot(2,1,2); plot(ah,x3,'e2');

 EXAMPLE 2:
 spec1 = makespec('PICKFIRST','LOG','EASTER','TD','X11', ...
 'series','name','X-11');
 x1 = x13(dates,data,spec1);
 spec2 = makespec(spec1,'SEATS','series','name','SEATS');
 x2 = x13(dates,data,spec2);
 x3 = x13minus(x1,x2);
 ah = subplot(2,1,1); plot(ah,x1,x2,'d11','s11','comb','quiet');
 ah = subplot(2,1,2); plot(ah,x3,'sa');
 Note that x3.sa is x1.e2 - x2.s11, because the seasonally adjusted
 variables have different names in in X11 and in SEATS.

51

Internally used method

PrepareFiles, Run, CollectFiles, RunMfile, runX12diag
addvariable, additem, rmitem, clean
updatemsg, showmsg, updatetables, addtable, rmtable
DetermineFrequency, Descrvariable
ExtractParagraph, ExtractSection, ExtractValue

Type help x13series.Method to receive short help on some method.

52

x13composite class

A composite seasonal adjustment is a procedure where a group of simultaneous time
series are used to produce an alternative seasonal adjustment. In addition, the sum
of these series is also computed and seasonally adjusted. The sum can be seasonally
adjusted separately or can be indirectly adjusted by adding the seasonally adjusted
series of its components. The Census program does both at the same time.

A x13composite variable contains a composite seasonal adjustment. It contains one
x13series veriable for each components and an additional one for the aggregate.

Like x13spec and x13series, the x13composite has methods display, disp, and
dispstring.

53

x13composite

 x13composite is the class definition for x13composite objects.
 Such an object is the home of the input to and the output of the US
 Bureau of the Census X13ARIMA-SEATS program as applied to a composite
 time series.

 Properties:
 - name string name of the series
 - filename string name of the files associated with
 the series
 - fileloc string path to location of data files
 - graphicsloc string path to location of files for the
 x13graph program; if this is an
 empty string (''), the graphics
 files are created in a subdirectory
 of the temporary files directory;
 if this property is empty ([]), no
 graphics files are produced by the
 .Run method.
 - flags string flags to be used in the x13as
 run. Do not set the -g or the -m
 flags here; they are taken care
 of automatically. You could, for
 instance, set the -r or the -n
 flags to affect the .out
 property, or set the -s switch to
 generate the diagnostics summary
 file.
 - spec x13spec specification structure for
 estimation
 - period int periodicity (4 or 12)
 - span string dates spanned by variable
 - prog string name of executable used for the
 computation
 - progloc string path to the x13as/x12a program
 - ishtml boolean false if text version of executable
 is used, true if html version is
 used (in that case, obj.table is
 empty)
 - progversion string version and build number of the
 Census program used
 - timeofrun 1x2 array time of running of program,
 duration of run
 - con string console output of x13as.exe
 - msg string errors, warnings, and notes during
 run
 - listofseries array names of x13series objects stored

54

 in this object
 - compositeseries string name of x13series in the object
 containing the composite
 - alldates array union of all .dat dates vectors
 - hseries array handles to series in object

 .spec, .prog, .progloc, .fileloc, .graphicsloc, and .timeofrun are freely
 accessible properties (they can be read and set from anywhere). The other
 properties are either protected or dependent, which means that you cannot
 easily set them (e.g., setting x.period = 12 throws an error).

 In addition, x13series objects are added as new properties during an x13
 run. These new properties contain the runs of the individual series that
 make up the composite, as well as the aggregated time series.

 Important methods:
 - disp and display Show the content of the object.
 - dispstring Same as disp, but does not print to the console.
 Instead, the disp output is returned as a string
 variable.
 - plot An overloaded method for this object class.
 - showmsg Returns the content of the .msg property (which is
 a cell array) as a string.

 Rarely used methods: The following methods are normally not useful for
 regular users. They are used by x13.m to perform its work. Be careful if
 you employ these methods. It is possible to create unusable x13series
 objects if you don't know what you are doing.
 - PrepareFiles Takes four arguments: dates, data, spec, and
 compSpec. data is the vecor for dates, data is the
 collection of series (the components), spec is the
 collection of x13spec specifications for the
 components, and compSpec is the specification for
 the composite series. The method calls the
 PrepareFiles method for the individual x13series
 objects.
 - Run Runs the x13 program using the files created by
 PrepareFiles.
 - CollectFiles Imports the files produced by the x13 program into
 the Matlab object.
 - runX12diag Runs the X-12 diagnostic utility on the files
 created with the -s flag.
 - updatemsg Extracts all ERRORS, WARNINGS and NOTES from the
 .err property and places them in the .msg property.
 Also adds a list of variables that were requested
 in the specification (with some 'save' key) but
 that are not available (because the x13 program did
 not produce them, or because they were later deleted).

55

plot

 plot (overloaded) plots the content of an x13composite object

 Usage:
 plot(obj)
 plot(obj, 'variable1', 'variable2', ...)
 plot(obj, 'variable1', 'variable2', ..., 'dropcomposite')
 plot(obj1, 'variable1', 'variable2', ..., option1, option2, ...)
 plot(h, obj, ...)
 [fh,ax] = plot(...)

 Inputs:
 obj A x13composite object.
 variable The name of variables stored in the x13series contained in
 obj.
 h Can be a figure handle or an axes handle. If it is an axes
 handle, then only one variable can be specified. If the
 x13composite object contains multiple series (which
 normally it would), then one must also set the 'combined'
 option. The single variable of all x13series in obj are
 then plotted to the given axes.
 dropcomposite Do not plot the composite series.
 options See help on x13series.plot for explanation.

 Outputs:
 fh A handle to the figure that is created.
 ax An array of handles to the individual axes that are
 contained in the figure.

 x13composite/plot really functions like x13series.plot, where all series
 contained in the composite object are passed as individual series to the
 x13series.plot routine. For instance, if obj is a x13composite with five
 series,

 ===
 X13-ARIMA-SEATS composite object
 ...
 List of series:
 -> Y
 - C
 - I
 - G
 - NX
 ...
 Time of run: 24-Jul-2015 09:18:02 (4.0 sec)
 ===

56

 then plot(obj, [...]) --- which calls x13composite/plot --- is exactly
 the same as plot(objC,obj.I,obj.G,obj.NX,obj.Y, [...]) --- which calls
 x13series.plot.

57

seasbreaks

 seasbreaks (overloaded) produces special plots showing potential seasonal breaks

 Usage:
 seasbreaks(obj)
 seasbreaks(..., 'dropcomposite')
 seasbreaks(..., options)
 fh = seasbreaks(...)

 Inputs:
 obj A x13composite object.
 dropcomposite Do not plot the composite series.
 options Any options passed on to x13series.plot.

 Outputs:
 fh An array of handles to the figures that are created.

 x13composite/seasbreaks really functions like x13series.seasbreaks, where
 all series contained in the composite object are passed as individual
 series to the x13series.seasbreaks routine.

58

Internally used methods

PrepareFiles, Run, CollectFiles, RunOther, runX12diag
addseries, rmseries, ExtractParagraph
showmsg, updatemsg

Type help x13composite.Method to receive short help on some method.

59

Seasonal adjustment without the Census program

The X-13ARMA-SEATS program from the Census Bureau does normally a very good job.
But to use it, you need to copy the x13as.exe file from the Census website (which
is done automatically with the InstallMissingCensusProgram command). This might
not be possible for you, for instance because you work on a computer that is
controlled by an IT administrator and you are not allowed to install any software.
Moreover, the X-13 procedure is a bit of a black box, so we do not learn much about
the mechanics of seasonal adjustment.

To address these issues, this toolbox provides alternatives that are completely
done within Matlab. The toolbox contains four programs that perform a seasonal
adjustment and do not use the Census programs:

• seas A simple, very transparent algorithm you can tinker with.
• fixedseas An algorithm that produces seasonal factors that do not change
 over time.
• x11 An approximate implementation of the older X-11 procedure that
 was developed by the Census bureau in the 1960s.
• camplet An algorithm that produces an adjustment that does not undergo
 revisions when new data are added to the time series.

Seas and fixedseas are variations of a common algorithm that contains of just four
steps:

1. Use some form of smoothing to create a trend (TR) from the data (D).
2. Compute the deviation of D from TR (call it SI), make 12 series out of SI

(for monthly observations, make 4 for quarterly observations, and likewise
for other frequencies), and use again some smoothing algorithm on these 12
series separately. Call these smoothed series seasonal factors (SF).

3. Compute the difference between D and SF and call this the seasonally adjusted
series (SA).

4. Compute the difference between TR and SA and call this the irregular series
(IR).

We end up with a decomposition in the form S = TR + SF + IR, and SA = D – SF = TR +
IR. TR contains the low frequency components of the data, SF contains the medium
frequencies, and IR the high frequencies.

Step 1 is perfomed with the trendfilter function, Step 2 is performed with the
seasfilter function.

To learn how to design your own seasonal adjustment algorithm, you can study the
seas.m file, and, a bit more complicated, the x11.m and fixedseas.m files. The
main choices you have is to use different methods to smooth, and to perform
multiple rounds of such adjustments.

60

x11.m also just uses the basic components of trend-filters, seasonal filters, and
normalization, but it is a fair bit more complicated than seas.m. This is an
approximate implementation of the first X-11 algorithm and contains several stages
of seasonal adjustment (based on movong averages).

camplet.m is quite a different filter. It relies only on backward looking filters
in order to avoid revisions of the end of sample data when new data comes in.

61

seas

 seas is a simple program that demonstrates the use of the programs in the
 seas directory of the X-13 toolbox.

 *** COMPONENTS OF THE seas SUBFOLDER **********************************

 This folder contains a selection of programs that can be used to easily
 create a seasonal adjustment, based on filters, yourself.

 These programs are:

 trendfilter.m Computes a trend (i.e. smoothed) version of the
 data. You can choose from many different methods to
 do that.
 seasfilter.m Splits data using splitperiods, smoothes them with
 trendfilter, and joins them together again with
 joinperiods.
 normalize_seas.m Computes the difference or the ratio of two series,
 depending on whether the decomposition is additive
 or multiplicative.
 splitperiods.m Splits the data into their periods. For instance,
 with monthly data, split periods makes twelve times
 series out of your data, one for each month of the
 year.
 joinperiods.m Reverse of splitperiods.
 fillholes.m Linear interpolation of missing values.
 wmean.m Computes the weighted mean. Similar to Matlab's
 conv command, but with smarter treatment of the
 edge of the data.
 kernelweights.m Computes the weights for a wide range of kernels.
 Used by trendfilter.m and seasfilter.m in
 conjunction with wmean.m
 fixedseas.m A rather elaborate program that produces a rather
 simple version of seasonal adjustment in which the
 seasonal factors are kept fixed over the years.
 x11.m An implementation of a much simplified version of
 the original X-11 method of the U.S. Census Bureau.
 camplet.m A form of seasonal adjustment that was recently
 developed and that does not produce revisions when
 data are added to the time series. It does that
 because the smoothing is completely backward
 looking (so no centered filters at all). camplet is
 separately implemented and does not use the other
 tools provided here.
 seas.m This file. You can experiment with the
 implementation in this file, and develop your own
 seasonal adjustment routine starting from seas.m.

62

 *** AN EXAMPLE: seas.M **

 Usage of seas.m
 s = seas(data,p)
 s = seas([dates,data],p)
 s = seas(...,[mode],[title])

 data is either a column vector or an array with two columns. In that
 case, the left column is a date vactor and the right column is the data
 vector.

 p is the period of the data that is to be filtered out. So, typically,
 with monthly data, for instance, p should be set to 12.

 mode is either 'add', 'logadd', or 'mult'. 'add' implies that the
 seasonal factor will be zero on average and is subtracted from the
 unadjusted data to get to the seasonally adjusted data. If type is
 'logadd', an additive decomposition is performed on the logarithm of the
 data, which are then converted back to their non-log versions afterwards.
 With 'mult', the seasonal factor is one on average, and the data is
 divided by the seasonal factor to get the seasonally adjusted data.
 Quantitatively, 'mult' should be quite simkilar to 'logadd'.

 title is a string containing the name of the series (if one is provided).

 s contains the output neatly organized in a struct. To make an x13series
 out of this, say the following,
 x = structtox13(s);
 Alternatively, you can use the custom implementation with x13 as follows,
 x = x13(dates,data,spec,'prog','seas.m')
 If you use it like this, the settings passed on are set in the spec in
 the 'custom' section, for instance,
 spec = makespec('custom','save','(sa sf)','custom','mode','add')
 This version has the advantage that you can also specify trading day and
 Easter corrections, which are extracted via a regression of the irregular
 component of a first pass of seas.m, correctingh the data from that, and
 then running seas.m a second time.

 *** MAKING YOUR OWN ***

 You can easily make your own implementation. It may be easiest to start
 from seas.m and modify a copy of this file. Any custom m-file that
 performs a seasonal adjustment has to return a struct, containing, at the
 minimum, the following fields:
 'dates' The column vector of dates.
 'dat' The column vector of unadjusted data.
 In addition, your output struct should contain the result of your

63

 seasonal decomposition. Note that these fields must have names with at
 most three letters (e.g., 'sa', 'rsd', etc). Fields with names longer
 than three letters (except the ones listed below) will not be imported
 into the x13series object.

 Optional fields are:
 'keyv' The content of this field is itself a struct with the
 following components: 'dat','tr','sa','sf','ir','si','rsd'.
 These fields contain the sames of key variables. This
 setting is stored not in the x13spec, but directly in the
 x13series object. If your output s does not contain a keyv
 field, the default is used,
 keyv = struct('dat','dat','tr','tr', 'sa','sa', ...
 'sf','sf','ir','ir','si','si','rsd','rsd')
 'mode' The mode of the adjustment (typically 'add', 'logadd',
 'mult', but others are possible, depending on what you
 implement). The setting is stored in custom-mode in the
 x13spec.
 'transform' A transformation of the data before processing (typically
 'none' or 'log', but again, more is possible. The setting
 is stored in transform-function in the x13spec.
 'title' The title of the variable (if one is provided).
 'name' The name of the series. There is a subtle difference
 between title and name. title can be any string, name
 should be a valid filename (this has to do with x13as.exe,
 which is irrelevant in this context, but it is good
 practice to observe this restriction anyway).
 'options' Some content, to be defined by you, that describes any
 information or settings you wish to use in your seasonal
 adjustment. The setting is stored in custom-options in the
 x13spec.
 'tbl' This is itself a struct. The content of this struct will be
 imported as tables into the x13series object.

64

x11

 x11 computes an approximate version of the original X-11 seasonal
 adjustment from 1965.

 Literature: Dominique Ladiray et Benoît Quenneville, DÉSAISONNALISER AVEC
 LA MÉTHODE X-11, free version in French available for
 download from researchgate.net
 English version published as: Ladiray, Dominique, Quenneville,
 Benoit, "Seasonal Adjustment with the X-11 Method," Lecture
 Notes in Statistics, Springer, 2001.

 CAUTION: The program computes only an approximate version of the original
 X-11 algorithm. Most notably, data close to the edges of the sample are
 treated differently, and there are some differences in the detection of
 outliers.

 Later versions of X-11 used an estimated ARIMA model to produce fore- and
 backcasts in order to alleviate the edge of sample problem that occurs in any
 filtering using moving averages. This program does not use ARIMA, but instead
 'mirrors' at the left and right and applies the filtering after that. This
 simple technique appears to get rid of the edge of sample problem rather
 well in most cases.

 An adjustment for calendar effects is not available using x11.m directly.
 This is, however, implemented when using x11.m through x13.m as follows:
 x = x13(dates,data,spec);
 If spec contains entries for 'regression','save','td' an adjustment for
 trading days will be computed. Likewise, if spec contains
 'regression','save','hol', an adjustment for Easter will be computed.
 These corrections for calendar effects is different than the one
 implemented in the original X-11. It also offers much less options than
 the original, and also does not perform tests to determine whether
 calendar adjustments are useful.

 NOTE: This program does *not* use the original X-11 executable program from
 the US Census Bureau. It does not support many of the options of that program
 either. This program merely tries to replicate the key steps of the
 seasonal adjustment performed by the X-11 algorithm using Matlab directly. In
 other words, this is a Matlab implementation of an approximate version of the
 X-11 algorithm.

 This fact also implies that, unlike the U.S. Census software, this
 implementation accommodates arbitrary frequencies, not just monthly or
 quarterly. This program is just a small addition to the toolbox that makes it
 more complete. Because the adjustment using X-11 is often quite similar
 to the one offered by X-13, this program can be useful for users who are
 unable to download or install the Census programs (for instance because

65

 IT security regulation prevents installing executables).

 Usage:
 s = x11(data,period);
 s = x11([dates,data],period);
 s = x11(... ,transform);
 s = x11(... ,transform,name);
 s = x11(... ,transform,name,dofull);

 s This is a structure containing the following components:
 s.prog = 'x11.m'
 s.name = name of series (if given)
 s.period = period
 s.type = type of decomposition
 s.tbl = some calculations along the way
 s.dates = dates vector
 s.dat = data vector
 s.d10 = seasonal factor (cycle)
 s.d11 = seasonally adjusted data
 s.d12 = trend
 s.d13 = irregular component
 .
 .
 .
 The other components are from intermediate computation steps. Their
 meaning is revealed in the documentation of x13as.exe.

 transform
 must be one of the following: 'additive','none','multiplicative',
 or 'logadditive'. It indicates the type of decomposition.
 'additive' or 'none' : data = tr + sf + ir, sa = tr + ir.
 'multiplicative' : data = tr * sf * ir, sa = tr * ir.
 'logadditive' : log(data) = tr + sf + ir, sa = exp(tr + ir).

 name is a string containing a descriptive title of the variable that is
 treated. This can be empty.

 dofull
 is a boolean. If set to true, all the intermediate series are
 stored in the struct. Default is false, which means that only the
 most important final results are stored.

