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Abstract—Security is an increasingly fundamental require-
ment in Software-Defined Networking (SDN). However, the pace
of adoption of secure mechanisms has been slow, which we
estimate to be a consequence of the performance overhead of
traditional solutions and of the complexity of their support
infrastructure.

To address these challenges we propose KISS, a secure
SDN control plane communications architecture that includes
innovative solutions in the context of key distribution and secure
channel support. Core to our contribution is the integrated device
verification value (iDVV), a deterministic but indistinguishable-
from-random secret code generation protocol that allows local
but synchronized generation/verification of keys at both ends of
the control channel, even on a per-message basis.

We show that our solution, while offering the same security
properties, outperforms reference alternatives, with performance
improvements up to 30% over OpenSSL, and improvement in
robustness based on a code footprint one order of magnitude
smaller.

Keywords—software-defined networking, SDN, security, cryp-
tographic primitives, integrated device verification value (iDVV),
perfect forward secrecy, performance, system architecture.

I. INTRODUCTION

In Software-Defined Networking (SDN), network control is
separated from the forwarding devices and logically centralised
in a controller. This separation is achieved by means of a pro-
tocol (typically, OpenFlow) that enables the SDN controller to
remotely populate the forwarding tables of network switches.
The OpenFlow standard includes Transport Layer Security
(TLS) (see IETF RFC 5246) as an optional security feature
for authenticating forwarding devices and controllers and for
encrypting the communication channel. However, to date most
reported deployments still use TCP for control traffic, and
SDN controllers and switching hardware with TLS support
are still rare [1]. This makes the control plane communication
vulnerable to different attacks [1], [2].

Four fundamental issues can slow down the rate of adoption
of secure mechanisms in SDN. First, securing communications
has a non-negligible cost in terms of increased communication
latency and reduced performance. Several recent studies have
analysed this overhead in various contexts [3]. Second, the
computing capabilities of commodity switches are typically
weak. The typical SDN switch is equipped with a single or
dual-core CPU running at approximately 1GHz, which com-
pares unfavourably with the multi-core CPUs found in typical
commodity servers. Imposing the additional cost of TLS to
these computing-constrained networking devices is a problem.
Third, poor choice of cryptographic primitive implementations
can also have a significant impact on the performance of

the control plane communications handled by the controller.
Finally, the Public Key Infrastructure (PKI) on which TLS
relies is complex and thus vulnerability prone [4], opening a
large surface for successful attacks [5].

In order to meet these challenges, we propose a modular
secure SDN control plane communications architecture KISS
(Section II), which aims to increase the robustness of con-
trol communications whilst enhancing their performance, by
decreasing the complexity of the support infrastructure, as an
alternative to current approaches based on classic configura-
tions of TLS and PKI.

A core novel component of our architecture is the inte-
grated device verification value (iDVV), a deterministic but
indistinguishable-from-random secret code generation protocol
(Section III). The concept was inspired by the iCVVs (inte-
grated card verification values) used in credit cards to authen-
ticate and authorize transactions in a secure and inexpensive
way. We develop and extend the idea for SDN, proposing a
flexible method of generating iDVVs by adapting proven one-
time password-like techniques. iDVV codes allow the safe
decentralized generation/verification of keys at both ends of
the channel, at will, even on a per-message basis.

To understand and minimize the cost of security, we
quantify (Section IV) the impact of secure primitives on the
performance and scalability of control plane communications,
through a performance study of different implementations of
TCP vs. TLS, complemented by a deeper study of underlying
hashing and message authentication code (MAC) primitives.
Those experiments confirm our intuition that the choice of
protocols and primitives used in secure communication may
well be one strong reason behind the slow adoption of these
mechanisms in SDN. This in-depth study leads to the selection
of the NaCl cryptographic library [6], and the best performing
MAC and strong hash primitives — Poly1305 and SHA512
OpenSSL – as the baseline secure channel technologies for
KISS.

