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Abstract

Fertility projections inform population projections and are used to plan for the future
provision of vital services such as maternity care and schooling. Existing fertility
forecasting models tend to use aggregate births data indexed by age and time alone,
thereby neglecting to include information about parity, i.e. the number of previous
live-born children. This omission risks ignoring a crucial mechanism of fertility
dynamics and consequently producing biased predictions. We propose a Bayesian
parity-specific fertility projection model within a generalized additive model (GAM)
framework. The use of GAMs enables a smooth age-cohort rate surface to be
estimated for each parity simultaneously. We constrain our model using aggregate data
and additionally introduce random walk priors on completed family size and parity
progression ratios, which are summary fertility measures known to change relatively
slowly over time. Using Hamiltonian Monte Carlo methods, we fit our model to
Canada, Czechia, England & Wales and the Netherlands. We compare our forecasts
with the best-performing existing models to quantify the impact of including the parity
dimension on predictive accuracy. Our findings indicate that a parity-specific approach
could lead to more plausible and reliable fertility projections, aiding government
planners in their decision-making and enabling more tailored policy solutions.

Keywords: Bayesian methods; Cohort fertility; Forecasting; Generalized additive
models; Parity progression
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1 Introduction

Fertility projections are used in population projections and to plan for future service
provision, such as maternity care and schooling. Methodological literature on fertility
forecasting is extensive, with comprehensive reviews in Booth (2006) and Bohk-Ewald et al.
(2018). Existing models tend to use aggregate data on the total number of births indexed
only by age, and period (calendar year) or birth cohort. These variables constitute three of
the “five clocks” of fertility (Raftery et al. 1996:1), the other two being time since last birth and
number of previous live-born children (parity). While little information is typically collected
about time since last birth at the population level, disaggregation of births by birth order
is increasingly common (Jasilioniene et al. 2015). As childbearing is a sequential process,
the current number of children is likely to be an important determinant of the decision
to have an additional child. Therefore, omitting birth order information risks ignoring a
crucial mechanism of fertility dynamics and producing biased predictions. A parity-specific
approach can thus translate into more reliable projections and improved decision-making
in a range of policy and planning domains.

While the consideration of parity is underexplored in fertility projections (Petropoulos et al.
2022:797–798), it is commonplace in the fertility analysis literature. A key reason for this is
the ability to gain a more detailed understanding of the changes in childbearing behaviour
underlying past trends in fertility levels. The approaches taken include: computing period
parity progression ratios (Feeney and Yu 1987; McDonald et al. 2015; Murphy and Berrington
1993; Ní Bhrolcháin 1987); proposing parity-adjusted summary fertility measures such
as the total fertility rate (Bongaarts and Sobotka 2012); decomposing changes in parity
progression ratios and total fertility rates by parity (Andreev et al. 2002; Hellstrand et al.
2020, 2021) and changes in the cohort total fertility rate by parity progression ratios (Zeman
et al. 2018); and calculating standardized rates by birth order (Andersson 1999; Rallu and
Toulemon 1994). Event history analyses of births also typically account for parity, by fitting
separate parity-specific models (e.g. Ellison et al. 2022) or joint models that control for parity
and unobserved heterogeneity between women (e.g. Begall and Mills 2013; Kravdal 2001;
Van Hook and Altman 2013).

Analysing childbearing patterns by parity can also better inform future fertility assumptions
(Smallwood 2002), which are needed when producing projections. Indeed, Kohler
and Ortega (2002) argue that appropriate cohort fertility projections require plausible
assumptions for the quantum (level) and tempo (timing) of fertility, which in turn
necessitate parity information to account for those exposed to each birth order
more precisely; concurrently, this captures the aforementioned mechanistic nature of
childbearing, whereby decisions are made and realized sequentially. This additional
differentiation by parity increases the homogeneity of the resulting groups while also
incorporating women’s previous childbearing experience (Rallu and Toulemon 1994).
Hobcraft (1996) provides a historical example, stating that parity-specific analyses would
likely have helped to anticipate the baby boom and bust of the 1960s and 1970s in England
& Wales, which were not predicted by the corresponding forecasts. Regarding current
use, a recent European survey of 32 national statistical agencies found that while eight
use parity-specific data to inform their fertility projections, only two actually produce
parity-specific projections (Gleditsch et al. 2021).

In the fertility projections literature, the production of parity-specific forecasts has been
suggested, for example by Schmertmann et al. (2014) and Shang and Booth (2020),
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with data limitations preventing the latter from implementing the approach. Ellison
et al. (2023) proposes a Bayesian parity-specific projection model combining survey and
vital registration data. Aggregate forecasts are generated but each parity is modelled
independently – this means that measures depending on multiple parities, such as
age-specific fertility rates (ASFRs) or summary measures, cannot be constrained. The
authors recommend the subsequent development of a generalizable approach that models
the parities jointly and incorporates interpretable constraints on summary measures. A
Bayesian setup enables coherent integration of multiple data sources and prior knowledge,
and appropriate quantification of predictive uncertainty; in the field of demographic
forecasting, Bayesian methods are becoming increasingly prevalent (Mazzuco and Keilman
2020).