 REMARK: This program uses several smaller programs (trendfilter, seasfilter,
 normalize_seas) that can be used to create a custom seasonal adjustment algorithm
 relatively easily. To understand how, just study the source code of this
 program.

66

method1

 method1 computes an approximate version of "Method I", developed by
 Julius Shishkin in the 1950 at the US Census Bureau.

 Note: I have not found a completely clear description of the algorithm,
 so it is unlikely that the algorithm is exactly the same as the original.
 My implementation is based on Allen H. Young's preface to the book by
 Ladiray and Quenneville:
 "Dans la Méthode I, les coefficients saisonniers étaient estimés par
 l’intermédiaire de moyennes mobiles appliquées aux valeurs de la
 composante saisonnier-irrégulier de chaque mois. Cette composante
 saisonnier-irrégulier était elle-même calculée comme rapport de la
 série originale et du résultat du lissage de cette série originale
 par une moyenne mobile centrée sur 12 termes, lissage sensé
 représenter la composante tendance-cycle. Une seconde série ajustée
 était calculée, en remplaçant cette estimation de la tendance-cycle
 par le lissage de la première estimation de la série corrigée des
 variations saisonnières par une moyenne mobile simple d’ordre 5."
 Also, the treatment at the edge of the sample is certainly different than
 the original.

 Usage:
 s = method1(data, period);
 s = method1([dates,data], period);
 s = method1(... , adjmode);
 s = method1(... , adjmode, title);

 s This is a structure containing the following components:
 'prog', 'method1.m', ...
 'tbl', an explanatory text, ...
 'title', title, ...
 'period', period, ...
 'mode', adjmode, ...
 'keyv', struct('dat','dat','tr','d12','sa','d11','sf','d10', ...
 'ir','d13','si','d8','rsd','rsd'), ...
 'dates', dates, ...
 'dat', data, ...
 'd12', tr, ...
 'd8', si, ...
 'd10', sf, ...
 'd11', sa, ...
 'd13', ir, ...
 'b2', tr1, ...
 'b3', si1, ...
 'b4', sf1, ...
 'b6', sa1);

67

 adjmode
 must be one of the following: 'additive','none','multiplicative',
 or 'logadditive'. It indicates the type of decomposition.
 'additive' or 'none' : data = tr + sf + ir, sa = tr + ir.
 'multiplicative' : data = tr * sf * ir, sa = tr * ir.
 'logadditive' : log(data) = tr + sf + ir, sa = exp(tr + ir).

 title is a string containing a descriptive title of the variable that is
 treated. This can be empty.

68

fixedseas

 fixedseas computes a simple seasonal filter with fixed seasonal factors.

 Usage:
 s = fixedseas(data,period);
 s = fixedseas([dates,data],period);
 s = fixedseas(... ,mode);
 s = fixedseas(... ,smoothmethod);
 s = fixedseas(... ,smoothmethod,methodarg);
 [s,aggr] = fixedseas(...);

 data must be a vector. fixedseas is NaN tolerant, meaning data can
 contain NaNs.

 period is a positive number which indicates the length of the seasonal
 cycle (i.e. period = 12 for monthly data, period = 7 for daily data
 having a weekly cycle, or period = 5 if the data is weekdaily).

 The optional arguments determine if the filtering should be done
 additively or multiplicatively, and the method of filter to use for
 computing the trend.

 'mode' is one of the following:
 'none' or 'add' The decomposition is done additively. This
 is the default.
 'logadd The log is applied to the data, the
 decomposition is then applied additively,
 and the exponential of the result is
 returned.
 'mult' The decomposition is done multiplicatively.

 'smoothmethod' (and 'methodarg') determines the method of trend. There
 are many choices here, see ''help trendfilter'' for a description.
 Default is a centered moving average with length equal to period
 ('cma',period).

 'period' can also be a positive vector. In that case, the seasonal
 filtering is performed several times, removing cycles at all desired
 frequencies. In that case, 'mode' and 'smoothmethod' can be cellarrays,
 containing one method (plus argument) for each period. The returned s is
 then a structure with as many components as there are components in
 'period'.

 If period is a vector and mode is the same for each period, an
 additional aggregated structure is appended to s, providing the cumulated
 seasonal factors etc. In that case, aggr is returned as true.

69

 Depending on the method used, the program will select default values for
 'lambda','roughness', or 'degree', respectively, if you do not specify
 them. If you use a vector for the 'period' argument (filtering out
 multiple periods), then you can also specify vectors of
 lambda/roughness/degree-arguments, one for each component of your
 period-vector.

 s is a struct with the following fields:
 .period Period(s) that has/have been filtered.
 .mode Either 'none' or 'log' or 'mult'.
 .smoothmethod The method used for computing the trend.
 .methodarg possibly a parameter for the smoothing algorithm.
 .tbl A short explanation of the algorith.
 .dates The original dates. If none were provided, this is just a
 vecor counting from 1 to the number of data points.
 .dat The original data.
 .tr Long term trend (by default the moving average, but other
 choices are possible, see above).
 .sa Seasonally adjusted series (= dat-sf, or exp(dat-sf),
 respectively).
 .sf Seasonal factors.
 .ir Irregular (= sa-tr or exp(sa-tr), respectively).

 Data is decomposed into the three components, trend (tr), seasonal factor
 (sf), and irregular (ir). For the additive decomposition, it is always
 the case that data = tr + sf + ir. Furthermore, sa = data - sf (or
 equivalently, sa = tr + ir). For the multiplicative decomposition, data =
 tr * sf * ir, and sa = data ./ sf (or equivalently, sa = tr * ir).

 Example 1:
 truetrend = 0.02*(1:200)' + 5;
 % truecycle = sin((1:200)'*(2*pi)/20);
 truecycle = repmat([zeros(7,1);-0.6;zeros(11,1);0.9],ceil(200/20),1);
 truecycle = truecycle(1:200);
 truecycle = truecycle - mean(truecycle);
 trueresid = 0.2*randn(200,1);
 data = truetrend + truecycle + trueresid;
 s = fixedseas(data,20);
 figure('Position',[78 183 505 679]);
 subplot(3,1,1); plot([s.dat,s.sa,s.tr,truetrend]); grid on;
 title('unadjusted and seasonally adjusted data, estimated and true trend')
 subplot(3,1,2); plot([s.sf,truecycle]); grid on;
 title('estimated and true seasonal factor')
 subplot(3,1,3); plot([s.ir,trueresid]); grid on;
 title('estimated and true irregular')
 legend('estimated','true values');

 Example 2 (multiple cycles):

70

 truecycle2 = 0.7 * sin((1:200)'*(2*pi)/14);
 data = truetrend + truecycle + truecycle2 + trueresid;
 s = fixedseas(data,[14,20],'hp');
 figure('Position',[78 183 505 679]);
 subplot(3,1,1); plot([s.dat,s.sa,s.tr,truetrend]); grid on;
 title('unadjusted and seasonally adjusted data, estimated and true trend')
 subplot(3,1,2); plot([s.sf,truecycle+truecycle2]); grid on;
 title('estimated and true seasonal factor')
 subplot(3,1,3); plot([s.ir,trueresid]); grid on;
 title('estimated and true irregular')
 legend('estimated','true values');

 Note that fixedseas(data,[14,20]) is not the same as
 fixedseas(data,[20,14]). The filters are applied iteratively, from left
 to right. The ordering matters, so the results differ.

 Detailed description of the model: Let x be some timeseries. As an
 example, we compute fixedseas(x,6).
 *** STEP 1 ***
 We compute a 6-period centered moving average,
 trend(t) = sum(0.5x(t-3)+x(t-2)+x(t-1)+x(t)+x(t+1)+x(t+2)+0.5x(t+3))/6
 The weights on the extreme values of the window are adapted so that the
 sum of the weights is equal to period. So, for instance, if period = 7,
 the weight on x(t-3) and x(t+3) would be 1.0; if period = 6.5, the weight
 would be 0.75.
 [Note: By default the trend is computed as the centered moving average,
 and this is what is explained here. Other specifications are possible,
 namely detrend, hodrick-prescott, spline, polynomial, or others (see help
 trendfilter).]
 *** STEP 2 ***
 Compute the individual deviations of x from the trend,
 d = x - trend.
 *** STEP 3 ***
 Compute the average deviation over all observations on a cycle of 6
 periods,
 m(1) = mean(d(1) + d(7) + d(13) + d(19) + ...)
 m(2) = mean(d(2) + d(8) + d(14) + d(20) + ...)
 ...
 m(6) = mean(d(6) + d(12) + d(18) + d(24) + ...)
 *** STEP 4 ***
 Normalize m so that its average is zero,
 n = (m(1)+m(2)+...+m(6))/6
 sf(1) = m(1) - n, sf(2) = m(2) - n, ..., sf(6) = m(6) - n
 These are the seasonal factors.
 *** STEP 5 ***
 Compute the seasonally adjusted time series as sa = x - sf.
 *** STEP 6 ***
 Compute the irregular as ir = sa - trend. This is the part of the

71

 fluctuations of x that is not explained by the seasonal factors or the
 trend (= moving average).

 STEP 1 as described here is for the 'moving average' trend type, which
 is the default. This step is different for the different trend types
 that are available. STEP 2 to 6 are, however, independent of the type of
 trend that is computed.

 If the multiplicative option is used, the logarithm of the data is
 processed and the exponential of the processed time series is returned.
 So, s = fixedseas(data,period,'log') is materially the same as
 s2 = fixedseas(log(data),period). Then, exp(s2.sa) = s.sa,
 exp(s2.sf) = s.sf, and exp(s2.tr) = s.tr.

 NOTE: This file is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program. It is part of the 'seas' addition
 to the toolbox which allows to implement seasonal filters without using
 the Census Bureau programs.

72

camplet

 camplet computes the Camplet seasonal adjustment.

 Source: Barend Abeln and Jan P.A.M. Jacobs, "Seasonal adjustment with and
 without revisions: A comparison of X-13ARIMA-SEATS and camplet," CAMA Working
 Paper 25/2015, Australian National University, July 2015.

 Note: The initialization algorithm is different from the one proposed by the
 authors. As a result, the adjustment of the first few years of data is
 different then when using the authors' original algorithm. Moreover, on very
 volatile time series, these differences remain throughout the sample because
 the automatic parameter adjustments are not identical. In practice, the
 differences should be rather small.

 Usage:
 s = camplet(data,period);
 s = camplet([dates,data],period);
 s = camplet(... ,'log');
 s = camplet(... ,'verbose');
 s = camplet(... , name,value, [name,value], ...);

 data must be a vector. camplet is NaN tolerant, meaning data can contain
 NaNs.

 period is a positive number which indicates the length of the seasonal
 cycle (i.e. period = 12 for monthly data, period = 7 for daily data
 having a weekly cycle, or period = 5 if the data is weekdaily).

 Some arguments are added as single keywords:
 'additive' or 'none' Implies that the analysis is performed on the
 data as presented.
 'multiplicative' or 'log' The log of the data is first taken. After the
 application of the algorithm, the exponential of
 the result is returned. This amounts to a
 multiplicative seasonal adjustment.
 'verbose' During execution the program outputs detailed
 information to the console whenever something
 unusual happens (detection of an outlier or
 pattern shift, for instance).

 Other optional arguments are entered as name-value pairs. Possible names and
 their meaning are:
 'INITYEARS' The number of years used to initialize the alorithm. Default
 is 3. (initT = INITYEARS * period is the number of observattions
 used for the initialization.)
 'INITMETHOD' The argument following this must be one of the following:
 ...,'mean' Takes the average daviation of the data from its mean over the

73

 interval 1:initT. The initial estimate of the seasonal factors
 is then the average of these deviations for each month/quarter.
 ...,'ma' Computes the deviation of the data (1:initT) from a centered
 moving average over period observations, instead.
 ...,'ls' ls stands for least squares. This option estimates a linear
 regression of the data (1:initT) on a constant and a linear
 trend. The average residuals per month/quarter are the starting
 values for the seasonal factor. The slope of this regression is
 the initial estimat of g. This method is the default.
 'CA' Initial CA parameter (Common Adjustment).
 'M' Initial M parameter (Multiplier).
 'P' Reset value for CA when pattern shift is detected.
 'LE' Initial LE parameter (Limit to Error).
 'T' Initial T parameter (Number of repetition before pattern shift
 is detected).
 'LEshare' Limit of outliers that invokes the 'volatile series' adjustment.
 'CAadd' Increment to CA parameter for volatile series.
 'LEadd' Increment to LE parameter for volatile series.
 'LEmax' Maximum limit to error.
 'TIadd' Increment of T parameter for volatile series when LE exceed
 LEmax.
 'MUsub' Reduction of MU parameter for volatile series when LE exceed
 LEmax.
 'SIM' Strictly between 0 and 1. The parameter determines the required
 similarity between consecutive errors to trigger a pattern
 shift.

 s is a struct with the following fields:
 .dat The original data.
 .dates The original dates. If none were provided, this is just a vecor
 counting from 1 to the number of data points.
 .period Period that has been filtered.
 .transform Either 'none' or 'log'.
 .opt Structure containing the selected parameters.
 .sa Seasonally adjusted series.
 .sf Seasonal factors.
 .fcst Running forecast.
 .err Running forecast error.
 .g Running estimate of trend.
 .outlier Number of consecutive outliers in a particular month/quarter.
 .pshift Boolean indicating detection of a pattern shift.
 .currca Changing value of CA.
 .ca Changing value of CA.
 .m Changing value of M.
 .le Changing value of LE.
 .t Changing value of T.

 s.opt is a struct with the the parameters chosen by the user (or the default

74

 parameters if nothing was selected): .INITMETHOD .INITYERAS .CA .M .P .LE .T
 .LEshare .CAadd .LEadd .LEmax .TIadd .MUsub .SIM

 Examples:
 We assume that data is a column vector of data (the original time series)
 with a quarterly frequency, and dates is an equally long vector containing
 Matlab date codes.
 c = camplet(data,4);
 figure('Position',[440 160 560 700]);
 ah = subplot(2,1,1); plot(ah,[data,c.sa]); grid on;
 ah = subplot(2,1,2); plot(ah,c.sf,'k'); grid on;
 If data is monthly, replace the 4 above by 12. Any other frequency is fine,
 too, actually (for instance, with weekdaily data, searching for a weekday
 pattern, use 5).
 You can choose to perform a multiplicative filtering instead, and add detailed
 feedback to the console on what is happening:
 c = camplet([dates,data],4,'verb','mult');
 figure('Position',[440 160 560 700]);
 ah = subplot(2,1,1); plot(ah,dates,[data,c.sa]); dateaxis('x'); grid on;
 ah = subplot(2,1,2); plot(ah,dates,c.sf,'k'); dateaxis('x'); grid on;
 You can tweak the parameters. Here, we change the initial period and the
 method of the initialization phase:
 c = camplet([dates,data],4);
 c2 = camplet([dates,data],4,'INITMETHOD','ma','INITYEARS',5);
 plot(dates,[c.sf,c2.sf]); dateaxis('x'); grid on;

 NOTE: This program is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program. It uses a simpler strategy to filter
 seasonal cycles than X-13ARIMA-SEATS. The main advantage of camplet is that
 this argorithm does not produce revisions of older seasonal adjustements when
 new data comes in. Also, camplet accomodates arbitrary frequencies, not only
 monthly and quarterly. Moreover, the residual seasonality is often much
 smaller than when using fixedseas.m, but unlike with this algorithm, the
 seasonal factors are not constant, but adapt over time. This program is just
 a small addition to the toolbox that makes it more complete.

75

spr

 spr computes the standard deviation of the irregular from the seasonal
 filtering done with fixedseas, seas, or x11, using different periodicities.
 It helps identifying the periodicity of the cycle(s).

 Usage:
 spr(data);
 [s,p,r,x] = spr(data);
 [s,p,r,x] = spr(data1, data2, ...);
 [s,p,r,x] = spr(..., method);
 [s,p,r,x] = spr(..., options);

 data or data1, data2, etc are individual vectors or data.

 method is one of the following: 'fixedseas',' seas', 'x11'. Default is
 'fixedseas'.

 options are any options passed on to fixedseas/seas/x11.

 If used with no output variables, spr produces a graph showing the
 standard deviation of the irregular of fixedseas with periods running
 from one to a third the length of data. The spikes in this graph indicate
 potential periods of cycles. One line is used for each data vecor given
 as argument.

 If used with output variables, s is the vector of standard deviations, p
 is the vector 1:p, where p is a third of the length of data (so plot(p,s)
 plots the spikes), and r is a matrix with all the residuals. x is a
 boolean vector identifying spikes (extreme negative curvatures).

 If multiple data are used, then s,p,r,x are cell vectors, containing the
 results for each data vector separately.