iDVVs team-up with NaCl, in order to safely replace the
cryptographic primitives and key-exchange protocols and key
derivation functions commonly used in TLS. As a result, the
NaCl-iDVV compound, while achieving the same functional
level of security, is simpler, potentially leading to a higher
level of implementation robustness by vulnerability reduction.
In fact, we estimate the proposed security architecture foot-
print to be smaller than TLS-PKI alternatives with traditional
protocols, by an order of magnitude, in terms of the number of
lines of code (LOC). Such a differential also points to reducing
the cyclomatic complexity. These metrics are typically used
to assess the robustness and estimate verifiability of software
systems.
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Finally, in Section V we discuss aspects related to the
security and robustness of our solution. We close the paper
with related work and some directions to further work.

II. KISS ARCHITECTURE

In this section we present our proposal of KISS, a modular
secure control plane communications architecture for SDN
offering alternatives to classic configurations of secure channel
and authentication protocols and subsystems followed in TLS
and PKI. We assume a typical SDN architecture, as illustrated
in Figure 1, composed of controllers and forwarding devices.
We further assume that device registration and association
services are in place. For lack of space, we do not discuss them
in detail, but for self-containment, we discuss some properties
and their interface below.

The two components encapsulated by the KISS boxes
are the crucial components of the architecture, and the main
subject of our study: a secure channel protocol suite, composed
of a judicious choice of state-of-the-art mechanisms and pro-
tocols, which we dub SC for convenience of description, and
a novel deterministic but indistinguishable-from-random secret
code generation protocol, which we call iDVV.

We have considered using TLS implementations (e.g.
OpenSSL) as the baseline protocol for SC. However, the
experiments in Section IV have alerted us to: the sheer perfor-
mance cost of cryptographic communication; and the further
impact of sub-optimal choices of cryptographic primitives.
This motivated us to adopt NaCl [6], a high performance yet
secure cryptographic library, as the substrate of SC, comple-
mented by the MAC and strong hash primitives with best
performance according to our experiments – Poly1305 and
SHA512 OpenSSL. SHA-512 is used by the iDVV generator
while Poly1305 is a fast MAC algorithm.

The iDVV, a novel component we propose, helps to further
enhance the security of SC, through strong crypto material
generated at a low cost (e.g. one-time keys, per-message
authentication and authorization codes) to be used by NaCl
ciphers. The indistinguishability-from-random allied to the de-
terminism allow the safe decentralized generation/verification
of per-message keys at both ends of the channel.
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Fig. 1. General architecture

A. System and threat model

For simplicity and without loss of generality, we assume
that the controllers and forwarding devices are registered
and associated through a secure and robust key distribution
service provided by a key distribution center (KDC), which
for space reasons is out of the scope of this paper, but can
be readily secured by state-of-the-art KDCs like Kerberos Key
Distribution Center [7].

The device registration process is by default invoked by
network administrators to the KDC, to register new devices.
As the result of device registration, the device and the KDC
securely share a symmetric key. We denote Kkc the shared
key between the KDC authority and a registered controller,
and Kkf the shared key between the KDC authority and a
registered forwarding device.

Registered controllers and forwarding devices must be
securely associated, also through the KDC authority, as a pre-
condition to communicate securely. The most common case is
a forwarding device fi requesting an association to a controller
cj , through the KDC. After associating, a controller and a
forwarding device share two symmetric secrets (of size 256
bits), namely a seedij and a keyij . The key is generated by
the KDC and the seed is generated by the KDC in cooperation
with the controller. These secrets will be used to bootstrap the
iDVV module (see Section III-A).

As threat model, we consider a Dolev-Yao style attacker,
who has complete control of the network, namely the attacker
logs all messages, and can arbitrarily delay, drop, re-order,
insert, or modify messages. In addition, this strong attacker is
able to compromise any network device (e.g. a controller or a
forwarding device) at any time. We assume the security of the
used cryptographic primitives, including MAC (i.e. Poly1305),
hash function (i.e. SHA-512), and symmetric encryption algo-
rithm (e.g. AES).