This discussion motivates the aims of this paper. Firstly, we aim to develop a fertility
forecasting method that incorporates parity information, advancing the existing literature
in line with the suggestions of Ellison et al. (2023). Secondly, we aim to assess whether the
proposed method has increased forecast reliability. Within a Bayesian generalized additive
model (GAM) framework and informed by parity-specific rate estimates, we construct
smooth parity-specific age-cohort rate surfaces. We additionally incorporate constraints on
ASFRs and summary fertility measures at the parity-specific and aggregate levels, using vital
registration data and priors informed by pooling data from the Human Fertility Database
(Human Fertility Database 2023). We obtain forecasts for Canada, Czechia, England &
Wales and the Netherlands, comparing their performance with some of the best-performing
existing models and an aggregate version of our proposed model.

The paper proceeds as follows. After describing our data sources in Section 2, we specify our
modelling approach in Section 3. In Section 4 we present the model outputs, namely the
parity-specific rates and summary measures, and summarize the comparative findings. We
then provide a discussion in Section 5.

2 Data

2.1 Setup

In this paper we address the fertility projection problem of completing cohort fertility:
forecasting the average number of children that women from a particular birth cohort will
have had by the end of their reproductive lives (cohort total fertility rate, CFR). Contrastingly,
period fertility considers the average number of children a pseudo-cohort of women would
have if they were subject to the fertility rates of a given period at every age (total fertility rate,
TFR). The pros and cons of these approaches are well known (Ní Bhrolcháin 1992); however,
we prefer the cohort approach for several reasons. Firstly, where period data on parity
distributions are absent or lacking in quality and/or frequency, a cohort perspective allows
their estimation by cumulating across each reproductive age (Section 2.2 provides further
details). Secondly, the reduced fluctuation of cohort fertility is beneficial for forecasting,
as it justifies more strongly the assumption of the future smooth progression of summary
measures.

Next we introduce the modelling setup. Taking the reproductive age range to be from
ami n = 15 to amax = 44 years, we let JOY be a particular ‘jump-off’ year whereby its
associated data are the most recent data used in model fitting. We consider four JOY
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values – 2000, 2005, 2010 and 2015 – to test the forecast performance of our model over
different periods and forecast horizons. In a similar setup to Schmertmann et al. (2014),
for a given JOY we consider nc = amax − ami n + 11 = 40 cohort years of birth, ranging
from c JOY

mi n = (JOY − amax − 10) to c JOY
max = (JOY − ami n). For example, c2000

mi n = 1946 and
c2000

max = 1985, while c2015
mi n = 1961 and c2015

max = 2000. The first 11 cohorts (the 1961–1971 cohorts
for JOY = 2015) have reached at least age amax by year JOY and therefore have already
completed their reproductive lives; the subsequent (amax −ami n) cohorts are only partially
observed up to age (amax − 1), . . . , ami n . We illustrate this setup graphically in panel a of
Figure 1, for the England & Wales ASFRs when JOY = 2015. The rates are displayed in the
form of a Lexis surface (left plot) and cohort-specific rate curves (right plot).

The data requirements of the model are population-level birth counts (by age, cohort and
birth order), and exposures (by age and cohort). Births and exposure data are typically
reported annually on a period basis (note that as is standard, we approximate the exposures
using mid-year population estimates). Sophisticated cohort conversion methods exist and
are used for example by the Human Fertility Database (HFD) (Jasilioniene et al. 2015).
However, for convenience and ease of model implementation, we simply assign data
collected about women aged a last birthday in year JOY to cohort (JOY − a). This means
that the cohort assignment is only approximate; however, the resulting ASFR and summary
measure estimates correspond closely with the HFD values (Human Fertility Database
2023). Bohk-Ewald et al. (2018) also take this simplified approach.

We also consider four countries: England & Wales (data from Office for National Statistics
2022a); and Canada, Czechia and the Netherlands (births data from Human Fertility
Database 2023; exposure data from Human Mortality Database 2023)1. The country-specific
data need to cover the period from 1961 (when the c2000

mi n = 1946 cohort is aged 15) to
2015 (most recent JOY value). This excludes many HFD countries, mainly due to the
order-specific births data which often start to be collected much more recently than the
aggregate data. Of the nine HFD countries available for inclusion, we remove several due
to data quality issues. Our chosen countries exhibit reasonable geographical spread, and
differing population sizes and social, cultural and historical contexts. This leads to a diverse
set of childbearing patterns upon which we can suitably test the forecast performance of our
model.

2.2 Age-parity- and age-specific fertility rates

The primary data source that informs our fertility projection model is conditional
parity-specific fertility rate estimates by age and cohort. Their conditionality means that
they are of occurrence/exposure form and so appropriately account for the population at
risk. For women of a given age a and cohort c, we define the conditional fertility rate for
birth order i , l i

ac , in the following way:

l i
ac =

births of order i to women aged a in cohort c

person-years lived at parity i −1 by women aged a in cohort c
= bi

ac

E i−1
ac

. (1)

1We also require exposure estimates corresponding to future age-cohort combinations: for England & Wales
we use the 2020-based National Population Projections (Office for National Statistics 2022b), while for the HFD
countries we use the 2022 Revision of World Population Prospects (United Nations, Department of Economic
and Social Affairs, Population Division 2022).
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We assume that parities J and above, and birth orders J + 1 and above, are combined.
Therefore parity takes values 0,1, . . . , J+ and birth order takes values 1,2, . . . , (J+1)+. We take
J = 3 and therefore consider parities 0–3+, due to small cell counts and similar age patterns
for the conditional rates of the highest parities.