 Example:
 trend = 0.02*(1:200)' + 5;
 cycle1 = 1.0 * sin((1:200)'*(2*pi)/14);
 cycle2 = 0.7 * sin((1:200)'*(2*pi)/20);
 resid = 0.5 * randn(200,1);
 data = trend + cycle1 + cycle2 + resid;
 % So we know that data has two periods, 14 and 20. We now try to find
 % these periods.
 figure; spr(data,'add');
 % The graph reveals a clear spike at 14 (and an echo at 28 etc), which
 % we filter out now ...
 s = fixedseas(data,14,'add');
 figure; spr(s.sa,s.ir,'add');
 % The seasonally adjusted series and the residuals show no spike at 14

76

 % anymore, but a clear spike at 20 (and 40 and 60). We now take out
 % period 20 as well.
 s = fixedseas(data,[14,20],'add');
 figure; spr(s(end).sa,s(end).ir,'add');
 % The seasonally adjusted series and the residuals show no spikes
 % anymore.

 NOTE: This program is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program. It uses fixedseas to filter
 seasonal cycles and computes the volatility of the resulting residuals.
 This program is just a small addition to the toolbox that makes it more
 complete.

77

fillholes

 fillholes filles missing values of a dataarray columnwise with linear
 interpolations. If data are missing at the edge of the vector, the missing
 values are left untouched, that is, no extrapolations are performed.

 Usage: data = fillholes(data)

 NOTE: This program is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program. It is part of the 'seas' addition to
 the toolbox which allows to implement seasonal filters without using the
 Census Bureau programs.

78

normalize_seas

 normalize_seas computes the additive or multiplicative difference of two time
 series

 Usage:
 adj = normalize_seas(data,trend,[ismult])

 data and trend must be a vectors of equal length. ismult is a boolean.

 adj ist either data-trens (is ismult is missing or false), and
 data./trend is ismult is true.

 NOTE: This program is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program. It is part of the 'seas' addition to
 the toolbox which allows to implement seasonal filters without using the
 Census Bureau programs.

79

trendfilter

 trendfilter produces a smoothed version of the data.

 Usage:
 tr = trendfilter(data)
 tr = trendfilter(data,[method])
 tr = trendfilter(data,[method,parameters])
 tr = trendfilter(data,['mirror'|'extend', number])

 data An array. Each column is a time series and is smoothed separately.

 method Method used to smooth, possibly followed by one r several
 parameters. Possibilities are:
 'mean' Artithmetic mean over whole column.
 'deviation' Deviation of column means from row means.
 'reldeviation' Relative deviation of column means from row
 means.
 'detrend' A linear trend is fitted to the data.
 'detrend',bp A continuous, piecewise linear trend is
 fitted to the data. 'bp' is the (row) vector of
 breakpoints.
 'hp',lambda For the Hodrick-Prescott filter, an
 additional argument must be given. lambda
 is a smoothing parameter lambda. The
 greater lambda, the smoother the trend.
 'spline',roughness Fits a smoothing cubic spline to the data.
 'roughness' is a number between 0.0
 (straight line) and 1.0 (no smoothing), see
 doc csaps.
 'polynomial',degree Fit a polynomial of specified degree to the
 data, see doc polyfit.
 In addition, all the kernels supported by kernelweights.m can also be
 specified here:
 'ma' or 'ma',p1,p2,... A simple moving average, or a convolution of
 simple movong averages.
 'cma' A centered moving average over a range of minus
 'cma',p1,p2,... p1/2 lags to plus p1/2., or a convolution of
 such moving averages.
 'spencer' or 'spencer15' A special 15-term moving average.
 'henderson',t The Henderson filter with t terms.
 'bongard',t The Bongard filter with t terms.
 'rehomme-ladiray',t,p,h The Rehomme-Ladiray filter with t terms, which
 does perfectly reproduce polynome of order n,
 and minimized a weighted average of the
 Henderson and the Bongard criteria (with h being
 the weight of the Henderson criterion).
 One of the following:

80

 'uniform','triangle','biweight' or 'quartic','triweight','tricube',
 'epanechnikov', 'cosine','optcosine','cauchy', followed by a single
 parameter indicating the bandwidth.
 Some kernels have infinite support: 'logistic','sigmoid','gaussian' or
 'normal','exponential','silverman'. If you choose one of these, you can use
 two parameters, the first indicating the bandwidth, the second indicating
 the length of the vector that is returned. (If the second parameter is not
 given, a vector is returned where all elements are at least 1e-15.

 'mirror',p The p first and the p last observations are mirrored and
 pre-appended and appended to the data, respectively. This
 reduces edge of sample problems. The mirrored part of the trend
 is removed and not returned in tr.
 'extend',p Same as 'mirror', but without switching the order. This method
 works well only with stationary data. If in doubt, use 'mirror'
 rather than 'extend'.

 NOTE: This program is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program. It is part of the 'seas' addition to
 the toolbox which allows to implement seasonal filters without using the
 Census Bureau programs.

81

seasfilter

 seasfilter splits data using splitperiods, smoothes them with trendfilter,
 and joins them together again with joinperiods.

 Usage:
 f = seasfilter(data,p)
 f = seasfilter(data,p,varargin)

 data is a column vector or an array of column vactors containing the data.
 p is the periodicity of the data (so for instance, if you work with monthly
 observations, p would be 12).
 Additional arguments can be given that are passed on to trendfilter.

 seasfilter performs a smoothing of the data for each period separately (so for
 the sequence of observations in Januar, in February, etc, separately). In the
 contect of seasonal filtering, this procedure smoothes the SI-components
 (difference between the data and the trend), which are then called seasonal
 factors.

 Example:
 data = sin(0.75*pi*(1:120)/120)';
 s = [-0.2 0 0 0.1 0.4 0.6 0.2 -0.4 -0.3 -0.5 0 0.3];
 s = repmat(s',10,1);
 r = randn(120,1);
 noisy = data + s*0.5 + r*0.2;
 tr = trendfilter(noisy,'epanech',25);
 si = normalize(noisy,tr);
 sf = seasfilter(si,12,'spline',0.02);
 sa = normalize(data,sf);
 figure('Position',[416 128 560 673]);
 subplot(2,1,1); plot([data,tr,sa],'linewidth',1); grid on;
 subplot(2,1,2); plot(sf,'linewidth',1); grid on;

 NOTE: This program is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program. It is part of the 'seas' addition to
 the toolbox which allows to implement seasonal filters without using the
 Census Bureau programs.

82

splitperiods

 splitperiods splits one vector of data into several columns, each containing a
 particular seasonal component.

 Usage: sdata = splitperiods(data,p)

 data A column vector containing a time series.
 p The period of observation of the data.
 sdata an array with p columns, each containing a part of data.

 Example: Let data contain monthly observations of some variable. Here, we use
 the US civilian unemployment rate:

 load unemp; d = unemp.data; n = numel(d);
 m = splitperiods(d,12);

 Now sdata contains 12 columns. The first contains all observations from
 January, the second from February, etc.

 nanmean(m)

 Columns 1 through 7
 6.8769 6.7615 6.5231 6.0436 6.0436 6.4718 6.4359
 Columns 8 through 12
 6.2026 6.0763 5.9579 6.0105 6.0158

 These are the average unemployment rate over the whole sample of years,
 separately for each month.

 We can also plot the data month-wise

 plot(m,'linewidth',1); grid on;
 legend('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct', ...
 'Nov','Dec');

 NOTE: This program is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program. It is part of the 'seas' addition to
 the toolbox which allows to implement seasonal filters without using the
 Census Bureau programs.

83

joinperiods

 joinperiods is the opposite of splitperiods.

 Example:
 data = [100 90 85 150 101 90 86 155 101 88 87 152 98 91 84 144 ...
 99 88 86 153]';
 q = splitperiods(data,4); nyears = size(q,1);
 plot(q); title('data by quarter');
 legend('First','Second','Third','Fourth Quarter');
 qadj = q - repmat(mean(q),nyears,1) + mean(data);
 dataadj = joinperiods(qadj);
 figure; plot([data,dataadj],'linewidth',1); grid on;
 title('unadjusted and adjusted data');

 NOTE: This program is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program. It is part of the 'seas' addition to
 the toolbox which allows to implement seasonal filters without using the
 Census Bureau programs.

84

kernelweights

 kernelweights returns a vector that can be used with wmean or conv to smooth a
 time series.

 Usage:
 w = kernelweights('ma',p1[,p2,p3,...])
 w = kernelweights('cma',p1[,p2,p3,...])
 w = kernelweights('spencer',[p])
 w = kernelweights('henderson',p1[,p2,p3,...])
 w = kernelweights('bongard',p1[,p2,p3,...])
 w = kernelweights('rehomme-ladiray',t,p,h[,t2,p2,h2,....])
 w = kernelweights(kernel of group 1,b[,b2,b3,...])
 w = kernelweights(kernel of group 2,b,l[,b2,l2,...])

 w is a vector of weights. If used on an array of data together with conv or
 wmean, it returns a smoothed version of the data.

 'ma' or 'ma',p1,p2,... A simple moving average, or a convolution of
 simple moving averages.
 'cma' A centered moving average over a range of minus
 'cma',p1,p2,... p1/2 lags to plus p1/2, or a convolution of
 such moving averages.
 'spencer' or 'spencer15' A special 15-term moving average.
 'henderson',t The Henderson filter with t terms.
 'bongard',t The Bongard filter with t terms.
 'rehomme-ladiray',t,p,h The Rehomme-Ladiray filter with t terms, which
 does perfectly reproduce polynomial of order n,
 and minimizes a weighted average of the
 Henderson and the Bongard criteria (with h being
 the weight of the Henderson criterion).
 Group 1 (kernels with finite support):
 'uniform','triangle','biweight' or 'quartic','triweight','tricube',
 'epanechnikov', 'cosine','optcosine','cauchy'.
 Group 2 (kernels with infinite support):
 'logistic','sigmoid','gaussian' or 'normal','exponential','silverman'.
 Kernels from group 1 are followed by a single parameter indicating the
 bandwidth. Kernels from group 2 have infinite support, and even Matlab
 cannot return an infinite vector. If only one parameter is given,
 kernelweigths will return a vector that is long enough to contain all
 weights that are at least 1e-15. In a second argument is provided, this
 second argument is the length of the vector that is returned.

 Example 1:
 m = kernelweights('ma',5,5,4,4);
 h = kernelweights('henderson',15);
 b = kernelweights('bongard',15);
 s = kernelweights('spencer');

85

 e = [0;kernelweights('epanechnikov',15);0];
 n = kernelweights('normal',2,15);
 plot((-7:7),[m,s,h,b,e,n],'linewidth',1);
 legend('4-fold MA','Spencer','Henderson(15)','Bongard(15)', ...
 'Epanechnikov(15)','Gaussian(2)');
 xlim([-7,7]);
 grid on;

 Example 2:
 Let data be an array of noisy data:
 data1 = (1:100)/100;
 data2 = sin(2*pi*(1:100)/100);
 data = [data1;data2]';
 r = randn(101,2); r = r(2:end,:)*0.2 + r(1:end-1,:)*0.05; % autocorr noise
 noisy = data + r;
 w = kernelweights('epanech',20);
 s = wmean(noisy,w);
 figure('Position',[440 96 560 761]);
 subplot(2,1,1); plot([noisy(:,1),s(:,1),data(:,1)],'linewidth',1); grid on;
 subplot(2,1,2); plot([noisy(:,2),s(:,2),data(:,2)],'linewidth',1); grid on;

 NOTE: This program is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program. It is part of the 'seas' addition to
 the toolbox which allows to implement seasonal filters without using the
 Census Bureau programs.

86

wmean

 wmean computes a weighted mean.

 wmean.m provides the same functionality as conv.m (a convolution), with
 the following differences:
 - The treatment at the edge of the sample is different. Only those weights
 are used that correspond to existing data.
 - The sum of the used weights is normalized to one.
 - wmean returns the same number of components as data has.

 Usage: s = wmean(data,w,[direction])

 data An array of data, organized columnwise.
 w a vector with an odd number of values.
 direction is one of 'centered', 'backwards', or 'forward'. Default is
 'centered'.
 s s is the convolution of data and w.

 If direction is set to 'backwards' ('forward'), all the weigths in the
 right (left) half of w are set to zero, leading to a non-centerd weighted
 average.

 So s(t) = s(t-b:t+b)*w, if the length of w is 2b+1. If some of the data
 are outside the support, they are truncated for the computation.
 Moreover, the result s(s) is divided by the sum of the weights in w that
 are used (i.e. not truncated), thereby ensuring that the result is a
 proper weighted mean.

 Example: Let data be some column vector containing a timeseries. Then,
 s = wmean(data,[1 1 1 1 1])
 returns a moving average of data with a bandwidth of 5.
 load unemp;
 plot(unemp.dates,[unemp.data,wmean(unemp.data,[1 1 1 1 1])]);

 NOTE: This program is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program. It is part of the 'seas' addition to
 the toolbox which allows to implement seasonal filters without using the
 Census Bureau programs.

87

Tools for working with dates

The toolbox contains two programs
• makedates
• yqmd

that make it easier to generate or work with date vectors.

In addition, TakeDayOff is a procedure that allows you to identify dates when it
is likely that many people would take a day off from work, whoich can be an
important exogenous variable to predict calendar day effects.

88

makedates

 makedates returns a vector of dates with given frequency.

 Usage:
 d = makedates(startdate,enddate,period,[mult])

 startdate and enddate are calendar days indicating when the series should
 start and end. They can be given as simple three-component vectors
 [year,month,day], as datenum numbers, or as datetime variables.

 period is one of the following: 'year', 'semester', 'trimester',
 'quarter', 'month', 'week', 'weekday', or 'day'.

 mult is a multiple: using period='day' and mult=3 returns every third
 day. 'day',7 is equivalent to 'week',1, 'month',3 is equivalent to
 'quarter',1, etc. However, 'week',4 is not equivalent to 'month',1
 because a month does not contain exactly four weeks. mult must be a
 positive integer. Default for mult is 1.

 Example 1:
 d = makedates([2019,2,1],[2020,5,20],'quarter');
 disp(datestr(d));
 01-Feb-2019
 01-May-2019
 01-Aug-2019
 01-Nov-2019
 01-Feb-2020
 01-May-2020
 Example 2:
 d = makedates([2019,1,31],[2019,7,15],'month');
 disp(datestr(d));
 31-Jan-2019
 28-Feb-2019
 31-Mar-2019
 30-Apr-2019
 31-May-2019
 30-Jun-2019
 Note: If the day in the startdate is the last day of the month, then
 the last day of the month will be used for all entries.
 Example 3:
 d = makedates([2019,1,1],[2019,3,31],'week',2);
 disp(datestr(d));
 01-Jan-2019
 15-Jan-2019
 29-Jan-2019
 12-Feb-2019
 26-Feb-2019

89

 12-Mar-2019
 26-Mar-2019

 NOTE: This program is part of the X-13 toolbox, but it is completely
 independent of the Census X-13 program and can be used even if the census
 programs are not installed.

90

yqmd

 yqmd retrievs the year, quarter, month, or day of a (vector of) serial dates.
 This is used for versions of Matlab prior to R2013a, before the 'year',
 'quarter', 'month', and 'day' commands were introduced in Matlab.

 Usage: d = yqmd(d,type)

 type must be one of the following: 'year', 'semester', 'trimester',
 'quarter', 'month' or 'm', 'day', 'weekday', 'hour', 'minute', 'second', or
 abbreviations thereof.

91

TakeDayOff

 TakeDayOff helps you define special variables for regressions in seasonal
 adjustment that indicate whether holidays are located such that people might
 have an incentive to take a day off (i.e. on a Tuesday or Thursday).

 Usage:
 spec = TakeDayOff(specialdays,filename,specialweekdays,fromYear,toYear)

 specialday This is a matrix with three columns and a maximum of five rows.
 The first column is the month, the second the day, and the
 third the length of the holiday. Default is [12 24 2],
 indicating Christmas (two days starting on Dec 24). If you also
 want to test for, say, 4th of July, use this: [12 24 2; 7 4 1].
 filename The name of the file created on hard drive that contains the
 user variables (and that are read by the x13as.exe program).
 Default is '_user.dat'
 specialweekdays List of two integers, indicating the weekdays to test for
 at the beginning of a special day and at the end of it. Default
 is [3 5], so that the program tests if the beginning is a
 Tuesday (3) and the end is a Thursday (5).
 fromYear, toYear The user variable is created for this interval of years.
 Default is from 1900 to 2200.
 spec A x13spec object to be integrated into your x13 run.

 Example:
 userspec = TakeDayOff();
 disp(userspec);

 This produces
 ==
 X-13/X-12 specification object
 ..
 - regression
 - user : (Dec24Tue Dec25Thu)
 - file : _user.dat
 - format : datevalue
 - usertype : (holiday holiday)
 - aictest : user
 - save : hol

 This spec can be used by saying:
 spec = makespec('DEFAULT',userspec);
 x = x13(dates,data,spec);

92

EasterDate

 EasterDate computes date of Easter for the western and the orthodox churches

 Usage:
 [d,g,j] = EasterDate(y,['western' or 'eastern' or 'orthodox']);

 y A year or a vector of years.
 d The date of Easter as a datenum.
 g A [year,month,day] vector containing the date in the Gregorian
 calendar.
 j The same as g but using the Julian calendar. This is only returned
 if the orthodox version of the Easter date is computed.
 'w','e','o' Indicates if the western or the orthodox (eastern) Easter
 date is to be computed. 'eastern' is synonymous to 'orthodox'.