B. Security goals

The main goal of KISS is to provide security properties
including authenticity, integrity, and confidentiality for control
plane communications, while minimizing cost and complexity.

The secure communication between participants can be
easily guaranteed when a secure encryption algorithm is used,
as long as the shared secret key is kept secure. To provide a
robust SDN system, we focus on advanced security guarantees
for the situation when the shared key is exposed to an
attacker, as this might happen in practice. In particular, if an
attacker has compromised a device and learnt its shared keys,
then we are aiming at providing “perfect forward secrecy”
(PFS) of communications. That is, the secrecy of a device’s
past communications should be protected when the device is
compromised and its shared keys are exposed to an attacker. It
is important to emphasize that PFS is an essential requirement
for SDN. The lack of it can lead to information disclosure,
i.e., reveal different aspects of the network’s state and the
controller’s strategy (e.g., proactive or reactive flow setup).

Established KDC technologies like Kerberos have robust
implementations and are intensely used by industry, which
makes us consider the logical single-point-of-failure they
present as moderate, and an acceptable option for the current
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state of the art. Even though, as we said, the KDC is out
of the scope of the paper, we present mitigation measures to
achieve PFS in case of compromise of the KDC. We also plan,
as future work, to investigate the development of SDN KDCs
resilient to accidental and malicious faults, drawing from fault
and intrusion tolerance techniques [8].

On the devices side, we make no claim about their sheer
resilience, since this is largely dependent on vendors. More
precisely, when a controller and/or a forwarding device is
compromised, we consider that the attacker is able to obtain all
knowledge of the victim device(s), including all stored secrets
and the session status. However, it is our goal to guarantee the
confidentiality of all past communications through measures
that allow us to achieve perfect forward secrecy.

III. IDVV: KEEP IT SIMPLE AND SECURE

Integrated device verification values (iDVVs) are sequen-
tially generated to protect and authenticate requests between
two networking devices. The generator is conceived so that its
output sequence has the indistinguishability-from-random and
determinism properties. In consequence, the same sequence of
random-looking secret values is generated on both ends of the
channel, allowing the safe decentralized generation/verification
of per-message keys at both ends. However, if the seed and
key initial values and the state of the generator are kept secret,
there is no way an adversary can know, predict or generate an
iDVV.

In other words, an iDVV is a unique secret value generated
by a device A (e.g. a forwarding device), which can be locally
verified by another device B (e.g. a controller). The iDVV
generation is made flexible to serve the needs of SDN. iDVVs
can therefore be generated: (a) on a per message basis; (b)
for a sequence of messages; (c) for a specific interval of time;
and (d) for one communication session. The main advantages
of iDVVs are their low cost and the fact that they can be
generated locally, i.e., without having to establish any previous
agreement.

Different from standard KDF algorithms such as HKDF,
which assumes that keying material is not uniformly random
or pseudorandom, our keying material (i.e. seed and key) are
random symmetric secrets (each of size 256 bits), generated
by the KDC, with high entropy. In such cases, a strong hash
function can be safely used to derive a key (RFC 4880). As
shown by the results in Section IV, the iDVV generation is
simpler and faster than standard KDF algorithm such as HKDF
(RFC 5869) and similar solutions.

A. iDVV bootstrap

As discussed before, the association between two SDN
devices, e.g., forwarding device fi and controller cj , happens
through the help of KDC, under the protection of the long-
term secret keys obtained from registration (Kkf , resp. Kkc).
The outcome of the association protocol is the distribution of
two random secrets to both devices: a seed seedij , and an
association key keyij . The iDVV mechanism is bootstrapped
by installing these two secret values in both the controller and
the switch, to animate the iDVV generation algorithms, which
we describe next.