Data for the numerator comes from vital registration. Information on true (i.e. biological)
birth order is now collected by most countries, with many having only requested parity
information for marital births until relatively recently (Jasilioniene et al. 2015). In England
& Wales this change happened in 2012, with population-level estimates of births by true
birth order up to 2012 computed using the General Household Survey (Office for National
Statistics 2023). Post-2012, birth registration data alone is used, however misreporting
concerns have been identified (Office for National Statistics 2018); we adjust the post-2012
birth counts to correct for this (Appendix A provides further details). For the remaining
countries we source the order-specific births data from the HFD, since the time series are
available from 1950 or earlier for each country (pre-2012 estimates for England & Wales are
not provided).

We estimate the denominators by cumulating cohort fertility, following the method
of Smallwood (2002); the HFD produces its fertility tables using a similar approach
(Jasilioniene et al. 2015). The method first assumes that all women in a given cohort
are childless at age ami n . Then, at each subsequent age, the relevant order-specific birth
counts are used to update the number of women exposed to each parity. These are then
scaled to sum to the corresponding mid-year population estimate, giving the final exposure
estimates. We specify the method formally below.

For a given cohort c, our goal is to estimate parity-specific exposures E i
ac for i ∈ {0,1, . . . , J+}

and a ∈ {ami n , . . . , amax}. We define temporary exposures Ẽ i
ac , mid-year estimates Eac , and

omit the cohort subscripts for clarity. We perform the following steps as in Smallwood
(2002):

1. Assume all women at age ami n are childless:

E 0
ami n

= Eami n
,E i

ami n
= 0 for i ∈ {1,2, . . . , J+}.

2. For a = ami n +1, obtain temporary exposures Ẽ i
a by updating each E i

a−1 according to
the following equations:

Ẽ 0
a = E 0

a−1 −b1
a−1;

Ẽ i
a = E i

a−1 −bi+1
a−1 +bi

a−1 for i ∈ {1,2, . . . , (J −1)};

Ẽ J+
a = E J+

a−1 +b J
a−1.

Then, scale each Ẽ i
a so that

∑
i Ẽ i

a = Ea , and define this as E i
a :

E i
a = Ea ×

Ẽ i
a∑

i Ẽ i
a

for i ∈ {0,1, . . . , J+}.

3. Repeat step 2 for a ∈ {(ami n +2), . . . , amax}.

A drawback to this approach is that it ignores any potential sensitivity of parity to mortality
and migration, which would ideally be accounted for if data were available (Smallwood
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2002). We also note that although the HFD provides census- or register-based estimates
of the female age-parity distribution for Canada, Czechia and the Netherlands, we do not
make use of this for several reasons. Firstly, they are only available for selected years
(Canada: 1991; Czechia: 1950–2011, roughly decennial; Netherlands: 1995–2009, annual),
the infrequency making it difficult to incorporate the data into the cohort cumulation
process. The HFD achieves this by using a single census or register estimate for the starting
exposures of its period fertility tables, when it is possible and appropriate (Jasilioniene et al.
2015); however, this limits the range of years for inclusion. Secondly, the absence of such
estimates for England & Wales, and the differing data availability for the other countries,
means that any proposed approach would be inconsistently applied across countries.
Thirdly, it will be necessary to replicate the chosen estimation method within our projection
model, further elevating the importance of a simple and consistent methodology.

Next, for women of a given age a and cohort c, we define the unconditional fertility rate for
birth order i , mi

ac , as:

mi
ac =

births of order i to women aged a in cohort c

person-years lived by women aged a in cohort c
= bi

ac

Eac
. (2)

The only difference from the conditional rate in equation (1) is the change in denominator
from women at risk of the particular birth order to those at risk of any birth.

Lastly, for women of a given age a and cohort c, we define the ASFR or age-specific fertility
rate, mac , as:

mac = births to women aged a in cohort c

person-years lived by women aged a in cohort c
=

∑
i bi

ac

Eac
= bac

Eac
.

We note that mac = ∑
i mi

ac , i.e. for fixed a and c, the sum of the unconditional rates gives
the ASFR.

2.3 Summary fertility measures

We describe the computation of the summary fertility measures required for our proposed
model, namely the CFR (see Section 2.1) and parity progression ratios (PPRs). These are
defined for women in cohort c after age amax . We define the CFR, C F Rc , representing
the average completed family size, as C F Rc = ∑amax

ami n
mac . We define the CFR for birth

order i , C F R i
c , representing the average number of births of order i per woman, as

C F R i
c =

∑amax
ami n

mi
ac . We note that C F Rc = ∑

i C F R i
c . Then we define the PPR from parity i

to i +1, PPR i→i+1
c , representing the proportion of women progressing from parity i to i +1,

as:

PPR0→1
c =C F R1

c ;

PPR i→i+1
c = C F R i+1

c

C F R i
c

for i ∈ {1,2, . . . , (J −1)};

PPR J+→(J+1)+
c = C F R (J+1)+

c

C F R J
c +C F R (J+1)+

c

.
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For a given jump-off year JOY , using estimates of the mi
ac values from the HFD, we

calculate these summary measures for all country-cohort combinations from the 1945
cohort onwards who have completed their reproductive lives by year JOY . We use these
pooled datasets to inform constraints that we incorporate into our proposed model (Section
3.3 provides further details). Having described the model setup, the required data sources
and fertility measures, in Section 3 we specify our parity-specific projection model.