 Example:
 w = EasterDate(2020:2030);
 o = EasterDate(2020:2030,'orth');
 [datestr(w),repmat('; ',11,1),datestr(o)]
 '12-Apr-2020; 19-Apr-2020'
 '04-Apr-2021; 02-May-2021'
 '17-Apr-2022; 24-Apr-2022'
 '09-Apr-2023; 16-Apr-2023'
 '31-Mar-2024; 05-May-2024'
 '20-Apr-2025; 20-Apr-2025'
 '05-Apr-2026; 12-Apr-2026'
 '28-Mar-2027; 02-May-2027'
 '16-Apr-2028; 16-Apr-2028'
 '01-Apr-2029; 08-Apr-2029'
 '21-Apr-2030; 28-Apr-2030'

 The program implements the Meeus/Jones/Butcher algorithm for the Western
 Easter date and the Meeus algorithm for the Orthodox Easter date, see
 https://en.wikipedia.org/wiki/Computus

https://en.wikipedia.org/wiki/Computus

93

Casting

A class in Matlab is really a structured variable (a struct), embellished with
class-specific functions. It is therefore natural to allow the user to cast an
ordinary struct into a x13series.

94

structtox13

 structtox13 uses the content of a struct to create a x13object

 Usage:
 x = structtox13(s)

 s is a struct. It must at least contain the fields 'dates', 'dat',
 'period', and either 'type' or 'transform'.

 .period is the number of observations (positive integer) for the
 cycle that is removed, 'type' or 'transform' is either
 'additive', 'multiplicative', 'logadditive' or some other
 transform function supported by the program you use,
 indicating the type of decomposition.
 .dates These are column vectors containing the dates of observation
 .dat (datenum) and the observations (floats). Both must have the
 equal length. x is a x13series object containing the same
 information.

 Optional fields that are treaded in a special way are 'name' and 'prog'.
 .name is the name of the variable that is seasonally adjusted (if
 this content is a string).
 .prog is the name of the program that was used to perform the
 seasonal adjustment.

 All other fields are added to the x13series object if their fieldnames
 have at most three characters. (Variablenames in x13series objects are
 constrained to three-letter names).

 structtox13 sets up the x13series variable and adds the dates and data
 vector to it, and then defers to addstructtox13 to do the rest of the
 work.

95

addstructtox13

 addstructtox13 uses the content of a struct and adds it to a x13object

 Usage:
 x = structtox13(x,s)

 s is a struct. It must at least contain the fields 'dates', 'dat',
 'period', and either 'type' or 'transform'.

 .period is the number of observations (positive integer) for the
 cycle that is removed, 'type' or 'transform' is either
 'additive', 'multiplicative', 'logadditive' or some other
 transform function supported by the program you use,
 indicating the type of decomposition.
 .dates These are column vectors containing the dates of observation
 .dat (datenum) and the observations (floats). Both must have the
 equal length. x is a x13series object containing the same
 information.

 Optional fields that are treaded in a special way are 'name' and 'prog'.
 .name is the name of the variable that is seasonally adjusted (if
 this content is a string).
 .prog is the name of the program that was used to perform the
 seasonal adjustment.

 All other fields are added to the x13series object if their fieldnames
 have at most three characters (variable names in x13series objects are
 constrained to three-letter names).

96

Backward Compatibility Issues

Version 1.50 of the toolbox has seen considerable changes over previous versions.
As a result, it was not possible (or it would have been very cumbersome) to uphold
all aspects of the syntax to ensure compatibility with previous versions of the
toolbox. If you have written a script that uses the X-13 Toolbox, you therefore
might have to adapt it.

Only one algorithm per x13series instance
In earlier version, it was possible to have, say, X11 and FixedSeas adjustments in
the same x13series variable. This is no longer the case. This was limited anyway.
For instance, it was not possible to mix X11 with SEATS. For clarity, the mixture
of algorithms in one instance has been removed. You can still work with multiple
algorithms on the same data, of course, You only need to have separate variables
containing the results.

To generate an adjustment with the X-11 program or using the approximate X-11
algorithm (as implemented in x11.m), one says, for instance,

x = x13(dates,data,makespec('X11', 'LOG', 'EASTER'), 'x-12')
x = x13(dates,data,makespec('X11', 'LOG', 'EASTER'), 'x-11')

In previous versions of the toolbox, the syntax was differnt for using 'fixedseas'
or 'camplet',

x = x13(dates,data,makespec('FIXED', 'LOG', 'EASTER'))
x = x13(dates,data,makespec('CAMPLET', 'LOG', 'EASTER'))

generated an adjustment using the fixedseas or camplet algorithms, respectively.

This does no longer work. Now it is necessary to provide 'camplet' as an argument
to x13, instead of just having it as a section in the spec.

x = x13(dates,data,makespec('FIXED', 'LOG', 'EASTER'),'fixedseas')
x = x13(dates,data,makespec('CAMPLET', 'LOG', 'EASTER'),'camplet')

This solution improves consistency of the syntax across algorithms.

seas.m
I have taken the liberty already in pervious iterations of the toolbox to freely
change seas.m. This m-file is intended as an example how to implement a custom
seasonal adjustment algorithm. You are supposed to play with it. The current
version is different than the previous ones, so if you relied on the previous
version, just give the new seas.m another name, so that you can keep using the
previous implementation.

97

x11.m and method1.m
x11.m has also been completely re-written. It is hardly recognizable compared to
the previous version. I believe that it is now much closer to the original X-11 as
developed in 1965 by Shishkin and others.

There is also a new method1.m seasonal adjustment algorithm that is likely quite
close to the Census Bureau Method I that was used even before that. If you are
interested how it works you can study the code. This is surprisingly
straightforward to implement using the tools of the seas subdirectory. It is just
nine lines of code:

 tr1 = trendfilter(data,'cma',p,'mirror',ceil(p/2));
 si1 = normalize_seas(data,tr1,ismult);
 sf1 = seasfilter(si1,p,'ma',[3,3],'mirror',3);
 sa1 = normalize_seas(data,sf1,ismult);
 tr = trendfilter(sa1,'ma',5,'mirror',3);
 si = normalize_seas(data,tr,ismult);
 sf = seasfilter(si,p,'ma',[3,3],'mirror',3);
 sa = normalize_seas(data,sf,ismult);
 ir = normalize_seas(sa,tr,ismult);

calendar adjustments
A simplified version, based on regressions on the irregular component, has been
implemented. This means that if td or hol are saved in the specification, a
calendar adjustment will be performed also for the custom seasonal adjustment
algorithms, i.e. x11, method1, seas, fixedseas. This does not work with camplet
because this algorithm misses an irregular component. Also, the new method has no
effect when using the original Census Bureau exe files (i.e. x-12 or x-13).

The method works as follow: A first pass of the seasonal adjustment is computed.
The resulting irregular component (containing only high frequency fluctuations) is
then regressed on dummies that count the number of different types of weekdays in a
month, and the location of Easter in the calendar. The original data are then
adjusted for the variations that are explained by the calendar dummies, and the
seasonal adjustment is run again on these adjusted data. This procedure is inspired
by the original’s regARIMA, and is relatively effective in removing trading-day
frequency spikes in the spectra.

add, logadd, mult
Some of the custom seasonal adjustments allowed a long form to be specified for the
adjustment mode ('additive','logadditive','multiplicative'). This has been
changed, and only the shorter forms are supported now.

Also, makespec has two new collective sets, LOG and NOTRANSFORM. LOG is equivalent
to MULT, and NOTRANSFORM is equivalent to ADD. This has been done to enhance

98

clarity. After all, MULT does not really induce a multiplicative adjustment, but a
log-additive one.

To shed some light on this issue: the SEATS and X11 algorithm allows the user to
apply a variety of transformations of the data before processing them. This is
relevant for the regARIMA stage. By taking the log of the data, you get effectively
a multiplicative decomposition, or more precisely, a log-additive decomposition

log(data) = log(tr) + log(sf) + log(ir).
although these terms are not used at least by SEATS.

X11 also has a 'mode' key is set in the 'x11' section, which accepts one of four
values: 'add', 'logadd', 'pseudeadd', or 'mult'. This is the only way to achieve a
truly multiplicative decomposition

data = tr * sf * ir.

Because the 'mode' key is only available when using the X11 algorithm, there is no
way to force a truly multiplicative decomposition in all cases. For this reason, in
makespec, 'LOG' is a more precise description of what is done than 'MULT' (which
is kept only for backward compatibility). Likewise, 'NOTRANSFORM' is a more precise
description of the fact that the data are not transformed before treatment, but
does not by itself imply an additive decomposition, hence 'ADD' is misleading.

Here’s an example

spec = makespec('X11','MULT')
is the same as

spec = makespec('X11','LOG')
This just adds the entries 'transform','function','log', but leaves
'x11','mode' unaffected.

To force a truly multiplicative decomposition you can say

spec = makespec('X11','x11','mode','mult')
The multiplicative decomposition is supported by X11 (so x-13, x-12, also the
approximate x-11 and Method I), as well as by FIXED and SEAS. It is not supported
by CAMPLET. Forcing a multiplicative decomposition with a custom algorithm (using
an m-file instead of a Census exe), the syntax is analogous, as shown here as an
example,

spec = makespec('FIXED','fixed','mode','mult')

The custom m-files for seasonal adjustment do not support regARIMA (except for
calendar adjustment), but do support three of the X11 modes, 'add', 'logadd',
'mult'. The 'logadd' setting simply takes the log of the data first, then
performs an additive decomposition, and un-logs the result in the end. 'pseudoadd'
is not supported, and other transformations of the data are also not supported (but
you can transform the data in Matlab before processing them with the toolbox in any
way you like, of course).

99

A new 'custom' section in x13spec
X13spec now features a new section called 'custom'. This section accepts the keys
'period', 'mode', 'adjtype', 'options', and 'save'. The contents of this section
are used to determine what to do when using a custom m-file for seasonal adjustment
(such as seas.m). Any variables that should be saved need to be listed in custom-
save.

Likewise, when using fixedseas, the variables that should be saved must be listed
in fixedseas-save. The same logic applies to camplet.

This is not true for x11 or method1. These two algorithms are governed by the x11
section.

Some properties have been removed from x13series, some have been added
to x13spec
The .title, .name, and .filename properties of the x13series class have been
removed. Instead, x13spec now has a property .title and .name. These are derived
from the content of the spec. x13 reads the .name property specified by the user in
the spec. If that is missing, it derives a valid file name from the .title
property, and writes it into the spec. For this reason, a separate .filename
property is no longer required.

The .isLog property has also been removed from x13series. Instead, x13spec has
gained a few properties. .transfunc returns the function used to transform the data
before treatment, .adjmode returns the type of decomposition that is used.

There is also another new property called .adjmethod in x13spec that returns the
name of the seasonal adjustment algorithm that is used (x11, seats, camplet, ...).

x13series.keyv
The x13series class now contains a new property called .keyv. This property
contains a struct with the fields 'dat', 'tr', 'sa', 'sf', 'ir', 'rsd'. These
fields contain the names of the most important variables, which do depend on the
algorithm used. For instance, the seasonally adjusted series is called 'd11' in
X11, but is called 's11' in SEATS.

If you design your own seasonal adjustment m-file, make sure to incluse a
corresponding keyv field in your struct.

100

DEMO for X13 Toolbox: Single Series Run

Preliminaries .. 101

Loading Data ... 102

Step 1: Quick and Dirty .. 103

Step 2: Calendar Dummies ... 105

Step 3: Automatic detection of structural breaks and outliers 109

Step 4: Tweaking the ARIMA ... 110

Step 5: Do the Seasonal Filtering 113

Step 6: Check Stability .. 115

Step 7: Adjust Length Of Filter .. 118

Final Step: specification for production 121

101

Preliminaries

% get correct path

p = fileparts(mfilename('fullpath')); % directory of this m-file

% if the section is run with Shift-Ctrl-Enter ...

if isempty(p); p = [cd,'\']; end

% location of graphics files for use with X-13-Graph program

grloc = fullfile(p,'graphics\');

% size for figures with subplots

scSize = get(groot,'ScreenSize'); % size of physical monitor in pixels

scWidth = scSize(3); scHeight = scSize(4);

sizeFig = @(h,v) round([0.04*scWidth, scHeight*(1-0.08-v/100)-50, ...

 h/100*scWidth, v/100*scHeight]);

size1 = sizeFig(40,80);

size2 = sizeFig(80,45);

size3 = sizeFig(95,45);

size4 = sizeFig(70,70);

size6 = sizeFig(75,68);

size8 = sizeFig(95,65);

size9 = sizeFig(95,90);

size10 = sizeFig(70,80);

% line width

lwidth = 78;

% single and double line

sline = repmat('-',1,lwidth+1);

dline = repmat('=',1,lwidth+1);

% display with wrapped lines and leading space

report = @(s) disp(WrapLines(s,lwidth,' '));

% write heading

clc; disp(dline);

report(['DEMONSTRATION OF X-13 TOOLBOX FOR MATLAB : ', ...

 'run on a single timeseries']);

report(['This script was developed with MATLAB Version ', ...

 '8.3.0.532 (R2014a)']);

disp(sline)

===

 DEMONSTRATION OF X-13 TOOLBOX FOR MATLAB : run on a single timeseries

 This script was developed with MATLAB Version 8.3.0.532 (R2014a)

102

Loading Data

% US. Federal Highway Administration, Vehicle Miles Traveled

% [TRFVOLUSM227NFWA], retrieved from FRED, Federal Reserve Bank of St.

% Louis https://research.stlouisfed.org/fred2/series/TRFVOLUSM227NFWA/,

% December 31, 2014.

load travel

report(['Source and discription of data: ',travel.source,newline]);

name = 'miles traveled';

% travel = fetchdata('TRFVOLUSM227NFWA', 'source','fred');

% travelSA = fetchdata('TRFVOLUSM227SFWA', 'source','fred');

% travel = fetchdata('TRFVOLUSM227NFWA', 'source','fred', ...

% 'from',travelSA.dates(1));

 Source and discription of data: US. Federal Highway Administration, Vehicle

 Miles Traveled [TRFVOLUSM227NFWA], retrieved from FRED, Federal Reserve Bank

 of St. Louis https://research.stlouisfed.org/fred2/series/TRFVOLUSM227NFWA/,

 December 31, 2014.

103

Step 1: Quick and Dirty

disp(sline)

fprintf(' Step 1: ''Quick-and-Dirty''\n\n');

report(['We run a seasonal adjustment with the default parameters ', ...

 'and see what is coming out of it.',newline]);

spec1a = makespec('AUTO','TRAMOPURE','DIAG','series','name',travel.descr);

travel1a = x13(travel.dates,travel.data,spec1a,'quiet');

disp(travel1a.table('transform'));

report(['CONCLUSION: The filtering will be additive.',newline]);

spec1 = makespec(spec1a, 'NOTRANS');

travel1 = x13(travel.dates,travel.data,spec1,'quiet');

disp(travel1.table('d8a'));

report(['CONCLUSION: The data are clearly seasonal.',newline]);

 Step 1: 'Quick-and-Dirty'

 We run a seasonal adjustment with the default parameters and see what is

 coming out of it.

Likelihood statistics for model fit to untransformed series.

 Likelihood Statistics

 --

 Number of observations (nobs) 538

 Effective number of observations (nefobs) 525

 Number of parameters estimated (np) 3

 Log likelihood (L) -4911.1795

 AIC 9828.3590

 AICC (F-corrected-AIC) 9828.4051

 Hannan Quinn 9833.3673

 BIC 9841.1492

 --

 Likelihood statistics for model fit to log transformed series.

 Likelihood Statistics

 --

 Number of observations (nobs) 538

 Effective number of observations (nefobs) 525

 Number of parameters estimated (np) 3

 Log likelihood 1431.9971

 Transformation Adjustment -6344.8440

 Adjusted Log likelihood (L) -4912.8468

 AIC 9831.6937

 AICC (F-corrected-AIC) 9831.7398

 Hannan Quinn 9836.7020

 BIC 9844.4839

104

 --

 ***** AICC (with aicdiff=-2.00) prefers no transformation *****

 CONCLUSION: The filtering will be additive.

 CONCLUSION: The data are clearly seasonal.

105

Step 2: Calendar Dummies

disp(sline)

fprintf(' Step 2: Optimizing the regression\n\n');

report(sprintf(['TRAMO has chosen an ARIMA %s, but the autocorrelation ', ...

 'function is problematic. We have significant autocorrelation of the ', ...

 'residuals.\n'], travel1.arima));

fh = figure('Position',size2);

plot(fh,travel1,'acf','spr');

report(sprintf(['The problem could be the lack of a dummy for Easter and ', ...

 'trading days. It is very likely that Easter as well as the distribution ', ...

 'of weekends plays a role in travel behavior. We therefore add ', ...

 'Easter and trading day dummies and check if that solves the problem.\n']));

spec2a = makespec(spec1,'EASTER','TD');

travel2a = x13(travel.dates,travel.data,spec2a,'quiet');

disp(travel2a.table('regression'));

disp(travel2a.table('tukey'));

fh = figure('Position',size2);

plot(fh,travel2a,'acf','spr');

report(sprintf(['\nThe trading days are significant, but Easter is not. The ', ...

 'algorithm kicks out this dummy when it is not significant enough. We will ', ...

 'therefore keep the Easter dummy in for the moment; maybe it will become ', ...