Note that the set-up and generation of the iDVV values
are performed in a deterministic way, so that they can be
done locally at both ends. However, as iDVVs will be used as
keys by cryptographic primitives such as MAC or encryption
functions, they have to be indistinguishable from random.
Hashing primitives are natural choices for our algorithms, since
they provide indistinguishable-from-random values if one or
more of the input values are known only by the sender and
the receiver. This explains why it is crucial that seed and
association key are sent encrypted and therefore known only
to the communicating devices. Moreover, in order to prevent
information leakage, all variables seed, key, and idvv in the
algorithms below should have the same length, which we chose
to be 256 bits in our design. This length is commonly consid-
ered robust. From our experiments discussed in Section IV, the
hashing primitive to be used is SHA512, which yields 512 bits,
of which we will use the most-significant q bits if we need to
reduce the output length to q (as recommended by IETF RFC
4880). For example, we use the most-significant 256 bits of
the SHA512 output as the key for symmetric ciphers.

The initial iDVV value is deterministically created at
both ends of the association between two devices1, by call-
ing function idvv_init, which performs hashing on the
concatenation of the initial seed and key, as illustrated by
algorithm 1. After set-up, the generator is ready for first use,
as described in the following section.

Algorithm 1: iDVV set-up

1: idvv_init()
2: idvv ← H(seed || key)

B. iDVV generation

After the bootstrap with the initial idvv value, the
idvv_next function is invoked on-demand (again, syn-
chronously at both ends of the channel) to autonomously
generate authentication or encryption keys that will be used
for securing the communications, as illustrated by algorithm 2.

The key remains the only constant shared secret between
the devices. The seed evolves to a new indistinguishable-from-
random value each time idvv_next is invoked to generate a
new iDVV. The new seed is the outcome of a hashing primitive
H over the current seed and current idvv (line 2). The new
idvv, output of function idvv_next, is the outcome of a
hashing primitive H over the concatenation of the new seed
and association key key.

Algorithm 2: iDVV generation

1: idvv_next()
2: seed ← H(seed || idvv)
3: idvv ← H(seed || key)

C. iDVV synchronization

The iDVV mechanism is agnostic w.r.t. secure communi-
cation protocols, and can be used in a number of ways, in a
number of protocols, as a key-per-message or key-per-session,
etc. The only key issue about iDVV generation, is to keep it

1For readability, we omit the device-identifying subscripts in the variables.

3



synchronized in both ends of the channel. So, we present some
recommendations in this regard.

The most general style of iDVV use is Indexed iDVV:
iDVVs are indexed by the generation number, and they are
operated in "one key per direction" mode, i.e., at each end,
one iDVV is generated for each communication direction.
This way, they support competitive, non-synchronized corre-
spondents. This mode also supports unreliable, connectionless
protocols like UDP. Each iDVV generated is indexed by a
sequence number (the initial iDVV being idvv0) and the se-
quence number is included in the message where the respective
idvv is used. This way, each receiving end (this works in either
direction, as we have two pairs of iDVVs) can know the exact
idvv number that should be used and, for example, detect and
recover from omissions, by generating idvv’s the necessary
number of times to resynchronize.

iDVVs can get out of sync for a number of reasons, such as
speed differences, omission errors, or even DoS attacks. When
de-synchronization happens, a baseline technique consists of
advancing the iDVV of the “slower” end, to catch up. The
process is made robust by two techniques. First, commu-
nication should be authenticated (encrypt-then-MAC recom-
mended), such that any messages failing crypto (decryption
or MAC verification), can be simply discarded. Second, when
say, idvvk is advanced to idvvl (k < l) to re-synchronize,
and the operation is not successful (crypto fails), the old
idvvk is restored (and the message motivating the recovery,
is discarded, as per above). This restoration does not affect
the PFS of communications because the idvvk (or newer)
has not yet been used to secure the traffic between the two
communicating devices. Finally, in the case of attacks, these
robustness techniques also help to foil them, since the attacker
cannot mimic valid crypto, so the message is discarded, and
the node returns to the original iDVV state.