3 Methods

3.1 Model structure

We illustrate the model structure in Figure 2, in the same spirit as Figure 3 of Zhang and
Bryant (2019). We distinguish between three levels – L1, L2 and L3 – in the columns. Each
level has a different demographic array of interest (white rectangles):

• L1: true conditional birth rates by age, cohort and birth order, i.e. the true l i
ac values

(equation (1) in Section 2.2);

• L2: true unconditional birth rates by age, cohort and birth order, i.e. the true mi
ac

values (equation (2) in Section 2.2);

• L3: true summary fertility measures, namely the true CFR and PPRs (Section 2.3).

The observed quantities (gray rectangles) refer to the data requirements of the model
(Sections 2.1–2.3):

• birth counts by age, cohort and birth order (from vital registration; L1), which then
sum to give birth counts by age and cohort (L2);

• exposures by age and cohort (from mid-year population estimates and projections;
L2), and exposures by age, cohort and parity (from high-quality direct estimates
if available, and otherwise approximated using the approach of Smallwood 2002
described in Section 2.2; L1);

• pooled cross-country dataset of CFR and PPR estimates from the HFD (L3).

The two prior models (rounded rectangles) allow us to incorporate assumptions regarding
the progression of the demographic arrays of interest across age and/or time. The first (L1)
assumes underlying smoothness of the true conditional order-specific birth rates across age
and cohort for each birth order. The second (L3) assumes slow changes of the CFR and
PPRs over time informed by the HFD data. The two data models (hexagons) describe the
processes through which the birth count data are generated from the true rates. These
govern the relationships between the births by age, cohort and birth order and the true
conditional birth rates (L1), and the births by age and cohort and the true unconditional
rates (L2). We compute the true unconditional rates from the true conditional rates by again
applying the Smallwood (2002) method to generate order-specific birth counts according
to the true conditional rates, which we then divide by the age-cohort exposures which are
assumed known. The summary measures then follow straightforwardly from the formulas
in Section 2.3. The remainder of this section motivates and specifies the prior and data
models corresponding to Levels 1–2 and 3 in Sections 3.2 and 3.3 respectively.
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3.2 Modelling rates by age, cohort and parity (Levels 1 and 2)

3.2.1 Prior model

First we specify the L1 prior model for the true conditional birth rates by age, cohort and
birth order. We will interchangeably refer to these as parity-specific rates for current parities
0, 1, 2 and 3+, and order-specific rates for progression to first, second, third, or fourth and
higher-order birth. Returning to the age-cohort ASFR surface (panel a of Figure 1), we now
consider four such surfaces of the conditional parity-specific rates, illustrated in panel b.
Analogous to panel a, we present the Lexis surfaces and the cohort-specific rate curves on
the top and bottom rows respectively. While the first birth (parity 0) rates progress smoothly
across age and cohort and display similar patterns to the ASFRs, the higher-order rates are
more erratic, particularly at the youngest ages where few women are exposed. Our approach
smooths these rates across age and cohort for each parity on the logarithmic scale, within
a generalized additive model (GAM) framework. GAMs enable the individual and joint
effects of covariates to be represented as smooth functions; see Wood (2017) for an in-depth
introduction.

In the demographic forecasting literature, GAMs have been applied in the context of
mortality. Hilton et al. (2019, 2021) develop Bayesian approaches estimating smooth
functions of age, age-specific improvement factors, and cohort. Aburto et al. (2021) fit a
GAM including smooth effects of age, week and their interaction to forecast weekly deaths,
finding it to outperform existing methods. Currie et al. (2004) perform two-dimensional
(2D) smoothing of mortality rates across age and period under a P-spline approach (Eilers
and Marx 1996). Camarda (2019) extends such an approach to incorporate shape constraints
and thus improve forecast plausibility. Concerning fertility, the Bayesian forecasting model
of Ellison et al. (2023) (see Section 1) is also based on a GAM framework. The model
estimates smooth effects of age, cohort and their interaction, as well as time since last birth.

We now specify our prior model. Letting λi
ac be the true conditional rate for age a, cohort c

and birth order i , our prior model sets:

log
(
λi

ac

)
= fi (a,c),

where fi is a smooth function of age and cohort estimated using the observed data. Similarly
to Currie et al. (2004) and Camarda (2019), we take a P-spline approach. In the simple
one-dimensional (1D) case this considers a cubic B-spline basis, consisting of a series of
smooth curves, or basis functions, that cover the covariate range and are non-zero for
different parts of it. Following the advice of Currie et al. (2004) we space the basis functions
regularly at five-year intervals, requiring eight and ten in the age and cohort dimensions
respectively. The smooth curve is then constructed as a linear combination of the basis
functions, where the coefficients are constrained to change smoothly across the covariate.
Appendix B provides a visualization of this 1D case.

Extending this to smooth the log-rates across age and cohort, the basis functions are
now smooth 2D surfaces constructed by multiplying the curves from the age and cohort
dimensions together; Figure 2 of Camarda (2019) provides a depiction of this. Letting there
be P = 8 and Q = 10 1D basis functions covering the age and cohort ranges respectively, for
a given age a and cohort c we represent the values of these functions by b1

A(a), . . . ,bP
A(a) and

b1
C (c), . . . ,bQ

C (c). Then, for a given p ∈ {1, . . . ,P } and q ∈ {1, . . . ,Q} we represent the value of

the corresponding 2D basis function as bpq
AC (a,c), where bpq

AC (a,c) = bp
A(a)×bq

C (c). We then
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express fi (a,c) as the weighted sum of these basis functions with parity-specific weights
β

pq
i :

fi (a,c) =
P∑

p=1

Q∑
q=1

β
pq
i bpq

AC (a,c).