 'relevant later. Also, the trading day dummies have not yet resolved the ', ...

 'autocorrelation issue.\n'], ...

 travel2a.arima));

report([newline,'The Tukey report shows a problem at frequency 6 in the ', ...

 'but a visual inspection of the spectrum also indicates a problem at ', ...

 'trading day frequencies. We try to address this by also adding ', ...

 'dummies for labor day and thanksgiving. This does not fully solve ', ...

 'the problem, however.',newline]);

ti = '(labor[1] thank[1])';

s11 = makespec(spec2a, 'FORCETD', 'regression','variables',ti, 'series','name',ti);

ti = '(labor[1] thank[8])';

s18 = makespec(spec2a, 'FORCETD', 'regression','variables',ti, 'series','name',ti);

ti = '(labor[8] thank[1])';

s81 = makespec(spec2a, 'FORCETD', 'regression','variables',ti, 'series','name',ti);

ti = '(labor[8] thank[8])';

s88 = makespec(spec2a, 'FORCETD', 'regression','variables',ti, 'series','name',ti);

t11 = x13([travel.dates,travel.data],s11,'quiet');

t18 = x13([travel.dates,travel.data],s18,'quiet');

t81 = x13([travel.dates,travel.data],s81,'quiet');

t88 = x13([travel.dates,travel.data],s88,'quiet');

fh = figure('Position',size8);

106

plot(fh,t11,t18,t81,t88,'acf','spr');

report(['We have tried combinations of thank[1] and thank [8] on the one hand ', ...

 'and labor[1] and labor[8] on the other. All of these specifications are ', ...

 'very similar. The best likelihood is achieved with the labor[8] and ', ...

 'thank[1] combination, so we will include these dummies.',newline]);

spec2 = makespec(s81,'series','name',travel.descr);

travel2 = t81;

 Step 2: Optimizing the regression

 TRAMO has chosen an ARIMA (2 1 0)(0 1 1), but the autocorrelation function is
 problematic. We have significant autocorrelation of the residuals.

The problem could be the lack of a dummy for Easter and trading days. It is
 very likely that Easter as well as the distribution of weekends plays a role
 in travel behavior. We therefore add Easter and trading day dummies and check
 if that solves the problem.

Estimation converged in 10 ARMA iterations, 89 function evaluations.

 Regression Model

107

 --

 Parameter Standard

 Variable Estimate Error t-value

 --

 Leap Year 1043.8270 638.13205 1.64

 Trading Day

 Mon -86.4250 200.08303 -0.43

 Tue 129.4466 198.94503 0.65

 Wed -51.7153 199.65579 -0.26

 Thu 644.7656 201.06038 3.21

 Fri 478.4668 200.41043 2.39

 Sat -588.8076 200.04820 -2.94

 *Sun (derived) -525.7312 199.89926 -2.63

 --

 *For full trading-day and stable seasonal effects, the derived

 parameter estimate is obtained indirectly as minus the sum

 of the directly estimated parameters that define the effect.

 Chi-squared Tests for Groups of Regressors

 --

 Regression Effect df Chi-Square P-Value

 --

 Trading Day 6 86.83 0.00

 Combined Trading Day and Leap Year Regressors

 7 89.56 0.00

 --

 Trading Day 6, 518 14.28 0.00

 ARIMA Model: (2 1 0)(0 1 1)

 Nonseasonal differences: 1

 Seasonal differences: 1

 Standard

 Parameter Estimate Errors

 Nonseasonal AR

 Lag 1 -0.4389 0.04293

 Lag 2 -0.1756 0.04276

 Seasonal MA

 Lag 12 0.6628 0.03307

 Variance 0.66997E+07

 SE of Var 0.41352E+06

 Likelihood Statistics

 --

 Number of observations (nobs) 538

 Effective number of observations (nefobs) 525

 Number of parameters estimated (np) 11

 Log likelihood (L) -4874.3855

 AIC 9770.7710

 AICC (F-corrected-AIC) 9771.2857

 Hannan Quinn 9789.1349

 BIC 9817.6684

108

 --

 Roots of ARIMA Model

 Root Real Imaginary Modulus Frequency

 Nonseasonal AR

 Root 1 -1.2493 2.0328 2.3860 0.3377

 Root 2 -1.2493 -2.0328 2.3860 -0.3377

 Seasonal MA

 Root 1 1.5087 0.0000 1.5087 0.0000

Peak probabilities for Tukey spectrum estimator

 Spectrum estimated from 2006.Nov to 2014.Oct.

 S1 S2 S3 S4 S5 S6 TD

 ------ ------ ------ ------ ------ ------ ------

 Model Residuals 0.561 0.293 0.930* 0.005 0.270 0.914* 0.527

 Prior Adjusted Series (Table B1) 0.960* 0.999** 0.998** 0.990* 1.000** 0.785 0.031

 ** - Peak Probability > 0.99,

 * - 0.90 < Peak Probability < 0.99

 The trading days are significant, but Easter is not. The algorithm kicks out

 this dummy when it is not significant enough. We will therefore keep the

 Easter dummy in for the moment; maybe it will become relevant later. Also,

 the trading day dummies have not yet resolved the autocorrelation issue.

 The Tukey report shows a problem at frequency 6 in the but a visual

 inspection of the spectrum also indicates a problem at trading day

 frequencies. We try to address this by also adding dummies for labor day and

 thanksgiving. This does not fully solve the problem, however.

 We have tried combinations of thank[1] and thank [8] on the one hand and

 labor[1] and labor[8] on the other. All of these specifications are very

 similar. The best likelihood is achieved with the labor[8] and thank[1]

 combination, so we will include these dummies.

109

Step 3: Automatic detection of structural breaks and outliers

disp(sline)

fprintf(' Step 3: Finding structural breaks\n\n');

report(['Next we allow the algorithm to detect one-time outliers and ', ...

 'level shifts, ba adding the AO and LS options.',newline]);

spec3 = makespec(spec2,'AO','LS');

travel3 = x13(travel.dates,travel.data,spec3,'quiet');

fh = figure('Position',size2);

plot(fh,travel3,'acf','spr')

report(['Two ouliers have been detected, a level shift LS1979.May and a ', ...

 'one-time outlier AO1995.Jan.',newline,newline,'The spikes in the ', ...

 'spectrum are now under control, but the autocorrelation issue remains.', ...

 newline]);

 Step 3: Finding structural breaks

 Next we allow the algorithm to detect one-time outliers and level shifts, ba

 adding the AO and LS options.

 Two ouliers have been detected, a level shift LS1979.May and a one-time

 outlier AO1995.Jan.

 The spikes in the spectrum are now under control, but the autocorrelation

 issue remains.

110

Step 4: Tweaking the ARIMA

disp(sline)

fprintf(' Step 4: Tweaking the ARIMA\n\n');

report(['The Spectrum and autocorrelation problems have still not been ', ...

 'resolved. It seems that we have to tweak the ARIMA specification ', ...

 'manually. Inspecting the ACF, there is a significant problem at lag ', ...

 '4 and maybe at lag 18. Such a long lag (18) would normally not be an ', ...

 'issue, but it might indicate an inappropriate choice of the seasonal ', ...

 'part of the ARIMA, since 18 lags is 1.5 years.', newline,' ',newline, ...

 'But we address the problem at lag 4 first. We check (4 1 0) and (0 1 4) ', ...

 'and find that (0 1 4) works much better.', newline,' ',newline, ...

 'However, looking at the regression output, we notice that the 2nd and 3rd ', ...

 'MA coefficients are not significant, so we remove them, (0 1 [1 4]).', ...

 newline,' ',newline, 'We now look at lage 18 and try to address it by ', ...

 'increasing the seasonal ARIMA. We have tried several specifications. ', ...

 'An extensive one would be (2 1 2), but the ACF and PACF do not improve.', ...

 newline,' ',newline]);

% remove TRAMO and significance testing in regression, fix outliers

s = makespec(spec3,'automdl',[],[], 'regression','aictest',[], 'NO OUTLIERS', ...

 'regression','variables','(LS1979.May AO1995.Jan easter[15] labor[8] thank[1])');

arima = travel3.arima;

s = x13spec(s,'arima','model',arima, 'series','name',arima);

t0 = x13(travel.dates,travel.data,s,'quiet');

arima = '(4 1 0)(0 1 1)';

s = x13spec(s,'arima','model',arima, 'series','name',arima);

t1 = x13(travel.dates,travel.data,s,'quiet');

arima = '(0 1 4)(0 1 1)';

s = x13spec(s,'arima','model',arima, 'series','name',arima);

t2 = x13(travel.dates,travel.data,s,'quiet');

arima = '(0 1 [1 4])(0 1 1)';

s = x13spec(s,'arima','model',arima, 'series','name',arima);

t3 = x13(travel.dates,travel.data,s,'quiet');

arima = '(0 1 [1 4])(2 1 2)';

s = x13spec(s,'arima','model',arima, 'series','name',arima);

t4 = x13(travel.dates,travel.data,s,'quiet');

fh = figure('Position',size10);

plot(fh,t0,t1,t2,t3,t4,'acf','pcf');

report(['Our final specification is therefore (0 1 [1 4])(0 1 1), which ', ...

 'gives us an almost perfectly clean ACF and PACF an acceptable spectrum ', ...

 'of the residuals.', newline]);

arima = '(0 1 [1 4])(0 1 1)';

spec4 = x13spec(s,'arima','model',arima,'series','name',travel.descr);

travel4 = x13(travel.dates,travel.data,spec4,'quiet');

111

fh = figure('Position',sizeFig(50,80));

plot(fh,travel4,'acf','pcf','spr','rowwise')

 Step 4: Tweaking the ARIMA

 The Spectrum and autocorrelation problems have still not been resolved. It

 seems that we have to tweak the ARIMA specification manually. Inspecting the

 ACF, there is a significant problem at lag 4 and maybe at lag 18. Such a long

 lag (18) would normally not be an issue, but it might indicate an

 inappropriate choice of the seasonal part of the ARIMA, since 18 lags is 1.5

 years.

 But we address the problem at lag 4 first. We check (4 1 0) and (0 1 4) and

 find that (0 1 4) works much better.

 However, looking at the regression output, we notice that the 2nd and 3rd MA

 coefficients are not significant, so we remove them, (0 1 [1 4]).

112

 We now look at lag 18 and try to address it by increasing the seasonal

 ARIMA. We have tried several specifications. An extensive one would be (2 1

 2), but the ACF and PACF do not improve.

 Our final specification is therefore (0 1 [1 4])(0 1 1), which gives us an

 almost perfectly clean ACF and PACF and acceptable spectrum of the residuals.

113

Step 5: Do the Seasonal Filtering

disp(sline)

fprintf(' Step 5: Performing the seasonal filtering\n\n');

spec5 = makespec(spec4,'X11','x11','mode','add');

travel5 = x13([travel.dates,travel.data],spec5);

figure('Position',size4)

ax = subplot(2,2,1);

plot(ax,travel5,'dat','e2','d12','comb');

ax = subplot(2,2,2);

plot(ax,travel5,'d10','bymonth');

ax = subplot(2,2,3);

plot(ax,travel5,'spr','sp1','sp2','comb');

ax = subplot(2,2,4);

plot(ax,travel5,'d13','span','boxplot');

report(['The seasonal factors are rather stable (the graph on the ', ...

 'top right shows little variation). The decomposition (top left ', ...

 'graph) looks reasonable.']);

fh = figure('Position',size6);

seasbreaks(fh,travel5);

report(['A closer inspection into possible seasonal breaks reveals no ', ...

 'major problems either. This graph shows the seasonal factors and ', ...

 'the SI ratios separately for each month. We do see some quantitatively ', ...

 'important shifts, but they are all slow enough so that the X-11 ', ...

 'procedure can deal with it. We do not need to specify seasonal ', ...

 'breaks in the estimation.']);

 Step 5: Performing the seasonal filtering

Warning:

 WARNING: At least one visually significant trading day peak has been

 found in one or more of the estimated spectra.

 The seasonal factors are rather stable (the graph on the top right shows

 little variation). The decomposition (top left graph) looks reasonable.

 A closer inspection into possible seasonal breaks reveals no major problems

 either. This graph shows the seasonal factors and the SI ratios separately

 for each month. We do see some quantitatively important shifts, but they are

 all slow enough so that the X-11 procedure can deal with it. We do not need

 to specify seasonal breaks in the estimation.

114

115

Step 6: Check Stability

disp(sline)

fprintf(' Step 6: Checking stability (this takes a while...)\n\n');

spec6 = makespec(spec5,'SLIDING','HISTORY');

travel6 = x13([travel.dates,travel.data],spec6,'quiet');

% --- sliding span analysis

figure('Position',size4,'Name',[name,': sliding span analysis']);

ax = subplot(2,2,1);

[~,ax] = plot(ax,travel6,'sfs','selection',[0 0 0 0 1]);

title(ax,'\bfmaximum change SA series (sfs)');

ax = subplot(2,2,2);

[~,ax] = plot(ax,travel6,'chs','selection',[0 0 0 0 1]);

title(ax,'\bfmax change seasonal factor (chs)');

ax = subplot(2,2,3);

[~,ax] = plot(ax,travel6,'sfs','selection',[0 0 0 0 1],'span','boxplot');

title(ax,'\bfmaximum change SA series (sfs)');

ax = subplot(2,2,4);

[~,ax] = plot(ax,travel6,'chs','selection',[0 0 0 0 1],'span','boxplot');

title(ax,'\bfmax change seasonal factor (chs)');

report(['CONCLUSION: The sliding span analysis reveals small changes ', ...

 'of the seasonally adjusted series or the seasonal factors. ', ...

 'The maximum revisions are about 2''000, and the level of ', ...

 'the data is between 100''000 and 250''000, so the revisions ', ...

 'amount to about 1%.']);

% --- stability analysis

figure('Position',size4,'Name',[name,': stability analysis']);

ax = subplot(2,2,1);

plot(ax,travel6,'sar')

title(ax,{'\bfmax % change of final vs','concurrent SA series (sar)'});

% % Note: sar = (final./concurrent-1)*100, where

% final = travel4.sae.Final_SA;

% concurrent = travel4.sae.Conc_SA;

% d = travel4.sar.SA_revision-(final./concurrent-1)*100;

% d is equal to zero, except for numerical noise.

ax = subplot(2,2,3);

plot(ax,travel6,'sar','span','boxplot')

title(ax,{'\bfmax % change of final vs','concurrent SA series (sar)'});

ax = subplot(2,2,2);

plot(ax,travel6,'sar','from',datenum(1985,1,1))

title(ax,{'\bf... since 1985'});

ax = subplot(2,2,4);

plot(ax,travel6,'sar','span','boxplot','from',datenum(1985,1,1))

title(ax,{'\bf... since 1985'});

116

report(['CONCLUSION: The historical analysis also reveals small ', ...

 'changes of the seasonally adjusted series, except in the ', ...

 'beginning of the sample in the late 70s, early 80s.']);

 Step 6: Checking stability (this takes a while...)

 CONCLUSION: The sliding span analysis reveals small changes of the seasonally

 adjusted series or the seasonal factors. The maximum revisions are about

 2'000, and the level of the data is between 100'000 and 250'000, so the

 revisions amount to about 1%.

 CONCLUSION: The historical analysis also reveals small changes of the

 seasonally adjusted series, except in the beginning of the sample in the late

 70s, early 80s.

117

118

Step 7: Adjust Length Of Filter

disp(sline)

fprintf(' Step 7: Adjusting the length of the seasonal filter\n\n');

disp(travel6.table('d9a'));

report(['The X11 procedure selects the length of the filter ', ...

 'according to the global moving seasonality ratio, GMSR. ', ...

 'For a GMSR above 3.5, X11 selects a 3x5 filter, for GMSR below ', ...

 '2.5 it selects a 3x3 filter. Values between 2.5 and 3.5 are in ', ...

 'a grey area, and I don''t know how the filter is selected then.']);

report(['The GMSR for February indicates 3x3 filter for that month. ', ...

 'January, July, and August are in the grey area. However, we can ', ...

 'marginally increase the stability of the filtering by enforcing ', ...

 'a 3x5 filter for all months.']);

spec7 = makespec(spec6,'x11','seasonalma','s3x5');

travel7 = x13([travel.dates,travel.data],spec7,'quiet');

% --- sliding span and stability analysis

figure('Position',size6,'Name',[name,': sliding span analysis']);

ax = subplot(2,3,1);

[~,ax] = plot(ax,travel6,travel7,'sfs','selection',[0 0 0 0 1],'comb');

title(ax,'\bfmaximum change SA series (sfs)');

% On my computer, the series I'm looking for is called 'Max___DIFF', but on

% others, strangely, it is called ''Max_0x25_DIFF''. To make this computer-

% independent, I look up the fieldnames.

fn5 = fieldnames(travel6.sfs);

fn6 = fieldnames(travel7.sfs);

ax = subplot(2,3,4);

scatter(ax,travel6.sfs.(fn5{end}),travel7.sfs.(fn6{end}),'.');

hold on; plot(xlim,xlim,'k'); grid on;

xlabel(ax,'sfs spec #5');

ylabel(ax,'sfs spec #6');

ax = subplot(2,3,2);

[~,ax] = plot(ax,travel6,travel7,'chs','selection',[0 0 0 0 1],'comb');

title(ax,'\bfmax change seasonal factor (chs)');

fn5 = fieldnames(travel6.chs);

fn6 = fieldnames(travel7.chs);

ax = subplot(2,3,5);

plot(ax,travel6.chs.(fn5{end}),travel7.chs.(fn6{end}),'.');

hold on; plot(xlim,xlim,'k'); grid on;

xlabel(ax,'chs spec #5');

ylabel(ax,'chs spec #6');

ax = subplot(2,3,3);

[~,ax] = plot(ax,travel6,travel7,'sar','comb');

title(ax,{'\bfmax % change of final vs','concurrent SA series (sar)'});

119

ax = subplot(2,3,6);

plot(ax,travel6.sar.SA_revision,travel7.sar.SA_revision,'.');

hold on; plot(xlim,xlim,'k'); grid on;

xlabel(ax,'sar spec #5');

ylabel(ax,'sar spec #6');

drawnow;

report(['The difference is small, but the largest deviations for ', ...