D. iDVV implementation and application

iDVVs require minimal resources, which means that they
can be implemented on any device, from a simple and very
limited smart card to most existing devices. In other words,
they are a simple and viable solution that can be embedded
in any networking device. Just three values per association
have to be securely stored — the seed, the association key
and the iDVV itself — in order to use iDVV continuously.
Furthermore, only hash functions, simple to implement and
with a very small code base, are required to generate iDVVs.
Such kind of resource is already available on all networking
devices that support traditional network protocols and basic
security mechanisms.

We advocate (and demonstrate in Section IV-B) that iDVVs
are inexpensive and, as a result, can be used on a per-message
basis to secure communication. It is worth emphasizing that,
from a security perspective, one fresh iDVV per message
makes it much harder for attacks such as key recovery,
advanced side channel attacks, among other general HMAC
attacks, to succeed. In fact, the one-time key approach was
initially used for generating MACs. Yet, it was set aside (i.e.
replaced by keys with a longer lifetime) due to performance
reasons. However, as the iDVV generation has a low cost, we
incur a lower penalty.

Finally, iDVVs can have further practical applications. For
instance, the TLS handshake can be used to bootstrap the
iDVV. After that, iDVVs can be used as session keys, i.e.,
in security mechanisms such as encrypt-then-MAC.

IV. ON THE COST OF SECURITY

In this section we provide a quantitative analysis of the im-
pact of cryptographic primitives on control plane communica-
tion. Although the number of use cases is expanding, SDN has
been mainly targeting data centers. As such, SDN controllers
have to be capable of dealing with the challenging workloads
of these large-scale infrastructures. In these environments new
flows2 can arrive at a given forwarding device every 10 µs, with
a great majority of mice traffic lasting less than 100ms [9]. This
means that current data centers need to handle peak loads of
tens of millions of new flows/s. The control plane has to meet
both the network latencies and throughputs required to sustain
these high rates. Current controllers are capable of achieving
a throughput of up to 20M flows/s using TCP [1].

So any effort to systematically secure control plane com-
munications has to meet these challenges. In the following we
try to put the problem in perspective, by analysing the effect
of including even the most basic security primitives to ensure
authenticity, confidentiality and integrity when considering
peak loads of this magnitude. We start by analyzing the latency
impact of TLS, relative to TCP, and then we focus on hashes
and MACs as they are the essential primitives for authenticity
and integrity of communication.

A. The cost of secure channels

Our first experiments assess the compared average la-
tency of TCP and TLS on control plane communication.
We analyse the latency of connection setup and of Open-
Flow PACKET_IN/FLOW_MOD messages. The OpenFlow
PACKET_IN message is used by switches to send packets
to the controller (e.g. when there is no rule matching the
packet received in the switch). FLOW_MOD messages allow
the controller to modify the state of an OpenFlow switch.

The connection setup time for TLS is two orders of
magnitude higher than for TCP, since TLS has a more elaborate
handshake protocol between the devices [10]. Also, PolarSSL
(a library used in systems from companies such as Gemalto,
ARM, and Linksys) induces nearly twice the overhead of
OpenSSL. However important, a high connection cost can be
amortized by maintaining persistent connections. As such, we
focus on the communications cost. Figure 2 shows the latency
of FLOW_MOD messages, averaged over 10k messages. The
results with PACKET_IN messages were similar so we omit
them for clarity. The costs of TCP, OpenSSL and PolarSSL
grow nearly linearly with the number of forwarding devices.
OpenSSL latency is approximately 3x higher than TCP. This is
explained by the high overhead of cryptographic primitives, as
we further analyse in the next section. PolarSSL is significantly
worse, increasing the latency by up to 7x when compared with
TCP.