In our case we therefore have P ×Q = 8×10 = 80 basis functions covering the full age-cohort
surface. To constrain the β

pq
i values to change smoothly across age and cohort, we

penalize their first-order differences. We illustrate this in Figure 3, an 8 × 10 grid of the
basis function coefficients where the cell in row p and column q corresponds to βpq

(omitting the i subscript for clarity). First-order differences can be penalized between
adjacent coefficients horizontally or vertically in the cohort or age directions respectively
(represented respectively by vertical or horizontal lines between cells).

We color code Figure 3 to indicate areas with different types of penalization. We constrain
the coefficients in the first and last rows (rows 1 and P ) to equal row-specific values β1 and
βP respectively (gray areas):

β11 = ·· · =β1Q =β1; (3)

βP1 = ·· · =βPQ =βP . (4)

This allows us to achieve forecast plausibility in two ways: firstly, by borrowing strength
across the youngest ages where there is large rate uncertainty, particularly for higher parities
(panel b of Figure 1); and secondly, by ensuring negligible rates at the oldest ages.

For the remaining rows we penalize the first-order differences in the cohort direction (white
and hatched areas) and the age direction (white area only). We implement these penalties
through normal priors for the differences, specified in equations (5) and (6) respectively:

βpq −βp(q−1) ∼ N
(
0,σ2

C

)
, p ∈ {2, . . . ,P −1}, q ∈ {2, . . . ,Q}; (5)

βpq −β(p−1)q ∼ N
(
0,σ2

A

)
, p ∈ {3, . . . ,P −2}, q ∈ {1, . . . ,Q}. (6)

Standard deviation parametersσC andσA govern the degree of smoothing in the cohort and
age directions respectively. We give σC /0.01 and σA/0.01 Student’s t priors with 7 degrees of
freedom; these informative priors express our belief that neighbouring coefficients should
have similar values. When fitting the model, the priors in (5) and (6) combine to achieve
smoothness across age and cohort simultaneously.

To respect the biological constraints of fertility we do not penalize the differences where the
white and hatched areas meet, because experiments found that doing so allowed fertility to
peak at implausibly old ages. Furthermore, we do not penalize the differences where the
gray and white/hatched areas meet, because the coefficients in rows 1 and P take much
smaller values than those in the interior rows.

3.2.2 Data models

Next we specify the data models for Levels 1 and 2 (Section 3.1). For birth order i , the
L1 data model considers the births by age and cohort, bi

ac , to follow a negative binomial
distribution with mean equal to the relevant parity-specific exposure, E i−1

ac , multiplied
by the true conditional birth rate, λi

ac . The overdispersed Poisson interpretation of the
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negative binomial distribution enables extra variability to be accounted for, here through
the dispersion parameter φi :

bi
ac ∼ NegBinomial

(
E i−1

ac λi
ac ,φi

)
.

We specify a half-normal N+(0,52) prior for each φi to indicate our uncertainty about the
parity-specific rate estimates resulting from the denominator approximation (Section 2.2).

Analogously, the L2 data model considers the total births by age and cohort, bac , to follow
a negative binomial distribution with mean equal to the exposure by age and cohort, Eac ,
multiplied by the true ASFR, defined as µac :

bac ∼ NegBinomial
(
Eacµac ,φ0) .

We specify a uniform U (0,∞) prior for the dispersion parameter φ0 because unlike the
parity-specific rate estimates, we can be very confident about the ASFR estimates as they
only require aggregate data.

3.3 Modelling summary fertility measures (Level 3)

In this section we specify the L3 prior model for the summary measures, namely the true
CFR and PPRs. Continuing from Section 2.3, we first consider our pooled cross-country
dataset of observable CFR and PPR estimates from Human Fertility Database (2023) for
a given JOY value. This means that we have estimates from the 1945 cohort to the
(JOY −amax) cohort, who complete their childbearing in year JOY . Appendix C provides
plots of these estimates for JOY = 2015. Although the country-specific curves fluctuate
substantially across the cohort range, generally consecutive changes are small. We therefore
base our prior model on the assumption that the true CFR and PPRs change relatively slowly
over time. To inform this assumption, for each summary measure SM , i.e. the CFR and
different PPRs, we calculate the standard deviation of the consecutive differences from all
of the country-specific curves, denoted by σSM . For JOY = 2015 these take the following
values (to 3 significant figures):

σC F R = 0.0335;

σPPR0−>1 = 0.0151; σPPR1−>2 = 0.00939;

σPPR2−>3 = 0.00722; σPPR3+−>4+ = 0.00683.

To compare the standard deviations we scale them by the average value of their
corresponding summary measure. We then find that actually PPR2−>3 and PPR3+−>4+

exhibit the greatest variability (with scaled standard deviations of 0.0216 and 0.0215
respectively), followed by the CFR (0.0174), PPR0−>1 (0.0169) and then PPR1−>2 (0.0123).

