Lightweight Privacy-Preserving Task Assignment in Skill-Aware Crowdsourcing

Louis Béziaud^{1,3} Tristan Allard^{1,2} David Gross-Amblard^{1,2}

Univ. Rennes 1. Rennes. France

² IRISA, Rennes, France first.last@irisa.fr

³ ENS Rennes, Rennes, France first.last@ens-rennes.fr

DEXA'17 — August 30, 2017

Crowdsourcing

"Crowdsourcing represents the act of a company or institution taking a function once performed by employees and **outsourcing** it to an **undefined** (and generally **large**) network of people in the form of an open call" [How06]

- ► Amazon Mechanical Turk: crowdsourcing marketplace
- ▶ Wikipedia: writing encyclopedia articles
- ► Galaxy Zoo: classification of galaxies

Knowledge-Intensive Crowdsourcing [Bas+15]

Some tasks require particular skills to be completed

- ▶ testing an application on a specific device
- ▶ a translation from English to French
- ▶ programming in C++

Privacy in Crowdsourcing?

Knowledge ⇒ Privacy Issues

Skills can be quasi-identifiers / sensitive data :

▶ unique combination of skill, location, availability, wage, specific device, ...

The platform is **not** a **trusted third party** (negligence, illegitimate use, external attack)

Example of Data Breach

- \blacktriangleright A worker ID on mTurk gives access to the Amazon profile: real name, wish lists, book reviews, tagged products, ... [Lea+13]
- ▶ An Uber's executive illegitimately tracked a journalist's location [BW14]
- ► Ashley Madison dating service's user base was stolen [Man15]

Related Work

- Optimal task assignment using a decentralized maximum flow algorithm inside a Paillier homomorphic cryptosystem [Kaj16]
 ⇒ need more than a century to assign 100 workers and tasks, according to the author
- Privacy-preserving crowdsourced surveys [Kan+14] or spatial crowdsourcing [TGS14]
 - ⇒ no skills, no assignment

How can we do **privacy-preserving** task assignment with **lightweight techniques** (i.e. no encryption, centralized)?

Approach

Approach

Skills Profile

Skills Taxonomy

Skills are organized in a tree-structure with a *is-a* relationship.

Profile

- ▶ skill $s_i \in Boolean$
- **super-skill** s_i = proportion of descendant skills possessed
- \Rightarrow **profile** = array of **skills**

Differential Privacy [Dwo06]

Idea

The outcome of any analysis is essentially equally likely, independent of whether an individual joins, or refrains from joining, the data set

Differential Privacy [Dwo06]

M gives $\epsilon\text{-differential}$ privacy if for all pairs of data-sets $x,\ y$ differing in one element, and all subsets S of possible outputs,

$$\Pr[M(x) \in S] \le e^{\epsilon} \Pr[M(y) \in S]$$

Properties

- ▶ Sequential & parallel composition [McS09] \implies budget ϵ sharing
- ightharpoonup Post-processing [DR14] \Longrightarrow can re-use data and add information

Task Assignment Problem

Assignment problem

- workers $\mathcal{P} = \{p_0, p_1, ..., p_n\}$
- ▶ tasks $\mathcal{T} = \{t_0, t_1, ..., t_n\}$
- ▶ cost function $C: \mathcal{P} \times \mathcal{T} \to \mathbb{R}$

Find a bijection $f\colon \mathcal{P}\to \mathcal{T}$ such that $\sum_{p\in\mathcal{P}} C(p,f(p))$ is minimized. w.l.o.g. assumes $|\mathcal{P}|=|\mathcal{T}|$

simplex algorithm, Hungarian algorithm, minimum-cost flow, ...

Assignment Quality

Assignment's total cost depends on the weight-function

Relative Quality

$$\mathsf{q_{rel}} = \frac{\sum_{(t,p) \in \mathcal{A}} \mathsf{C}(t,p)}{\sum_{(t,\tilde{p}) \in \tilde{\mathcal{A}}} \mathsf{C}(t,\tilde{p})}$$

Fraction of Perfect Assignments

$$\mathtt{fpa} = \frac{\left|\left\{\tilde{p} \geq t \mid (t, \tilde{p}) \in \tilde{\mathcal{A}}\right\}\right|}{|\tilde{\mathcal{A}}|}$$

Randomized Response [War65]

Proposed by S. L. Warner in 1965 for **survey interviews**. It allows respondents to respond to sensitive issues while maintaining confidentiality.

$$\widetilde{x} = \begin{cases} x & \text{with probability} & 1 - \Pr_{flip} \\ 1 & 0.5 \times \Pr_{flip} \\ 0 & 0.5 \times \Pr_{flip} \end{cases}$$

Th. randomized response satisfies ϵ -differential-privacy if $\Pr_{flip} = \frac{2}{1+e^{\epsilon}}$

Existing Weight Functions

Missing Weight Function (~ Hamming)

number of skills required by the task and missing in the worker's profile

$$\texttt{MWF}(t, \tilde{p}) = \sum_i t[i] \land \neg \tilde{p}[i]$$

Ancestors Weight Function (from [MGM16])

distance between the depth of each worker's skill and its closest required skill

$$\mathtt{AWF}(t, \tilde{p}) = \sum_{s_i \in \tilde{p}} \min_{s_j \in t} (\operatorname{depth}(\operatorname{lca}(s_i, s_j)))$$

 $d_{max} = \text{depth of the taxonomy}$ lca = lowest common ancestor

Climbing Weight Function \$\(\psi \)