Conclusions: The main findings of this analysis can be
summarised in two points. First, different implementations of

2In spite of the fact that there are several definitions of flow in SDN [1],
we equate SDN flow with TCP flow for the sake of simplicity.
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TLS present very different performance penalties. Second, the
additional computation required by the cryptographic prim-
itives used in TLS leads to a non-negligible performance
penalty in the control plane. In consequence, we turn to
lightweight cryptographic libraries, such as NaCl [6] and
TweetNaCl [11], which are starting to be used in different
applications. NaCl has been designed to be secure [12], [6]
and to be embedded in any system [11], taking a clean
slate approach and avoiding most of the pitfalls of other
libraries (e.g. OpenSSL – misuse issues). First, it exposes a
simple and high-level API, with a reduced set of functions
for each operation. Second, it uses high-speed and highly-
secure primitives, carefully implemented to avoid side-channel
attacks. Third, NaCl is less error-prone because low-security
options are eliminated and it also provides a limited number
of cryptographic primitives. In other words, users do not need
deep knowledge regarding security to use it correctly. This
is one of the major differences between it and other libraries
such as OpenSSL. For instance, it has been recurrently shown
that developers have been using OpenSSL in incorrect ways,
leading to several security issues. Fourth, it has already been
shown that secure and high-performance network protocols,
outperforming OpenSSL, can be designed and implemented
using NaCl [13].
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B. A closer look at the cost of cryptography

To understand in more detail the cause of the previous
findings we now perform a fine-grained analysis of two main
classes of security primitives used in secure channel protocols:
hashing and MAC.

We analyse the performance of nine hashing primitives.
The results are presented in Figure 3. The red bars represent
primitives that are provided by OpenSSL, while white bars
(BLAKE and KECCAK) indicate the original implementation
of primitives that are not part of OpenSSL. From Figure 3, we
observe that the primitives with smaller digest sizes (SHA-
1 and MD5) achieve better performance, as expected. The
stronger versions of the SHA and BLAKE families achieve
comparable performance (slightly slower), with higher secu-
rity guarantees. Interestingly, SHA-512 outperforms SHA-256.
This behavior is explained by the fact that on a 64-bit processor
each round can process twice as much data (64-bit words

instead of 32-bit words). However, SHA-256 is faster on a
32-bit processor.

To understand the variance between different implemen-
tations, we present in Figure 4 the costs of the five hashing
primitives for which different implementations were available.
The OpenSSL implementation shows the best performance
performance for hashing primitives. With the exception of
RIPEMD160, the PolarSSL implementation always presented
higher message latencies.
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Finally, Figure 5 shows the results of the latency analysis
of six MAC primitives. It is clear that Poly1305 outperformed
all other primitives, being approximately two times faster than
OpenSSL’s HMAC-SHA1, and close to four times faster than
HMAC-SHA512, for instance.

Conclusions: From the results of Figure 5, considering
the MAC primitive with best performance in the analysis
(Poly1305 with 0.001ms per message), around 20 dedicated
cores are needed to compute a MAC in order to maintain a rate
of 20M flows/s. To understand the importance of judiciously
selecting the security primitives implementation, the HMAC-
SHA512 OpenSSL (worst case performance in the analysis)
would require over three times more cores (up to 65) to
compute MACs at these rates. From the hashing primitive

5



 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

H
M
A
C
-
S
H
A
5
1
2

H
M
A
C
-
S
H
A
2
5
6

H
M
A
C
-
R
I
P
E
M
D
1
6
0

H
M
A
C
-
S
H
A
1

H
M
A
C
-
M
D
5

P
o
l
y
1
3
0
5

T
i
m
e
 
(
i
n
 
m
s
)

 

Latency for messages of 56 bytes

PolarSSL

OpenSSL

Poly1305

Fig. 5. MAC primitives

analysis in Figures 3 and 4, of the strong primitives (i.e.
all except SHA1 and MD5), SHA-512 performs the best.
However, concerning MAC primitives, the performance of
HMAC-SHA512 disappoints, and it is clear that Poly1305
outperformed all other primitives, providing security with high
speed and low per-message overhead.