We then express the prior model for true summary measure SM , denoted by θSM
c for cohort

c, as a normal prior for a first-order random walk:

θSM
c ∼ N

(
θSM

c−1,σ2
SM

)
,c =

(
c JOY

mi n +1
)

, . . . ,c JOY
max .

In this way the prior model indicates that values of the true summary measure for
consecutive cohorts should be close to each other, with the degree of closeness informed
by the typical variation observed in the historical HFD data. For the HFD countries, the
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construction of this prior from observed data that already enters the model has links to
Empirical Bayes methods. However, the prior will act mainly to achieve plausibility in
the projected summary measures for partially observed cohorts, with any effects for fully
observed cohorts likely to be negligible.

3.4 Model fitting

For a given country and JOY value, we fit our Bayesian parity-specific fertility projection
model using the package rstan (Stan Development Team 2023) within R (R Core Team 2023).
This provides an interface to the Stan software, which enables efficient posterior sampling
from complex models. We obtain 750 samples and discard the first 250 as burn-in, leaving
500 samples. Assessment of standard convergence diagnostics indicate that the samples
mix well. We also fit an aggregate version that simply smooths the age-cohort ASFR surface
(panel a of Figure 1) and only constrains the CFR. Both the parity-specific and aggregate
models fit quickly, taking on average 3 minutes and less than 30 seconds respectively on
a 2.7GHz Intel Core i7 Windows machine. For each posterior sample, we then generate
order-specific and aggregate birth counts according to the data models in Section 3.2.2, from
which we obtain posterior distributions of quantities of interest that we present in Section
4.

4 Results

4.1 Parity-specific and aggregate models

In this subsection we present results from the proposed aggregate and parity-specific
models fitted to the data from our chosen countries. We focus on JOY = 2015 for simplicity,
with the other JOY values considered in Section 4.2 when we compare the predictive
performance of our proposed models with that of existing methods from the literature.

4.1.1 Fitted rates

Figure 4 presents the fitted rates for England & Wales (rows 1 and 2) and Czechia (rows 3
and 4). Rows 1 and 3 display the posterior median ASFRs from the two models (columns 1
and 2) followed by the parity-specific rates, which are only estimable by the parity-specific
model. Rows 2 and 4 plot the corresponding observed rates for comparison. The dashed
lines indicate rate forecasts (row 1/3), and rate estimates observed after 2015 (row 2/4).

For England & Wales, the first two columns show reasonably similar ASFR forecasts for the
aggregate and parity-specific models, with continued declines and recuperation at younger
and older ages respectively (albeit with these trends slightly more extreme for the aggregate
model). However, the parity-specific model allows us to learn about the parity dynamics
underlying these forecasts. In the subsequent columns we see that increasing smoothing is
required due to the observed rates being more erratic. The ASFR declines at younger ages
appear to be driven predominantly by decreases in the rate of progression to motherhood
(parity 0 rates), while all parities contribute to the higher rates at older ages. We also note
that the constraint applied for plausibility at the oldest ages (equation (4) in Section 3.2.1)
ensures that the level of these increases diminishes at the upper end of the age range.

Czechia presents a starkly different forecasting challenge, with the ASFR collapse acoss ages
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15–25 that occurred for the older half of the cohorts following the end of the communist
regime (Billingsley 2010). This was counteracted by a steep rise in the ASFRs at later ages
which both models predict to continue for the younger cohorts. Interestingly, both models
also anticipate a decrease in the peak childbearing age for the youngest cohorts from around
age 30 to age 28. The breakdown by parity determines the main drivers of these changes to
be at parities 0 and 1, with the projections for the higher parities remaining reasonably close
to the recent observed values.

Appendix D provides the corresponding figures for Canada and the Netherlands. The
forecasts for Canada are generally similar to those for England & Wales, their main feature
being increases at older ages; however, these increases are considerably steeper for parity
0 compared to England & Wales. The Netherlands differs notably from the other countries
in that the variability of the observed ASFRs at each age is very low, while the variability of
the consecutive ASFR differences is relatively high for ages 25–35; furthermore, the cohort
schedules are consistently highly-peaked and so have fast-changing ASFRs across age. The
parity-specific forecasts are remarkably stable, with the greatest change observed for parity 0
where we again see a postponement of childbearing but with the level of the peak decreasing
slightly – this contrasts with England & Wales and Canada.

We also note that the Netherlands is the only country with a large difference between the
ASFR forecasts under the aggregate and parity-specific models, the former predicting a more
extreme shift of the cohort schedules to the right. The greater stability in the latter is due
to the PPR constraints, which adjust the parity-specific forecasts to be more realistic while
maintaining the CFR projection; this also occurs for the other countries, but less adjustment
is required as these forecasts are already reasonable. For the Netherlands, the fluctuations
and recent declines within the central reproductive ages, together with their dominance,
lead to severe extrapolations that the CFR constraint alone cannot mitigate with sufficient
plausibility.

4.1.2 Summary measures

Figure 5 presents the forecasts of the five summary measures, namely the CFR and
PPRs, with their associated uncertainty. In row 1 we plot the posterior median CFR and
corresponding 95% prediction interval under the aggregate and parity-specific models for
each country. We first observe that the posterior medians for the two models generally
align closely. For Canada, England & Wales and the Netherlands, both models predict
a similar stable or increasing trend, followed by a gradual decline. Only for Czechia do
the projections diverge considerably, the initial decrease giving way to a strong recovery
under the parity-specific model and a plateau under the aggregate model. The difference
is not surprising given the steeply decreasing trend in the observed CFR values for Czechia,
contrasting with the much greater stability exhibited by the other countries.