Idea 1 leveraging the is-a relationship by computing a distance for each level

top = more precision, less relevance bottom = less precision, more relevance

$$\mathtt{CWF}(t, \tilde{p}) = \sum_{\mathsf{level} \ i} i \times \mathtt{d}(u_i, v_i)$$

d = any weight function

Touring Weight Function \leftrightarrow

Idea 2 leveraging the "neighborhood" property: two close skills are more likely to have the same value than two distant skills

$$\mathsf{TWF}(t,\tilde{p}) = \sum_{s_i \in t} \ \sum_{s_j \in \tilde{p}} \ (s_i {\scriptstyle \leadsto} s_j)$$

 \rightsquigarrow = distance in the taxonomy tree

Results (subset)

- taxonomy: perfect tree, height = 3, branching = 4, 121 nodes, 81 skills
- Bernoulli1: user has skill s; with probability 0.1 (10%)
- Bernoulli01: user has skill s_i with probability 0.01 (1%)
- Normal: skills are drawn from a normal distribution (around 30%)
- 100 workers, 100 tasks

Conclusion

- privacy-preserving approach to the problem of assigning tasks to workers with new weight functions
- lightweight
- client-side
- pluggable into existing platforms

Future Work

- ► large-scale real-life skill dataset
- ► complete skills taxonomy (e.g. Skill-Project skill-project.org)
- ightharpoonup performance vs quality trade-off \leftrightarrow mix perturbation + encryption
- does client-side differential privacy make sens?

Conclusion

- privacy-preserving approach to the problem of assigning tasks to workers with new weight functions
- ► lightweight
- client-side
- pluggable into existing platforms

Future Work

- ► large-scale real-life skill dataset
- ► complete skills taxonomy (e.g. Skill-Project skill-project.org)
- lacktriangle performance vs quality trade-off \leftrightarrow mix perturbation + encryption
- ▶ does client-side differential privacy make sens?

Thank you! Questions? louis.beziaud@ens-rennes.fr

Backup: Normal skills profile

draw skills from $\mathcal{N}(\sqrt{r}\cos\theta,\sqrt{r}|\sin\theta|)$ with $\theta\in[0,2\pi)$ for each profile, and r=0.06. around 30% of skills

Backup: Time

Weight function	Time (s)	Time complexity
rand	0.00099	$\mathcal{O}(1)$
hamming	0.02467	$\mathcal{O}(\mathcal{S})$
MWF	0.01969	$\mathcal{O}(\mathcal{S})$
CWF	0.30395	$\mathcal{O}(\mathcal{S}^T)$
AWF	1.99307	$\mathcal{O}(\mathcal{S} ^2)$
TWF	2.96748	$\mathcal{O}(\mathcal{S} ^2)$

Skill-project, 2208 nodes, 1562 skills

Backup: \Pr_{flip} versus ϵ

References I

[Lea+13]

- [Bas+15] Senjuti Basu Roy et al. "Task assignment optimization in knowledge-intensive crowdsourcing". In: The VLDB Journal 24.4 (2015), pp. 467-491. ISSN: 0949-877X. DOI: 10.1007/s00778-015-0385-2. URL: http://dx.doi.org/10.1007/s00778-015-0385-2.
- [BW14] Johana Bhuiyan and Charlie Warzel. God View": Uber Investigates Its Top New York Executive for Privacy Violations. Nov. 2014. URL: https://www.buzzfeed.com/johanabhuiyan/uber-is-investigating-its-top-new-york-executive-for-privacy?utm_term=.em5Z14Kkg#.pqqYP9OEG.
- [DR14] Cynthia Dwork and Aaron Roth. "The Algorithmic Foundations of Differential Privacy". In: Foundations and Trends in Theoretical Computer Science 9.3-4 (2014), pp. 211–407. ISSN: 1551-305X. DOI: 10.1561/0400000042.
- [Dwo06] Cynthia Dwork. "Differential Privacy". In: Proc. of ICALP '06. 2006, pp. 1–12.
- [How06] Jeff Howe. "The rise of crowdsourcing". In: Wired magazine 14.6 (2006), pp. 1–4.
- [Kaj16] Hiroshi Kajino. "Privacy-Preserving Crowdsourcing". PhD thesis. Univ. Tokyo, 2016. URL: https://sites.google.com/site/hiroshikaiino1989/home/publications.
- [Kan+14] Thivya Kandappu et al. "Loki: A privacy-conscious platform for crowdsourced surveys". In: COMSNETS '14. 2014, pp. 1–8.

Matthew Lease et al. "Mechanical Turk is Not Anonymous". In: SSRN Electronic Journal (2013). DOI:

- 10.2139/ssrn.2228728.
- [Man15] Steve Mansfield-Devine. "The Ashley Madison affair". In: Network Security 2015.9 (2015), pp. 8–16.
- [McS09] Frank McSherry. "Privacy integrated queries: an extensible platform for privacy-preserving data analysis". In: Proc. of ACM SIGMOD '09. 2009, pp. 19–30.
- [MGM16] Panagiotis Mavridis, David Gross-Amblard, and Zoltán Miklós. "Using Hierarchical Skills for Optimized Task Assignment in Knowledge-Intensive Crowdsourcing". In: Proc. of WWW '16. 2016, pp. 843–853.
- [TGS14] Hien To, Gabriel Ghinita, and Cyrus Shahabi. "A framework for protecting worker location privacy in spatial
- crowdsourcing". In: Proc. VLDB Endow. 7.10 (June 2014), pp. 919–930. DOI: 10.14778/2732951.2732966.
- [War65] Stanley L. Warner. "Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias". In: Journal of the American Stat. Assoc. 60.309 (1965), pp. 63–69. DOI: 10.1080/01621459.1965.10480775.