Figure 6 shows the performance of different primitives
for generating cryptographic material. We compare the iDVV
generator using SHA512 (iDVV-S5), with an implementation
of a common key derivation function (KDFx) with different
values for the exponent c (128, 64, 32, and 16, respec-
tively), the Diffie-Hellman implementation used by OpenSSL
(DH-OSSL), and the randombytes() function (NaCl-R)
provided by NaCl. The latencies of the several primitives
are significantly higher than iDVV. Even the randombytes()
primitive of NaCl, the second fastest after iDVV, still presents
a latency at least 2.6x higher.
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In summary, our findings in this section indicate that (i)
the inclusion of cryptographic primitives results in a non-
negligible performance impact on the latency and through-
put of the control plane; and that (ii) a careful choice of
the primitives used and their respective implementations can
significantly contribute to reduce this performance penalty
and enable feasible solutions in certain scenarios. Taking

the outcome of our analysis into consideration, and given
the benefits of NaCl described in Section IV-A, we have
selected the NaCl lightweight cryptographic library, and the
MAC and strong hash primitives with best performance –
Poly1305 and SHA512 OpenSSL – as the baseline SC secure
channel component technologies. NaCl is complemented in
our architecture with the iDVV mechanism to generate crypto
material (e.g. keys) used by NaCl ciphers. Taken together
they provide, as per our evaluation, the best trade-off between
security and performance for control plane communications in
SDN.

V. DISCUSSION

A. On the security of iDVV

With respect to the secrecy of iDVVs, it is ensured from
initialization and so long as neither the KDC, controller, nor
forwarding device is compromised. Our scheme also achieves
perfect forward secrecy in the face of compromise of either
KDC, controller, or forwarding device. In short, when the KDC
is compromised, then the attacker would be able to obtain
all the shared secrets (between the authority and registered
devices), decrypt the past communication that delivered the
initial seed and key to the associated devices, re-generate
iDVVs and, in consequence, decrypt past conversations.

We provide a simple mechanism for providing PFS even
when the authority is compromised: we update the shared key
each time a forwarding device is associated with a controller.
The key is updated as follows: Kkc ← H(Kkc) and Kkf ←
H(Kkf ). This way, a shared key captured cannot decrypt any
past messages, since they have been encrypted with previous
generations of that key, which have been “forgotten” in the
system, given the irreversible nature of hashes.

As far as devices are concerned, when they are compro-
mised, the current values of seed, key and idvv are captured.
Note that key stays as the original secret, but seed is rolled
forward everytime a new iDVV is generated. So, the attacker
will be unable to synthesize any past iDVVs since day one
and so, cannot decrypt past conversations, achieving PFS, as
we desired.

B. On the solution robustness

Our proposal compares well with traditional solutions such
as EJBCA (http://www.ejbca.org/) and OpenSSL, two popular
implementations of PKI and TLS, respectively.

The first interesting take away is that our solution has
nearly one order of magnitude less LOC (85k) and uses
four times less external libraries and only four programming
languages. This makes a huge difference from a security and
dependability perspective. For instance, to formally prove more
than 717k LOC (OpenSSL + EJBCA) is by itself a tremen-
dous challenge. And it gets considerably worse if we take
into account eighty external libraries and eleven development
languages. Moreover, it is worth emphasizing that libraries
such as OpenSSL suffer from different fundamental issues
such as too many legacy features accumulated over time, too
many alternative modes as result of tradeoffs made in the
standardization, and too much focus on web and DNS names.
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Second, OpenSSL is complex and highly configurable.
This has been also the source of many security incidents,
i.e., developers and users frequently use the library in an
inappropriate way. It has also been shown that the majority
of the security incidents are still caused by errors and miscon-
figuration of systems. Lastly, recent research has uncovered
new vulnerabilities on TLS implementations [14].