Regarding the level of uncertainty, while the intervals for the two models overlap extensively,
those for the parity-specific model are consistently narrower, meaning that the projections
have greater precision. Lastly, although the additional data points from 2016 onwards can be
used to assess forecast performance, these correspond to cohorts who were already nearing
the end of their reproductive lives and thus their CFR values can be predicted with high
accuracy. In Section 4.2 we assess the forecast performance for the earlier JOY values, where
longer time series of out-of-sample data are available.
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We now consider the posterior distributions of the four PPRs, which are presented
analogously in row 2 of Figure 5 (for the parity-specific model only). Czechia again
differs from the other countries, for two main reasons: (1) the progression to motherhood
(PPR0−>1) is much higher and shows a decreasing trend, and (2) the progressions to parities
3 and 4+ are much lower and closely overlapping, whereas for the other countries their
distributions are more distinct and with PPR2−>3 at the higher level. This demonstrates
how a variety of parity dynamics can lead to a similar CFR (e.g., see Zeman et al. 2018).

Concerning the projections, those for PPR0−>1 exhibit a generally similar trend to the
corresponding CFR projections due to the closeness of the underlying rates (Section 3.2.1).
The progression from parity 1 to 2 is predicted to remain stable for Canada, gently fluctuate
for England & Wales, gradually decrease and then stabilize for Czechia, and the reverse of
this for the Netherlands. Lastly, the higher-order PPRs are projected to diverge slightly for
Czechia but converge for the other countries. The gradual nature of these predicted PPR
and CFR changes reflects the addition of their respective constraints to incorporate prior
knowledge regarding their relatively slow progressions in the past (Section 3.3).

4.2 Comparison with existing methods

In this subsection we assess the predictive performance of our proposed parity-specific
projection model. We make two comparisons: (1) against the aggregate version of the model
to directly evaluate the effect of incorporating parity information, and (2) against a selection
of the best-performing (aggregate) methods in the existing literature to determine whether
our parity-specific model has competitive forecast accuracy and precision. We consider
three comparator methods:

• freeze rates approach: this simply fixes the ASFRs at their most recent observed values;

• model of Myrskylä et al. (2013): this extrapolates the recent age-specific ASFR trend
for five years and then freezes the rates;

• model of Schmertmann et al. (2014): this is a Bayesian approach which incorporates
prior information from historical HFD data regarding typical ASFR patterns across age
and cohort to obtain projections that are plausible in both dimensions.

The models of Myrskylä et al. (2013) and Schmertmann et al. (2014) were found to forecast
completed cohort fertility with the highest accuracy in the recent comparative paper of
Bohk-Ewald et al. (2018). The freeze rates approach performed well despite its simplicity,
leading the authors to recommend its usage as a benchmark when proposing any new
fertility forecasting method.

4.2.1 Summary statistics

We first compare the predictive performance of these methods across all countries and JOY
values simultaneously using five different summary statistics relating to the ASFR and CFR
forecasts, which we present in Table 1. Note that of the three comparator methods from the
existing literature, only the model of Schmertmann et al. (2014) is taken to have probabilistic
forecasts2. The first three statistics are standard measures, namely the mean absolute error

2Although Myrskylä et al. (2013) provide a method for computing forecast intervals, their coverage has been
shown to be poor (Bohk-Ewald et al. 2018; Ellison et al. 2020). We therefore only consider the point forecasts
of this approach.
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(MAE), mean absolute percentage error (MAPE) and the root mean square error (RMSE),
where we take the point estimate for the probabilistic forecasts to be the posterior median
of the forecast distribution3.

For both the ASFR and CFR forecasts, these measures indicate that our proposed
parity-specific model is preferred marginally over the aggregate version, and considerably
over the three comparator methods. The next two rows contain the coverage of the
90% and 50% prediction intervals for the three probabilistic methods. The values for
the ASFR forecasts are considerably lower than the nominal levels, with the aggregate
and Schmertmann et al. (2014) models having the highest coverage for the 90% and 50%
prediction intervals respectively. Contrastingly, the values for the CFR forecasts are generally
much closer to the nominal levels, with the proposed parity-specific and aggregate models
seemingly very well calibrated.

The final row presents the average value of a particular scoring rule. Scoring rules have
been applied in the context of fertility forecasting by Ellison et al. (2020). They are designed
to assess probabilistic rather than point forecasts and so can measure the performance of
the entire forecast distribution (Gneiting and Raftery 2007). We compute the continuous
ranked probability score (CRPS) (Matheson and Winkler 1976), which evaluates the quality
of a forecast distribution based on how close its cumulative distribution function (CDF)
is to that of the true value; it can also be calculated where only point forecasts are
available (and is equivalent to the MAE), meaning that we can compare all of our methods
simultaneously (Ellison et al. 2020). We note that smaller CRPS values indicate greater
predictive accuracy. Table 1 indicates that the ASFR forecasts from the models of Myrskylä
et al. (2013) and Schmertmann et al. (2014) are marginally preferable under the CRPS, with
our parity-specific model being very close. However, for the CFR forecasts the parity-specific
model is quite strongly preferable.