 'are made a bit smaller with spec #7, so we keep this.']);

 Step 7: Adjusting the length of the seasonal filter

 D 9.A Moving seasonality ratio

 Jan Feb Mar Apr May Jun

 I 1144.897 967.537 980.580 1095.617 893.605 937.510

 S 335.489 385.304 277.560 217.950 217.555 188.425

 RATIO 3.413 2.511 3.533 5.027 4.107 4.975

 Jul Aug Sep Oct Nov Dec

 I 893.515 1001.450 956.141 968.932 921.431 1018.555

 S 267.326 294.939 255.364 198.975 203.795 273.814

 RATIO 3.342 3.395 3.744 4.870 4.521 3.720

 The X11 procedure selects the length of the filter according to the global

 moving seasonality ratio, GMSR. For a GMSR above 3.5, X11 selects a 3x5

 filter, for GMSR below 2.5 it selects a 3x3 filter. Values between 2.5 and

 3.5 are in a grey area, and I don't know how the filter is selected then.

 The GMSR for February indicates 3x3 filter for that month. January, July, and

 August are in the grey area. However, we can marginally increase the

 stability of the filtering by enforcing a 3x5 filter for all months.

 The difference is small, but the largest deviations for are made a bit

 smaller with spec #7, so we keep this.

120

121

Final Step: specification for production

% remove history and sliding spans

spec8 = makespec(spec7, 'history',[],[], 'slidingspans',[],[]);

% this is the final specification

specfinal = makespec('series','name',travel.descr, 'DIAG', ...

 'NO OUTLIERS', 'regression','variables', ...

 '(AO1995.Jan LS1979.May easter[15] labor[8] td thank[1])', ...

 'regression','save','(hol td ao ls)', ...

 'arima', 'model', '(0 1 [1 4])(0 1 1)', ...

 'transform','function','none', ...

 'X11', 'x11','mode','add', 'x11','seasonalma','s3x5');

% compare the two

%disp(spec8);

disp(specfinal);

% perform the computations

travelsa = x13([travel.dates,travel.data],specfinal,'quiet');

travelhtml = x13([travel.dates,travel.data],specfinal,'html','quiet');

report('You can view results with web(travelhtml.out).')

% report final results

disp(travelsa);

disp(travelsa.x2d);

disp(travelsa.table('tukey'));

figure('Position',size1,'name','X11')

ax = subplot(3,2,1);

plot(ax,travelsa,'dat','e2','d12','comb');

ax = subplot(3,2,3);

plot(ax,travelsa,'acf','pcf','comb');

ax = subplot(3,2,5);

plot(ax,travelsa,'d13','boxplot','span');

ax = subplot(3,2,2);

plot(ax,travelsa,'spr','str','comb');

ax = subplot(3,2,4);

plot(ax,travelsa,'sp1','st1','comb');

ax = subplot(3,2,6);

plot(ax,travelsa,'sp2','st2','comb');

fh = figure('Position',size6,'name','breaks');

seasbreaks(fh,travelsa);

fh = figure('Position',size4,'name','final decomposition');

plot(fh,travelsa,'d12','e2','d10','e3');

disp(travelsa.table('f3'));

report('CONCLUSION: The decomposition appears acceptable.');

122

disp(dline);

==

 X-13/X-12 specification object

..

 - series

 └─ name : Vehicle Miles Traveled, 1970 to 2014

 - arima

 └─ model : (0 1 [1 4])(0 1 1)

 - check

 ├─ save : (acf ac2 pcf)

 └─ print : (hst nrm)

 - estimate

 ├─ save : (mdl ref rsd rts est lks)

 └─ print : (est lks rts)

 - outlier

 └─ types : none

 - regression

 ├─ variables : (AO1995.Jan LS1979.May easter[15] labor[8] td thank[1])

 └─ save : (ao hol ls td)

 - spectrum

 ├─ save : (sp0 sp1 sp2 s1s s2s spr is0 is1 is2 st0 st1 st2 t1s t2s str it0

 │ it1 it2)

 └─ print : tpk

 - transform

 └─ function : none

 - x11

 ├─ print : (d8f d9a f2 f3 rsf)

 ├─ save : (b1 d10 d11 d12 d13 d16 d8 e2 e3)

 ├─ mode : add

 └─ seasonalma : s3x5

 You can view results with web(travelhtml.out).

==

 X-13ARIMA-SEATS

 Version Number 1.1 Build 57 (x13as.exe)

..

 Title : Vehicle Miles Traveled, 1970 to 2014

 Span : 1970.1 to 2014.10, monthly data

 Data : 538 observations

 Model : (0 1 [1 4])(0 1 1)

..

 Time Series

 - ao : regARIMA additive (or point) outlier factors (table A8.AO)

 - dat : unfiltered data

 - d8 : final unmodified SI ratios (differences)

 - d10 : final seasonal factors

 - d11 : final seasonally adjusted data

 - d12 : final trend-cycle

 - d13 : final irregular component

 - d16 : combined adjustment factors

 - e2 : modified seasonally adjusted series

 - e3 : modified irregular series

 - hol : regARIMA holiday factors (table A7)

123

 - ls : regARIMA level change outlier component

 - ref : estimated regression effects (X'beta)

 - rsd : residuals from the estimated model

 - td : regARIMA trading day component

..

 ACF and PACF

 - acf : residual autocorrelations

 - ac2 : squared residual autocorrelations

 - pcf : residual partial autocorrelation

..

 Spectra

 - spr : spectrum of the regARIMA model residuals

 - sp0 : spectrum of the first-differenced original series

 - sp1 : spectrum of differenced seasonally adjusted series

 - sp2 : spectrum of modified irregular series

 - str : Tukey spectral estimates of regARIMA model residuals

 - st0 : Tukey spectral estimates of first-differenced original series

 - st1 : Tukey spectral estimates of differenced seasonally adjusted series

 - st2 : Tukey spectral estimates of irregular series

..

 Text Items

 - con : console output

 - err : program error file

 - est : regression and ARMA parameter estimates, with standard errors

 - lks : log-likelihood at final parameter estimates and, if exact = arma is

 used (default option), corresponding model selection criteria (AIC,

 AICC, Hannan-Quinn, BIC)

 - log : program log file

 - mdl : regression and arima specs corresponding to the model, with the

 estimation results used to specify initial values for the ARMA

 parameters

 - out : program output file

 - rts : roots of the AR and MA operators

 - spc : specification file

 - udg : diagnostics summary file

 - x2d : seasonal adjustment diagnostics

..

 Tables

 heading : U. S. Department of Commerce, U. S. Census Bureau

 eval : MODEL ESTIMATION/EVALUATION

 regression : Estimation converged in 8 ARMA iterations, 91 function eval

 diagnostic : DIAGNOSTIC CHECKING

 d8a : D 8.A F-tests for seasonality

 d9a : D 9.A Moving seasonality ratio

 residseas : Test for the presence of residual seasonality.

 f2 : F 2. Summary Measures

 f2a : F 2.A: Average differences without regard to sign over the

 f2b : F 2.B: Relative contributions to the variance of the diffe

 f2c : F 2.C: Average differences with regard to sign and standard

 f2d : F 2.D: Average duration of run CI I C

 f2e : F 2.E: I/C Ratio for months span

 f2f : F 2.F: Relative contribution of the components to the station

 f2g : F 2.G: The autocorrelation of the irregulars for spans 1 to 1

 f2h : F 2.H: The final I/C Ratio from Table D12: 2.06

 f2i : F 2.I: Sta

 f3 : F 3. Monitoring and Quality Assessment Statistics

124

 tukey : Peak probabilities for Tukey spectrum estimator

..

 NOTE: Use obj.table('name') to see content of a table, where 'name' can be

 abbreviated.

..

 Time of run: 28-Apr-2021 14:02:19 (0.7 sec)

==

 Series name: VehicleMilesTraveled_1970To201

 Span used: 1st month,1970 to 10th month,2014

 X-11 Seasonal Adjustment

 Seasonal filter length:

 3x5 3x5 3x5 3x5 3x5 3x5 3x5 3x5 3x5 3x5 3x5 3x5

 Trend filter length: default

 X-11 Extreme adjustment: Standard Error

 Type of Adjustment: additive seasonal adjustment

 Diagnostics for direct seasonally adjusted series

 F-test for Stable Seasonality (D8): 837.131

 F-test for Moving Seasonality (D8): 7.080

 Identifiable Seasonality present

 Relative Contribution of the Irregular to the Variance

 I C S P TD TOTAL

 F2.F : 0.34 37.17 63.51 4.18 0.25 105.44

 I/C RATIO: 2.06 I/S RATIO: 3.78

 M1: 0.040 M2: 0.036 M3: 0.531 M4: 0.132

 M5: 0.484 M6: 0.089 M7: 0.130 M8: 0.195

 M9: 0.107 M10: 0.158 M11: 0.144

 Q = 0.19

 Q(without M2) = 0.21

 Visually distinct seasonal spectral peaks were not found.

 Visually distinct trading day spectral peaks were found in:

 regARIMA model residuals

Peak probabilities for Tukey spectrum estimator

 Spectrum estimated from 2006.Nov to 2014.Oct.

 S1 S2 S3 S4 S5 S6 TD

 ------ ------ ------ ------ ------ ------ ------

 Model Residuals 0.717 0.426 0.880 0.005 0.303 0.241 0.634

 Prior Adjusted Series (Table B1) 0.960* 0.999** 0.998** 0.988* 1.000** 0.818 0.024

 Seasonally adjusted series (E2) 0.045 0.034 0.112 0.053 0.033 0.125 0.864

 Modified Irregular (E3) 0.303 0.070 0.115 0.050 0.033 0.127 0.884

 ** - Peak Probability > 0.99,

 * - 0.90 < Peak Probability < 0.99

125

 F 3. Monitoring and Quality Assessment Statistics

 All the measures below are in the range from 0 to 3 with an

 acceptance region from 0 to 1.

 1. The relative contribution of the irregular over three M1 = 0.040

 months span (from Table F 2.B).

 2. The relative contribution of the irregular component M2 = 0.036

 to the stationary portion of the variance (from Table

 F 2.F).

 3. The amount of month to month change in the irregular M3 = 0.531

 component as compared to the amount of month to month

 change in the trend-cycle (from Table F2.H).

 4. The amount of autocorrelation in the irregular as M4 = 0.132

 described by the average duration of run (Table F 2.D).

 5. The number of months it takes the change in the trend- M5 = 0.484

 cycle to surpass the amount of change in the irregular

 (from Table F 2.E).

 6. The amount of year to year change in the irregular as M6 = 0.089

 compared to the amount of year to year change in the

 seasonal (from Table F 2.H).

 7. The amount of moving seasonality present relative to M7 = 0.130

 the amount of stable seasonality (from Table F 2.I).

 8. The size of the fluctuations in the seasonal component M8 = 0.195

 throughout the whole series.

 9. The average linear movement in the seasonal component M9 = 0.107

 throughout the whole series.

 10. Same as 8, calculated for recent years only. M10 = 0.158

 11. Same as 9, calculated for recent years only. M11 = 0.144

 *** ACCEPTED *** at the level 0.19

 *** Q (without M2) = 0.21 ACCEPTED.

 CONCLUSION: The decomposition appears acceptable.

===

126

127

Published with MATLAB® R2020a

https://www.mathworks.com/products/matlab

128

COMPARING VARIOUS ALGORITHMS

Load Data .. 129

Computations ... 130

Correlation between seasonal factors 131

Charts ... 132

129

Load Data and Specs

fprintf(['We are performing the seasonal decomposition with eight different ', ...

 'algorithms and compare the outcome.\n\n']);

% These are monthly data taken from the book by D. Ladiray and

% B. Quenneville on the X-11 method.

load LadirayQuenneville

% This is a classic dataset used in ARIMA modelling and seasonal

% adjustment. It is known as Box-Jenkin's Series G and decribes the number

% of airline passengers from Jan 1949 and Dec 1960.

load BoxJenkinsG

% Unemployment quota in the USA.

load unemp;

% Unemployment quota in the USA.

load travel;

% choose the data set to use

data = BoxJenkinsG;

%data = LadirayQuenneville;

%data = unemp;

%data = travel;

basespec = makespec('LOG','TDAYS','EASTER','SPECTRUM');

We are performing the seasonal decomposition with eight different algorithms and compare the outcome.

130

Computations

n = {};

n{end+1} = 'X-13AS with X-11'; disp(n{end})

spec = makespec(basespec,'TRAMO','X11','series','title',n{end});

%spec = makespec(basespec,'series','title',n);

x3x = x13(data.dates,data.data,spec,'quiet');

x3x.addMatlabSpectrum;

n{end+1} = 'X-13AS with SEATS'; disp(n{end})

spec = makespec(basespec,'TRAMO','SEATS','series','title',n{end});

%spec = makespec(basespec,'SEATS','series','title',n);

x3s = x13(data.dates,data.data,spec,'quiet');

x3s.addMatlabSpectrum;

n{end+1} = 'X-12'; disp(n{end})

spec = makespec(basespec,'TRAMO','X11','series','title',n{end});

%spec = makespec(basespec,'series','title',n);

x2 = x13(data.dates,data.data,spec,'x-12','quiet');

n{end+1} = 'X-11'; disp(n{end})

spec = makespec(basespec,'X11','series','title',n{end});

%spec = makespec(basespec,'series','title',n);

x1 = x13(data.dates,data.data,spec,'x-11','quiet');

n{end+1} = 'Method I'; disp(n{end})

spec = makespec(basespec,'X11','series','title',n{end});

%spec = makespec(basespec,'series','title',n);

m = x13(data.dates,data.data,spec,'method1','quiet');

n{end+1} = 'FIXED'; disp(n{end})

spec = makespec(basespec,'FIXEDSEASONAL','series','title',n{end});

f = x13(data.dates,data.data,spec,'quiet');

n{end+1} = 'C.A.M.P.LE.T'; disp(n{end})

spec = makespec(basespec,'CAMPLET','series','title',n{end});

c = x13(data.dates,data.data,spec,'quiet');

n{end+1} = 'seas.m'; disp(n{end})

spec = x13spec(basespec,'series','title',n{end});

s = x13(data.dates,data.data,spec,'prog','seas.m','quiet');

X-13AS with X-11

X-13AS with SEATS

X-12

X-11

Method I

FIXED

C.A.M.P.LE.T

seas.m

131

Correlation between seasonal factors

fprintf(' Correlations between different seasonally adjusted series\n\n');

all_sa = [x3x.d11.d11,x3s.s11.s11,x2.d11.d11,x1.d11.d11, ...

 m.d11.d11,f.sa.sa,c.sa.sa,s.sa.sa];

corr_sa = corr(all_sa);

corr_sa_tbl = table(corr_sa(:,1),corr_sa(:,2),corr_sa(:,3),corr_sa(:,4), ...

 corr_sa(:,5),corr_sa(:,6),corr_sa(:,7),corr_sa(:,8), ...

 'VariableNames',n, 'RowNames',n);

disp(corr_sa_tbl);

n(7) = []; % CAMPLET does not produce a seasonal factor

fprintf(' Correlations between different seasonal factors\n\n');

all_sf = [x3x.d10.d10,x3s.s10.s10,x2.d10.d10,x1.d10.d10, ...

 m.d10.d10,f.sf.sf,s.sf.sf];

corr_sf = corr(all_sf);

corr_sf_tbl = table(corr_sf(:,1),corr_sf(:,2),corr_sf(:,3),corr_sf(:,4), ...

 corr_sf(:,5),corr_sf(:,6),corr_sf(:,7), ...