In contrast, our proposed architecture exhibits gains in
both performance and robustness, contributing to solving the
dilemma we outlined in the introduction. By having less LOC,
we significantly reduce the threat surface – by one order of
magnitude – and by combining NaCl and the iDVV mecha-
nism, we provide a potentially equivalent level of security, but
quite increased performance/robustness product, as keys can
be rolled even on a per message basis.

C. On the cost of iDVV

Similarly to iCVVs, iDVVs are a low overhead solution
that requires minimal resources. This solution is thus feasible
to be integrated into compute-constrained devices as commod-
ity switches. Our preliminary evaluation has revealed that the
iDVV mechanism is faster than traditional solutions, namely,
the key-exchange algorithms embedded in the OpenSSL im-
plementation. Considering a setup with 128 switching devices,
sending PACKET_IN messages to and receiving FLOW_MOD
messages from the controller, our results shows our proposed
solution (iDVV + NaCl’s ciphers) to be more than 30%
faster than an OpenSSL-based implementation using AES256-
SHA (the most common high performance cipher suite, used
by IT companies such as Google, Facebook, Microsoft, and
Amazon). Importantly, we were able to outperform OpenSSL-
based deployments while still providing the same security
properties: authenticity, integrity, and confidentiality. In ad-
dition, we achieved this result not only while offering the
same properties, but also with stronger security guarantees: the
tests were made by generating one iDVV per packet, while
the OpenSSL-based implementation uses a single key (for
symmetric ciphering) for the entire communication session.

VI. RELATED WORK

There are several feasible attacks against the SDN control
plane [2]. Most of them explore vulnerabilities such as the lack
of authentication, authorization and other essential security
properties. However, almost no attention has been paid to
the security requirements of control plane associations and
communication between devices. For instance, only recently,
the use of secrecy through obscurity has been proposed to
protect SDN controllers from DoS attacks [15]. In this case,
the switch authentication ID is hidden in a specific field in
the IP protocol. It is assumed that the devices share a look-
up table and unique IDs. However, in spite of being capable
of mitigating DoS attacks, this technique does not address the
security issues of control plane communications.

VII. CONCLUDING REMARKS

In this paper, we set out to explore and confirm our intuition
for the possible reasons behind a slower than expected adoption
of security mechanisms in SDN, and based on those findings,

we proposed KISS, a modular secure SDN control plane
communications architecture.

We started by investigating the impact of essential crypto-
graphic primitives and TLS implementations on the control
plane performance. We showed that whilst even the most
basic security primitives add a non-negligible degradation of
performance, a judicious choice of these primitives and their
specific implementations can mitigate the penalty significantly.
This is particularly important for the typical SDN scenario
that resorts to commodity hardware, sometimes with modest
computing capabilities.

The second problem we explored in this paper was the
complexity of the centralized support infrastructure for authen-
tication and key distribution. We proposed iDVV, a simple and
robust decentralized mechanism for generating and verifying
the secrets necessary for secure communications between
network devices. As future work, we are also investigating the
reduction of single-point-of-failure syndromes: architectures
for SDN KDCs resilient to accidental and malicious faults,
drawing from fault and intrusion tolerance techniques.

Our results are encouraging in terms of an increase of
performance — 30% improvement over OpenSSL — and
robustness — an order of magnitude reduction in the number
of LOC, and implied cyclomatic complexity. This also means
that formal verification is more tractable, which is one of our
future goals for iDVV, for instance.

An extended report of this work can be found in [10],
extending discussion of the iDVV performance, forward se-
crecy, randomness, and proofs of its security properties. As
ongoing work we are extensively evaluating the NaCl-iDVV
compound. Our results are clear in showing the solution to
outperform OpenSSL on control plane communications.

We believe that this is one first step towards lightweight
but effective security for control plane communication, and
potentially for SDN in general. We make a “call to arms”
to foster developments on securing SDN communications
without impairing performance, a fundamental pre-condition
for widespread adoption by future SDN deployments.
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