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Crowdsourcing

“Crowdsourcing represents the act of a company or institution taking a
function once performed by employees and outsourcing it to an
undefined (and generally large) network of people in the form of an
open call” [How06]
I Amazon Mechanical Turk: crowdsourcing marketplace
I Wikipedia: writing encyclopedia articles
I Galaxy Zoo: classification of galaxies

Knowledge-Intensive Crowdsourcing [Bas+15]
Some tasks require particular skills to be completed
I testing an application on a specific device
I a translation from English to French
I programming in C++
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Privacy in Crowdsourcing?

Knowledge =⇒ Privacy Issues
Skills can be quasi-identifiers / sensitive data :
I unique combination of skill, location, availability, wage, specific device, ...

The platform is not a trusted third party (negligence, illegitimate use,
external attack)

Example of Data Breach
I A worker ID on mTurk gives access to the Amazon profile: real name, wish lists,
book reviews, tagged products, ... [Lea+13]
I An Uber’s executive illegitimately tracked a journalist’s location [BW14]
I Ashley Madison dating service’s user base was stolen [Man15]
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Related Work

I Optimal task assignment using a decentralized maximum flow
algorithm inside a Paillier homomorphic cryptosystem [Kaj16]
⇒ need more than a century to assign 100 workers and tasks,
according to the author

I Privacy-preserving crowdsourced surveys [Kan+14] or spatial
crowdsourcing [TGS14]
⇒ no skills, no assignment

How can we do privacy-preserving task assignment with lightweight
techniques (i.e. no encryption, centralized)?
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Skills Profile
Skills Taxonomy
Skills are organized in a tree-structure with a is-a relationship.
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Profile
I skill si ∈ Boolean
I super-skill si = proportion of descendant skills possessed
⇒ profile = array of skills
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Differential Privacy [Dwo06]

Idea
The outcome of any analysis is essentially equally likely, independent
of whether an individual joins, or refrains from joining, the data set

Differential Privacy [Dwo06]
M gives ε-differential privacy if for all pairs of data-sets x, y differing in
one element, and all subsets S of possible outputs,

Pr[M(x) ∈ S] ≤ eε Pr[M(y) ∈ S]

Properties
I Sequential & parallel composition [McS09] =⇒ budget ε sharing
I Post-processing [DR14] =⇒ can re-use data and add information
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Task Assignment Problem

Assignment problem
I workers P = {p0, p1, ..., pn}
I tasks T = {t0, t1, ..., tn}
I cost function C : P × T → R

Find a bijection f : P → T such that
∑
p∈P C(p, f(p)) is minimized.

w.l.o.g. assumes |P| = |T |

simplex algorithm, Hungarian algorithm, minimum-cost flow, ...
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Assignment Quality

Assignment’s total cost depends on the weight-function

Relative Quality

qrel =
∑

(t,p)∈A C(t, p)∑
(t,p̃)∈Ã C(t, p̃)

Fraction of Perfect Assignments

fpa =

∣∣∣{p̃ ≥ t | (t, p̃) ∈ Ã}∣∣∣
|Ã|
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Randomized Response [War65]
Proposed by S. L. Warner in 1965 for survey interviews. It allows
respondents to respond to sensitive issues while maintaining
confidentiality.

x̃ =


x with probability 1− Prflip
1 0.5× Prflip
0 0.5× Prflip

Th. randomized response satisfies ε-differential-privacy if Prflip = 2
1+eε
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Existing Weight Functions

Missing Weight Function (∼ Hamming)

number of skills required by the task and missing in the worker’s profile

MWF(t, p̃) =
∑
i

t[i] ∧ ¬p̃[i]

Ancestors Weight Function (from [MGM16])

distance between the depth of each worker’s skill and its closest required
skill

AWF(t, p̃) =
∑
si∈p̃

min
sj∈t

(depth(lca(si, sj)))

dmax = depth of the taxonomy
lca = lowest common ancestor
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Climbing Weight Function l
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Idea 1 leveraging the is-a relationship by computing a distance for each
level
top = more precision, less relevance
bottom = less precision, more relevance

CWF(t, p̃) =
∑
level i

i×d(ui, vi)

d = any weight function
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Touring Weight Function ↔

2 4
4

Idea 2 leveraging the “neighborhood” property: two close skills are
more likely to have the same value than two distant skills

TWF(t, p̃) =
∑
si∈t

∑
sj∈p̃

(si sj)

 = distance in the taxonomy tree
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Results (subset)
I taxonomy: perfect tree, height = 3, branching = 4, 121 nodes, 81 skills
I Bernoulli1: user has skill si with probability 0.1 (10%)
I Bernoulli01: user has skill si with probability 0.01 (1%)
I Normal: skills are drawn from a normal distribution (around 30%)
I 100 workers, 100 tasks
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Conclusion

I privacy-preserving approach to the problem of assigning tasks to
workers with new weight functions

I lightweight
I client-side
I pluggable into existing platforms

Future Work
I large-scale real-life skill dataset
I complete skills taxonomy (e.g. Skill-Project skill-project.org)

I performance vs quality trade-off ↔ mix perturbation + encryption
I does client-side differential privacy make sens?

skill-project.org
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Conclusion

I privacy-preserving approach to the problem of assigning tasks to
workers with new weight functions

I lightweight
I client-side
I pluggable into existing platforms

Future Work
I large-scale real-life skill dataset
I complete skills taxonomy (e.g. Skill-Project skill-project.org)

I performance vs quality trade-off ↔ mix perturbation + encryption
I does client-side differential privacy make sens?

Thank you! Questions? louis.beziaud@ens-rennes.fr

skill-project.org
louis.beziaud@ens-rennes.fr
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Backup: Normal skills profile

draw skills from N (
√
r cos θ,

√
r| sin θ|) with θ ∈ [0, 2π) for each profile,

and r = 0.06. around 30% of skills
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Backup: Time

Weight function Time (s) Time complexity

rand 0.00099 O(1)
hamming 0.02467 O(|S|)
MWF 0.01969 O(|S|)
CWF 0.30395 O(|ST |)
AWF 1.99307 O(|S|2)
TWF 2.96748 O(|S|2)

Skill-project, 2208 nodes, 1562 skills
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Backup: Prflip versus ε
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