 'VariableNames',n, 'RowNames',n);

disp(corr_sf_tbl);

fprintf('The differences are very small.\n\n');

 Correlations between different seasonally adjusted series

 X-13AS with X-11 X-13AS with SEATS X-12 X-11 Method I FIXED C.A.M.P.LE.T seas.m

 ________________ _________________ _______ _______ ________ _______ ____________ _______

 X-13AS with X-11 1 0.9999 0.99997 0.99983 0.9998 0.99814 0.9993 0.9997

 X-13AS with SEATS 0.9999 1 0.99987 0.99985 0.9999 0.99814 0.99943 0.9998

 X-12 0.99997 0.99987 1 0.9998 0.99978 0.99814 0.99925 0.99967

 X-11 0.99983 0.99985 0.9998 1 0.99992 0.99784 0.99932 0.99983

 Method I 0.9998 0.9999 0.99978 0.99992 1 0.99779 0.99947 0.99993

 FIXED 0.99814 0.99814 0.99814 0.99784 0.99779 1 0.99737 0.99743

 C.A.M.P.LE.T 0.9993 0.99943 0.99925 0.99932 0.99947 0.99737 1 0.99943

 seas.m 0.9997 0.9998 0.99967 0.99983 0.99993 0.99743 0.99943 1

 Correlations between different seasonal factors

 X-13AS with X-11 X-13AS with SEATS X-12 X-11 Method I FIXED seas.m

 ________________ _________________ _______ _______ ________ _______ _______

 X-13AS with X-11 1 0.9988 0.99985 0.99898 0.99821 0.98194 0.99661

 X-13AS with SEATS 0.9988 1 0.99885 0.99868 0.99919 0.98262 0.99765

 X-12 0.99985 0.99885 1 0.99903 0.99824 0.9829 0.99654

 X-11 0.99898 0.99868 0.99903 1 0.99917 0.98046 0.99787

 Method I 0.99821 0.99919 0.99824 0.99917 1 0.98 0.99912

 FIXED 0.98194 0.98262 0.9829 0.98046 0.98 1 0.97637

 seas.m 0.99661 0.99765 0.99654 0.99787 0.99912 0.97637 1

The differences are very small.

132

Charts

fh = figure('Position',[74 69 854 693]); movegui(fh,'center');

plot(fh,x3x,s,x1,c,m,f,'sp1')

%plot(x3x,x3s,'sp1','s1s','combined','quiet')

fh = figure('Position',[74 69 854 693]); movegui(fh,'center');

plot(fh,x3x,s,x1,c,m,f,'sp2','quiet')

%plot(x3x,x3s,'sp2','s2s','combined','quiet')

fh = figure('Position',[211 45 998 706]); movegui(fh,'center');

ah = subplot(3,2,1); plot(ah,x3x,x3s,'e2','s11','comb','quiet')

ah = subplot(3,2,3); plot(ah,x3x,x1,'e2','comb');

ah = subplot(3,2,5); plot(ah,x3x,m,'d11','comb');

ah = subplot(3,2,2); plot(ah,x3x,s,'d11','sa','comb','quiet')

ah = subplot(3,2,4); plot(ah,x3x,c,'d11','sa','comb','quiet')

ah = subplot(3,2,6); plot(ah,x3x,f,'d11','sa','comb','quiet')

fh = figure('Position',[211 45 998 706]); movegui(fh,'center');

ah = subplot(3,2,1); plot(ah,x3x,x3s,'d12','s12','comb','quiet')

ah = subplot(3,2,3); plot(ah,x3x,x1,'d12','comb');

ah = subplot(3,2,5); plot(ah,x3x,m,'d12','comb');

ah = subplot(3,2,2); plot(ah,x3x,s,'d12','tr','comb','quiet')

ah = subplot(3,2,4); plot(ah,x3x,c,'d12',c.keyv.tr,'comb','quiet')

ah = subplot(3,2,6); plot(ah,x3x,f,'d12','tr','comb','quiet')

fprintf(['CAMPLET is different because it is an only backward looking filter. ', ...

 'The advantage of a purely backward-looking algorithm is that the seasonal ', ...

 'adjustment is not changed when new data come along. But as can be seen, ', ...

 'the trend and seasonally adjusted series are merkedly different. To be ', ...

 'fair, they are estimated ``on the go,'' so without the benefit of the ', ...

 'future evolution, so we should expect larger differences.\n']);

CAMPLET is different because it is an only backward looking filter. The advantage of a purely backward-

looking algorithm is that the seasonal adjustment is not changed when new data come along. But as can be

seen, the trend and seasonally adjusted series are merkedly different. To be fair, they are estimated

``on the go,' so without the benefit of the future evolution, so we should expect larger differences.

133

134

135

136

Demo of a Composite Run

DEMO for X13 Toolbox: Composite Run 137

PRELIMINARIES .. 138

LOADING DATA ... 139

COMPOSITE RUN .. 140

REPORT SOME RESULTS .. 142

COMPARE DIRECT WITH INDIRECT ADJUSTMENTS 150

PLOT NORMALIZED LOG GDP FOR ALL COUNTRIES 152

STUDY CORRELATIONS OF HIGH FREQUENCY COMPONENTS 154

CLUSTER d10 .. 156

finish up .. 158

137

DEMO for X13 Toolbox: Composite Run

%#ok<*CHARTEN>

%#ok<*SAGROW>

% turn warnings temporarily off

orig_warning_state = warning('off','all');

138

PRELIMINARIES

% get correct path

p = fileparts(mfilename('fullpath')); % directory of this m-file

% if the section is run with Shift-Ctrl-Enter ...

if isempty(p); p = [cd,'\']; end

% location of graphics files for use with X-13-Graph program

grloc = fullfile(p,'graphics\');

% size for figures with subplots

scSize = get(groot,'ScreenSize');

scWidth = scSize(3); scHeight = scSize(4);

sizeFig = @(h,v) round([0.04*scWidth, scHeight*(1-0.08-v/100)-50, ...

 h/100*scWidth, v/100*scHeight]);

size1 = sizeFig(40,80);

size2 = sizeFig(80,45);

size3 = sizeFig(95,45);

size4 = sizeFig(70,70);

size6 = sizeFig(75,68);

size8 = sizeFig(95,65);

size9 = sizeFig(95,90);

% line width

lwidth = 78;

% single and double line

sline = repmat('-',1,lwidth+1);

dline = repmat('=',1,lwidth+1);

% display with wrapped lines and leading space

report = @(s) disp(WrapLines(s,lwidth,' '));

% write heading

clc; disp(dline);

report(['DEMONSTRATION OF X-13 TOOLBOX FOR MATLAB : ', ...

 'composite run']);

report(['This script was developed with MATLAB Version ', ...

 '8.3.0.532 (R2014a)']);

disp(sline)

===

 DEMONSTRATION OF X-13 TOOLBOX FOR MATLAB : composite run

 This script was developed with MATLAB Version 8.3.0.532 (R2014a)

139

LOADING DATA

load(fullfile(p,'gdp'));

report(['Data from Eurostat: quarterly GDP for several countries ', ...

 'http://ec.europa.eu/eurostat/web/national-accounts/data/database']);

name = 'Nominal GDP European Countries';

ctry = gdp{1};

dates = gdp{2};

data = gdp{3};

remove = any(isnan(data),2);

data(remove,:) = [];

dates(remove) = [];

disp(sline)

 Data from Eurostat: quarterly GDP for several countries

 http://ec.europa.eu/eurostat/web/national-accounts/data/database

140

COMPOSITE RUN

report(['We do a composite run of the GDPs of some European ', ...

 'countries. We seasonally adjust the aggregate GDP (direct ', ...

 'seasonal adjustment) and we seasonally adjust the individual ', ...

 'components and aggregate them afterwards (indirect seasonal ', ...

 'adjustment).']);

n = numel(ctry);

% specifications for the individual series ...

spec = cell(1,n);

common = makespec('MULT','TRAMOPURE','X11','AO','LS','ACF', ...

 'series','comptype','add');

for c = 1:n

 spec{c} = x13spec(common, 'series','title',ctry{c});

end

% ... and for the composite series

compspec = makespec('MULT','TRAMOPURE','X11','AO','LS','ACF', ...

 'outlier','method','addone', ...

 'composite','save','(cms itn isa iir iaf)', ...

 'composite','title','Aggregate');

% run x13 and show result

xgdp = x13(dates,data,spec,compspec,'graphicsloc',grloc,'quiet');

disp(xgdp);

 We do a composite run of the GDPs of some European countries. We seasonally

 adjust the aggregate GDP (direct seasonal adjustment) and we seasonally

 adjust the individual components and aggregate them afterwards (indirect

 seasonal adjustment).

==

 composite seasonal adjustemnt object

 Version Number 1.1 Build 57

 Data : 2000.3 to 2014.3

..

 List of series:

-> Aggregate

 - Austria

 - Belgium

 - Bulgaria

 - Croatia

 - Cyprus

 - Czech Republic [.CzechRepublic]

 - Denmark

 - Estonia

 - Finland

 - France

 - Germany

 - Greece

 - Hungary

 - Iceland

 - Ireland

 - Italy

141

 - Latvia

 - Lithuania

 - Luxembourg

 - Malta

 - Netherlands

 - Norway

 - Poland

 - Portugal

 - Romania

 - Slovakia

 - Slovenia

 - Spain

 - Sweden

 - Switzerland

 - Turkey

 - United Kingdom [.UnitedKingdom]

..

 Time of run: 28-Apr-2021 17:30:27 (17.1 sec)

==

142

REPORT SOME RESULTS

allseries = xgdp.listofseries;

fprintf('\n --- KEY STATISTICS --\n');

% THERE IS A PROBLEM HERE. x2d is not available.

for c = 1:numel(allseries)

 try

 strOUT = xgdp.(allseries{c}).x2d;

 catch

 strOUT = '';

 end

 strOUT = strrep(strOUT,char(10),[char(32),char(10)]);

 linesOUT = strsplit(strOUT,char(10));

 strD8A = xgdp.(allseries{c}).table('d8a');

 linesD8A = strsplit(strD8A,char(10));

 fprintf('\n *** %s ***\n Model: %s\n', ...

 upper(xgdp.(allseries{c}).name), ...

 xgdp.(allseries{c}).arima)

 fprintf('\n %s\n\n',strtrim(lower(linesD8A{end-1})));

 if strcmp(xgdp.(allseries{c}).name,xgdp.compositeseries)

 first = -17;

 else

 first = -5;

 end

 try

 for l = first:1:0

 disp(linesOUT{end+l});

 end

 end

end

fprintf('\n ---\n\n');

report(['Most M-statistics pass, with some exceptions. The M4 and M8 ', ...

 'statistic marginally fail (>1) for some countries countries, but ', ...

 ' these are not the most crucial quality control statistics, so we ', ...

 'ignore that. The M1-statistic marginally fails for the United ', ...

 'Kingdom. We ignore this as well, but you are welcome to look for ', ...

 'improvements. Interestingly, TRAMO identifies an ARIMA model with ', ...

 'no seasonal component for UK (model (0 1 1)), yet stable seasonality ', ...

 'is present according to the tests reported in table d8a.']);

% report(['Furthermore, PICKMDL did not find a good model for Finland. ', ...

% 'You might want to experiment with that (you can do so by ', ...

% 'analyzing the Finnish data separately; you don''t need to embed ', ...

% 'it in a composite while searching for a good model for the ', ...

% 'Finnsh series). Maybe TRAMO finds a usable model? For this ', ...

% 'demo, we ignore this problem.']);

fprintf(' ---\n\n');

143

 --- KEY STATISTICS --

 *** AGGREGATE ***

 Model: (0 1 1)(0 1 1)

 identifiable seasonality present

 M1: 0.080 M2: 0.029 M3: 0.000 M4: 0.413

 M5: 0.200 M6: 0.662 M7: 0.086 M8: 0.250

 M9: 0.148 M10: 0.336 M11: 0.247

 Q = 0.20

 Q(without M2) = 0.22

 Comparison between Smoothness Measures for Direct and Indirect Adjustments

 (Dir - Ind) Percentage Change

 Entire srs. Last 3 yrs.

 R1 - MSE 4.304 0.860

 R1 - RMSE 2.176 0.431

 R2 - MSE 92.592 22.479

 R2 - RMSE 72.782 11.954

 Positive percentage changes indicate that the indirect seasonally adjusted

 composite is smoother than the direct seasonally adjusted composite.

 *** AUSTRIA ***

 Model: (0 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.185 M2: 0.088 M3: 0.038 M4: 0.785

 M5: 0.200 M6: 0.128 M7: 0.176 M8: 0.324

 M9: 0.260 M10: 0.317 M11: 0.317

 Q = 0.23

 Q(without M2) = 0.24

 *** BELGIUM ***

 Model: (0 1 1)(0 1 1)

 identifiable seasonality present

 M1: 0.008 M2: 0.013 M3: 0.000 M4: 0.413

 M5: 0.200 M6: 0.155 M7: 0.057 M8: 0.123

 M9: 0.082 M10: 0.158 M11: 0.154

 Q = 0.11

 Q(without M2) = 0.12

 *** BULGARIA ***

 Model: (0 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.029 M2: 0.017 M3: 0.000 M4: 0.661

 M5: 0.200 M6: 0.471 M7: 0.072 M8: 0.232

 M9: 0.167 M10: 0.276 M11: 0.235

 Q = 0.16

144

 Q(without M2) = 0.18

 *** CROATIA ***

 Model: (0 1 1)(0 1 1)

 identifiable seasonality present

 M1: 0.021 M2: 0.006 M3: 0.000 M4: 0.909

 M5: 0.200 M6: 0.771 M7: 0.095 M8: 0.406

 M9: 0.103 M10: 0.627 M11: 0.592

 Q = 0.22

 Q(without M2) = 0.25

 *** CYPRUS ***

 Model: (1 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.029 M2: 0.003 M3: 0.000 M4: 0.661

 M5: 0.200 M6: 0.744 M7: 0.142 M8: 0.386

 M9: 0.164 M10: 0.277 M11: 0.255

 Q = 0.18

 Q(without M2) = 0.21

 *** CZECH REPUBLIC ***

 Model: (0 1 1)(0 1 1)

 identifiable seasonality present

 M1: 0.055 M2: 0.012 M3: 0.000 M4: 0.165

 M5: 0.200 M6: 0.198 M7: 0.132 M8: 0.308

 M9: 0.129 M10: 0.201 M11: 0.099

 Q = 0.13

 Q(without M2) = 0.14

 *** DENMARK ***

 Model: (0 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.128 M2: 0.096 M3: 0.070 M4: 0.413

 M5: 0.200 M6: 0.399 M7: 0.169 M8: 0.448

 M9: 0.334 M10: 0.518 M11: 0.487

 Q = 0.25

 Q(without M2) = 0.27

 *** ESTONIA ***

 Model: (0 1 0)(0 1 2)

 identifiable seasonality present

 M1: 0.145 M2: 0.018 M3: 0.000 M4: 1.280

 M5: 0.200 M6: 0.539 M7: 0.231 M8: 0.879

 M9: 0.276 M10: 0.662 M11: 0.533

 Q = 0.35

 Q(without M2) = 0.39

145

 *** FINLAND ***

 Model: (0 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.163 M2: 0.096 M3: 0.297 M4: 1.156

 M5: 0.200 M6: 0.481 M7: 0.112 M8: 0.222

 M9: 0.142 M10: 0.244 M11: 0.240

 Q = 0.28

 Q(without M2) = 0.31

 *** FRANCE ***

 Model: (0 1 0)(2 1 0)

 identifiable seasonality present

 M1: 0.027 M2: 0.015 M3: 0.000 M4: 0.413

 M5: 0.200 M6: 0.118 M7: 0.081 M8: 0.182

 M9: 0.148 M10: 0.152 M11: 0.148

 Q = 0.12

 Q(without M2) = 0.13

 *** GERMANY ***

 Model: (0 1 0)(2 1 0)

 identifiable seasonality present

 M1: 0.303 M2: 0.177 M3: 0.113 M4: 0.413

 M5: 0.200 M6: 0.077 M7: 0.159 M8: 0.326

 M9: 0.297 M10: 0.227 M11: 0.194

 Q = 0.21

 Q(without M2) = 0.22

 *** GREECE ***

 Model: (0 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.032 M2: 0.004 M3: 0.000 M4: 0.289

 M5: 0.200 M6: 0.807 M7: 0.141 M8: 0.380

 M9: 0.355 M10: 0.632 M11: 0.626

 Q = 0.20

 Q(without M2) = 0.22

 *** HUNGARY ***

 Model: (1 0 0)(2 1 0)

 identifiable seasonality present

 M1: 0.111 M2: 0.028 M3: 0.079 M4: 0.909

 M5: 0.200 M6: 0.076 M7: 0.105 M8: 0.294

 M9: 0.220 M10: 0.477 M11: 0.470

 Q = 0.22

 Q(without M2) = 0.24

146

 *** ICELAND ***

 Model: (1 1 0)(1 0 0)

 identifiable seasonality present

 M1: 0.641 M2: 0.040 M3: 0.000 M4: 0.537

 M5: 0.200 M6: 0.337 M7: 0.513 M8: 1.897

 M9: 0.306 M10: 0.979 M11: 0.964

 Q = 0.51

 Q(without M2) = 0.57

 *** IRELAND ***

 Model: (1 1 0)(1 0 0)

 identifiable seasonality present

 M1: 1.540 M2: 0.058 M3: 0.455 M4: 1.156

 M5: 0.359 M6: 0.282 M7: 0.759 M8: 1.461

 M9: 0.708 M10: 1.748 M11: 1.566

 Q = 0.79

 Q(without M2) = 0.88

 *** ITALY ***

 Model: (0 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.018 M2: 0.014 M3: 0.000 M4: 1.032

 M5: 0.200 M6: 0.778 M7: 0.137 M8: 0.385

 M9: 0.266 M10: 0.450 M11: 0.435

 Q = 0.24

 Q(without M2) = 0.27

 *** LATVIA ***

 Model: (1 1 0)(0 1 2)

 identifiable seasonality present

 M1: 0.044 M2: 0.010 M3: 0.000 M4: 0.413

 M5: 0.200 M6: 0.775 M7: 0.147 M8: 0.478

 M9: 0.251 M10: 0.498 M11: 0.498

 Q = 0.20

 Q(without M2) = 0.22

 *** LITHUANIA ***

 Model: (1 1 0)(0 1 0)

 identifiable seasonality present

 M1: 0.052 M2: 0.017 M3: 0.000 M4: 0.661

 M5: 0.200 M6: 0.735 M7: 0.157 M8: 0.679

 M9: 0.384 M10: 0.646 M11: 0.375

 Q = 0.25

 Q(without M2) = 0.28

 *** LUXEMBOURG ***

147

 Model: (0 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.239 M2: 0.087 M3: 0.008 M4: 0.413

 M5: 0.200 M6: 0.079 M7: 0.217 M8: 0.521

 M9: 0.318 M10: 0.781 M11: 0.781

 Q = 0.26

 Q(without M2) = 0.28

 *** MALTA ***

 Model: (0 1 1)(0 1 1)

 identifiable seasonality present

 M1: 0.147 M2: 0.109 M3: 0.206 M4: 0.413

 M5: 0.200 M6: 0.009 M7: 0.161 M8: 0.266

 M9: 0.222 M10: 0.308 M11: 0.276

 Q = 0.19

 Q(without M2) = 0.20

 *** NETHERLANDS ***

 Model: (1 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.013 M2: 0.009 M3: 0.000 M4: 0.413

 M5: 0.200 M6: 0.415 M7: 0.100 M8: 0.319

 M9: 0.211 M10: 0.231 M11: 0.063

 Q = 0.14

 Q(without M2) = 0.16

 *** NORWAY ***

 Model: (0 1 0)(2 0 0)

 identifiable seasonality present

 M1: 0.378 M2: 0.574 M3: 0.000 M4: 0.909

 M5: 0.200 M6: 0.216 M7: 0.338 M8: 1.055

 M9: 0.508 M10: 0.807 M11: 0.366

 Q = 0.46

 Q(without M2) = 0.44

 *** POLAND ***

 Model: (2 0 0)(0 1 1)

 identifiable seasonality present

 M1: 0.205 M2: 0.066 M3: 0.005 M4: 0.909

 M5: 0.200 M6: 0.691 M7: 0.157 M8: 0.270

 M9: 0.117 M10: 0.197 M11: 0.098

 Q = 0.26

 Q(without M2) = 0.28

 *** PORTUGAL ***

 Model: (2 1 0)(0 1 1)

148

 identifiable seasonality present

 M1: 0.153 M2: 0.062 M3: 0.303 M4: 1.156

 M5: 0.200 M6: 0.364 M7: 0.105 M8: 0.319

 M9: 0.098 M10: 0.665 M11: 0.665

 Q = 0.30

 Q(without M2) = 0.33

 *** ROMANIA ***

 Model: (0 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.040 M2: 0.017 M3: 0.002 M4: 0.661

 M5: 0.200 M6: 0.114 M7: 0.048 M8: 0.132

 M9: 0.021 M10: 0.217 M11: 0.206

 Q = 0.13

 Q(without M2) = 0.14

 *** SLOVAKIA ***

 Model: (0 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.171 M2: 0.030 M3: 0.000 M4: 0.413

 M5: 0.200 M6: 0.570 M7: 0.170 M8: 0.677

 M9: 0.367 M10: 0.482 M11: 0.378

 Q = 0.24

 Q(without M2) = 0.27

 *** SLOVENIA ***

 Model: (0 1 0)(0 1 1)

 identifiable seasonality present

 M1: 0.044 M2: 0.008 M3: 0.000 M4: 0.661

 M5: 0.200 M6: 0.621 M7: 0.146 M8: 0.396

 M9: 0.318 M10: 0.177 M11: 0.139

 Q = 0.19

 Q(without M2) = 0.21

 *** SPAIN ***

 Model: (1 1 0)(0 1 0)

 identifiable seasonality present

 M1: 0.007 M2: 0.001 M3: 0.000 M4: 0.289

 M5: 0.200 M6: 0.688 M7: 0.098 M8: 0.320

 M9: 0.109 M10: 0.340 M11: 0.276

 Q = 0.13

 Q(without M2) = 0.15

 *** SWEDEN ***

 Model: (0 1 1)(0 1 1)

149

 identifiable seasonality present

 M1: 0.085 M2: 0.054 M3: 0.000 M4: 0.537

 M5: 0.200 M6: 0.178 M7: 0.186 M8: 0.375

 M9: 0.273 M10: 0.337 M11: 0.300

 Q = 0.20

 Q(without M2) = 0.22

 *** SWITZERLAND ***

 Model: (0 1 1)(0 1 1)

 identifiable seasonality present

 M1: 0.596 M2: 0.021 M3: 0.000 M4: 1.280

 M5: 0.200 M6: 0.095 M7: 0.683 M8: 1.566

 M9: 0.455 M10: 1.322 M11: 1.174

 Q = 0.56

 Q(without M2) = 0.63

 *** TURKEY ***

 Model: (0 1 1)(0 1 1)

 identifiable seasonality present

 M1: 0.590 M2: 0.185 M3: 0.201 M4: 0.785

 M5: 0.200 M6: 0.475 M7: 0.291 M8: 0.604

 M9: 0.305 M10: 0.861 M11: 0.861

 Q = 0.42

 Q(without M2) = 0.45

 *** UNITED KINGDOM ***

 Model: (0 1 1)

 identifiable seasonality present

 M1: 1.066 M2: 0.069 M3: 0.131 M4: 0.413

 M5: 0.200 M6: 0.580 M7: 0.603 M8: 1.169

 M9: 0.324 M10: 1.370 M11: 1.196

 Q = 0.56

 Q(without M2) = 0.62

 Most M-statistics pass, with some exceptions. The M4 and M8 statistic

 marginally fail (>1) for some countries, but these are not the most crucial

 quality control statistics, so we ignore that. The M1-statistic marginally

 fails for the United Kingdom. We ignore this as well, but you are welcome

 to look for improvements. Interestingly, TRAMO identifies an ARIMA model

 with no seasonal component for UK (model (0 1 1)), yet stable seasonality

 is present according to the tests reported in table d8a.

150

COMPARE DIRECT WITH INDIRECT ADJUSTMENTS

figure('Position',size4, ...

 'Name',[name,': comparing direct with indirect adjustment']);

aggr = xgdp.compositeseries; % name of composite series

ax = subplot(2,2,2);

plot(ax,xgdp.(aggr),'iaf','d10','combined');

title('\bfseasonal factor (iaf and d10)');

%

ax = subplot(2,2,3);

plot(ax,xgdp.(aggr),'isa','d11','combined');

plot(ax,xgdp.(aggr),'cms','combined','options',{'Color',[0.6,0.6,0.6]});

title('\bfseasonally adjusted (isa and d11)');

%

ax = subplot(2,2,1);

plot(ax,xgdp.(aggr),'itn','d12','combined');

plot(ax,xgdp.(aggr),'cms','combined','options',{'Color',[0.6,0.6,0.6]});

legend(ax,'direct adjustment','indirect adjustment','unfiltered data');

legend(ax,'Location','SouthEast');

title('\bftrend (itn and d12)');

%

ax = subplot(2,2,4);

plot(ax,xgdp.(aggr),'iir','d13','combined');

title('\bfirregular (iir and d13)');

report(['CONCLUSION from FIGURE 1: The differences between direct and ', ...

 'indirect adjustments are small --- except for the spike in the ', ...

 'indirect irregular component. The directly and indirectly seasonally ', ...

 'adjusted series look quite similar, though, and it is not obvious ', ...

 'which one is better. The sum of the individual irregulars in the GFC ', ...

 'is much greater than the irregular identified in the aggregate.']);

151

 CONCLUSION from FIGURE 1: The differences between direct and indirect

 adjustments are small --- except for the spike in the indirect irregular

 component. The directly and indirectly seasonally adjusted series look quite

 similar, though, and it is not obvious which one is better. The sum of the

 individual irregulars in the GFC is much greater than the irregular

 indentified in the aggregate.

152

PLOT NORMALIZED LOG GDP FOR ALL COUNTRIES

% get list of countries

prop = xgdp.listofseries;

remove = ismember(prop,aggr);

prop(remove) = [];

% sort according to decline of trend growth rate before and after crisis

s = nan(1,numel(prop));

for c = 1:numel(prop)

 loggdp = log(xgdp.(prop{c}).d11.d11);

 y = loggdp(1:35);

 x = [1:numel(y); ones(1,numel(y))]';

 slopebefore = x\y;

 y = loggdp(37:end);

 x = [1:numel(y); ones(1,numel(y))]';

 slopeafter = x\y;

 s(c) = slopeafter(1) - slopebefore(1);

end

[~,ord] = sort(s);

prop = prop(ord);

% plot seasonally adjusted series

% use log scale and normalize means for better comparison

fh = figure('Position',size8);

nax = 8;

n = ceil(numel(prop)/nax);

yl = [0,0];

colorOrder = get(gcf,'DefaultAxesColorOrder');

nColors = size(colorOrder,1);

for f = 1:nax

 ax(f) = subplot(2,4,f);

 leg = cell(0);

 colorRow = 0;

 for c = (f-1)*n+1:min(numel(prop),f*n)

 col = colorOrder(colorRow + 1,:);

 colorRow = mod(colorRow + 1, nColors);

 plot(ax(f),xgdp.(prop{c}),'d11','logscale','meannorm','comb', ...

 'options',{'Color',col});

 hold(ax(f),'all');

 leg{end+1} = prop{c};

 end

 legend(ax(f),leg{:});

 legend(ax(f),'Location','SouthEast');

 legend(ax(f),'boxoff');

 title(ax(f),'');

 axis(ax(f),'tight');

 ylnew = ylim;

 yl(1) = min(yl(1),ylnew(1));

 yl(2) = max(yl(2),ylnew(2));

end

for f = 1:nax

 ylim(ax(f),[yl(1),yl(2)]);

end

153

report(['CONCLUSION from FIGURE 2: The normalized log seasonally adjusted ', ...

 'levels give a clear view of how the financial / govt debt crisis has ', ...

 'affected different countries. Some were hit brutally but have ', ...

 'recovered quickly (e.g. Sweden). Others are back on their ', ...

 'pre-crisis growth rates, but their levels seem to have shifted ', ...

 'down permanently (UK, Iceland). Still others have essentially ', ...

 'stalled since the crisis (e.g. Spain). Greece has even ', ...

 'developped a negative (!) trend.']);

 CONCLUSION from FIGURE 2: The normalized log seasonally adjusted levels give

 a clear view of how the financial / govt debt crisis has affected different

 countries. Some were hit brutally but have recovered quickly (e.g. Sweden).

 Others are back on their pre-crisis growth rates, but their levels seem to

 have shifted down permanently (UK, Iceland). Still others have essentially

 stalled since the crisis (e.g. Spain). Greece has even developped a negative

 (!) trend.

154

STUDY CORRELATIONS OF HIGH FREQUENCY COMPONENTS

% extract variables from x13series objects and place them into arrays

prop = xgdp.listofseries;

remove = ismember(prop,aggr);

prop(remove) = [];

d10 = nan(numel(dates),numel(prop));

d13 = nan(numel(dates),numel(prop));

for c = 1:numel(prop)

 d10(:,c) = log(xgdp.(prop{c}).d10.d10);

 d13(:,c) = log(xgdp.(prop{c}).d13.d13);

end

% mean correlations

figure('Position',size2,'Name',[name,': mean correlations']);

ax = subplot(1,2,1);

meancorr = mean(corr(d10)-diag(ones(1,numel(prop))));

[~,ord] = sort(meancorr,'descend');

bar(ax,meancorr(ord));

title(ax,'\bfmean correlation of log(d10)');

ax = subplot(1,2,2);

meancorr = mean(corr(d13)-diag(ones(1,numel(prop))));

bar(ax,meancorr(ord));

title(ax,'\bfmean correlation of log(d13)');

% study correlations of seasonal and irregular components

figure('Position',size2, ...

 'Name',[name,': pairwise correlations']);

subplot(1,2,1);

imagesc(corr(d10(:,ord)) - diag(NaN(1,numel(prop))));

colorbar;

title('\bfcorrelations of d10');

xlabel({[prop{ord(32)},' (country #32) seems to be much less'], ...

 'synchronous than everyone else.'});

subplot(1,2,2);

imagesc(corr(d13(:,ord)) - diag(NaN(1,numel(prop))));

colorbar;

title('\bfcorrelations of d13');

report(['CONCLUSION from FIGURE 4: Some countries, the UK in particular, ', ...

 'have seasonal adjustments that are very different from those of ', ...

 'other countries in the sample. From the correlation plot we can ', ...

 'identify at least two groups of countries that behave similarly. ', ...

 'To find out more, we try to cluster them.']);

155

 CONCLUSION from FIGURE 4: Some countries, the UK in particular, have seasonal

 adjustments that are very different from those of other countries in the

 sample. From the correlation plot we can identify at least two groups of

 countries that behave similarly. To find out more, we try to cluster them.

156

CLUSTER d10

% compute kmeans clusters

ncluster = 4; % number of clusters; you can play around with this

rng default; % reproducibility

[idx,sa] = kmeans(d10',ncluster,'Distance','sqeuclidean');

% make a plot

figure('Position',size6, ...

 'Name',[name,': clustering the seasonal factors (d10)']);

nrows = ceil(sqrt(ncluster));

ncols = ceil(ncluster/nrows);

yl = [0,0];

% plot seasonal factors in one axis per cluster

colorOrder = get(gcf,'DefaultAxesColorOrder');

nColors = size(colorOrder,1);

for c = 1:ncluster

 ax(c) = subplot(nrows,ncols,c);

 fidx = find(idx == c);

 colorRow = 0;

 for cc = 1:numel(fidx)

 col = colorOrder(colorRow + 1,:);

 colorRow = mod(colorRow + 1, nColors);

 plot(ax(c),xgdp.(prop{fidx(cc)}),'d10','combined','logscale', ...

 'options',{'color',col})

 end

 ntit = ceil(numel(fidx)/4); ti = cell(1,ntit);

 for t = 1:ntit-1

 ti{t} = strjoin(ctry(fidx(1:4))');

 fidx(1:4) = [];

 end

 ti{ntit} = strjoin(ctry(fidx)');

 title(ti);

 grid on;

 axis tight;

 ylnew = ylim;

 yl(1) = min(yl(1),ylnew(1));

 yl(2) = max(yl(2),ylnew(2));

end

% same ylim for all axes (to ease comparison)

for c = 1:ncluster

 ylim(ax(c),[yl(1),yl(2)]);

end

report(['CONCLUSION from FIGURE 5: This graph shows the clustering of the ', ...

 'seasonal factors. The Czeck Republic and Slovakia are a clear ', ...

 'cluster. So are Denmark, Austria, and Switzerland. The remaining ', ...

 'countries are divided into two equally large groups, and the UK''s ', ...

 'seasonal pattern appears --- surprisingly --- not that special.']);

157

 CONCLUSION from FIGURE 5: This graph shows the clustering of the seasonal

 factors. The Czeck Republic and Slovakia are a clear cluster. So are Denmark,

 Austria, and Switzerland. The remaining countries are divided into two

 equally large groups, and the UK's seasonal pattern appears --- surprisingly

 --- not that special.

158

finish up

disp(dline);

% turn warnings on again (or to whatever state they were)

warning(orig_warning_state);

===

Published with MATLAB® R2020a

https://www.mathworks.com/products/matlab

	Basic Procedures
	guix
	makespec
	x13
	InstallMissingCensusProgram

	x13spec class
	x13spec

	x13series class
	x13series
	table
	showvariable
	plot
	seasbreaks
	x13toxls
	addASC
	addCDT
	addacf
	addpcf
	addspectrum
	addMatlabSpectrum
	preadjustOnePeriod
	x13minus
	Internally used method

	x13composite class
	x13composite
	plot
	seasbreaks
	Internally used methods

	Seasonal adjustment without the Census program
	seas
	x11
	method1
	fixedseas
	camplet
	spr
	fillholes
	normalize_seas
	trendfilter
	seasfilter
	splitperiods
	joinperiods
	kernelweights
	wmean

	Tools for working with dates
	makedates
	yqmd
	TakeDayOff
	EasterDate

	Casting
	structtox13
	addstructtox13

	Backward Compatibility Issues
	Only one algorithm per x13series instance
	seas.m
	x11.m and method1.m
	calendar adjustments
	add, logadd, mult
	A new 'custom' section in x13spec
	Some properties have been removed from x13series, some have been added to x13spec
	x13series.keyv

	DEMO for X13 Toolbox: Single Series Run
	Preliminaries
	Loading Data
	Step 1: Quick and Dirty
	Step 2: Calendar Dummies
	Step 3: Automatic detection of structural breaks and outliers
	Step 4: Tweaking the ARIMA
	Step 5: Do the Seasonal Filtering
	Step 6: Check Stability
	Step 7: Adjust Length Of Filter
	Final Step: specification for production

	COMPARING VARIOUS ALGORITHMS
	Load Data and Specs
	Computations
	Correlation between seasonal factors
	Charts

	Demo of a Composite Run
	DEMO for X13 Toolbox: Composite Run
	PRELIMINARIES
	LOADING DATA
	COMPOSITE RUN
	REPORT SOME RESULTS
	COMPARE DIRECT WITH INDIRECT ADJUSTMENTS
	PLOT NORMALIZED LOG GDP FOR ALL COUNTRIES
	STUDY CORRELATIONS OF HIGH FREQUENCY COMPONENTS
	CLUSTER d10
	finish up