The summary statistics imply that overall, our proposed parity-specific model tends to
outperform the corresponding aggregate model and is also competitive with some of the
best-performing existing models. However this is at a high level of aggregation, and so
next we summarize the differences we observe when repeating this exercise for a given
country or JOY value (results not shown). The conclusion regarding the comparison with
the aggregate model generally holds, with only a few instances where the aggregate model
is preferable based on at least one measure (ASFR: Czechia and 2000; CFR: Netherlands and
2015). The findings regarding the comparison with the existing methods are less consistent
across countries and JOY values. Across both the ASFR and CFR forecasts, the model of
Myrskylä et al. (2013) and the freeze rates approach are preferable for the Netherlands, as
well as for the later JOY values under some of the measures (ASFR: 2005 and later; CFR:
2010 and later). This suggests that the generally stronger performance by our proposed
parity-specific model for the earlier JOY values, which contribute a larger proportion of
the forecast errors, dominates the overall results.

Next, in Figure 6 we inspect the results broken down for each country-JOY combination.
For the ASFR and CFR forecasts (top and bottom rows respectively) and for each model
(column), we plot the relative difference in the average CRPS compared to the parity-specific

3Note that to ensure a fair comparison between the deterministic models (which provide a perfect fit to the
observed ASFRs) and the probabilistic models, the CFR summary statistics for the latter in Table 1 (excluding
the coverages) and Figure 6 ignore the uncertainty about the ASFRs observed before the jump-off year, instead
treating them as known.
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model for each JOY value (x-axis) and country (color). For our first comparison we look
at the bars in the leftmost column. For both the ASFR and CFR forecasts, nearly all of
the differences are positive, meaning that the average CRPS for the aggregate model is
nearly always higher than that for the parity-specific model; this supports our findings
from Table 1. For our second comparison we make a similar assessment of the next three
columns, i.e. of the comparator methods from the existing literature. Considering the
comparison with the ‘benchmark’ freeze rates approach first (rightmost column), we see
that our parity-specific model outperforms this method in around half of the country-JOY
combinations for the ASFR forecasts, but nearly all of the combinations for the CFR
forecasts. For the models of Myrskylä et al. (2013) and Schmertmann et al. (2014) the results
are more mixed, with the parity-specific model preferable in the majority of combinations
only for the CFR forecasts of the Schmertmann et al. (2014) model.

4.2.2 Visual assessment

Next we visually inspect the projections, starting with plotting the CFR forecast distributions
for the four countries for JOY values 2000 and 2005 in rows 1 and 2 of Figure 7. We
choose these earliest jump-off years as they provide the longest time series of out-of-sample
data points. In most cases the prediction intervals or point forecasts for the five methods
overlap to some extent. However, the 2000-based forecasts for Czechia provide an
interesting example whereby the predictions diverge sharply from around the 1970 cohort;
the parity-specific and aggregate approaches anticipate a recovery to replacement level,
while the other methods predict a steep decline to unprecedented levels. The reality lies
in the middle, with a gradual CFR decline being observed that lies much closer to the point
forecasts from our proposed models; this explains the poor performance of the comparator
methods in Figure 6. In contrast, the 2000-based forecasts for the Netherlands demonstrate
an instance where the naive freeze rates method performs best, with the alternative methods
predicting a recovery in the CFR that does not materialize. However, in the 2005-based
forecasts for all countries except the Netherlands, the freeze rates approach is outperformed
by the more optimistic trajectories produced by the methods that account for the recent
trend in some way.

Lastly, in rows 3–5 of Figure 7 we examine the ASFR forecasts for the 1975 cohort at JOY
values 2000, 2005 and 2010, when women in this cohort were aged 25, 30 and 35 respectively
(we will refer to the age of the cohort in the year JOY as the truncation age). This allows us
to appreciate the challenge of completing the cohort schedule at young truncation ages. For
example, the cause of the divergent 2000-based CFR forecasts for Czechia in row 1 of Figure
7 is clear looking at the underlying ASFRs for the 1975 cohort – the age pattern has peaked
and is stable, but when it will begin to decline (or whether it will peak further) is difficult to
determine, hence the very different forecasts. However, the projections for the same cohort
under the later JOY values tell a very different story, exhibiting much greater consistency
due to a larger proportion of the cohort schedule having been observed. A similar pattern is
visible in the Netherlands panels, with the methods unable to agree on the location and
height of the peak in ASFRs in the 2000-based forecast, which becomes much less of a
concern in the later forecasts. The same is true for Canada and England & Wales but to a
lesser extent.
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5 Discussion and conclusions

In this paper we propose, to the best of our knowledge, the first integrated methodological
framework for producing fertility projections by parity. The model generates smooth
age-cohort surfaces of rates for each parity which are combined to give an aggregate rate
surface, allowing summary fertility measures such as completed family size (via the cohort
total fertility rate, or CFR) and parity progression ratios to be computed within the model.
Taking a Bayesian approach makes it straightforward to apply constraints both to these
measures and to the smooth surfaces themselves, thus incorporating prior knowledge and
improving forecast plausibility; it also allows the model to be informed by data sources at
the parity-specific and aggregate levels in a coherent way.

The key methodological challenge to overcome is how to model conditional parity-specific
fertility rates, i.e. rates that depend on the number of women at risk of each particular
birth order, when in most cases data of sufficient quality is only available for the numerator,
i.e. the number of order-specific births. To this end, we exploit the sequential progression
of parity through a person’s life and approximate the denominators by cumulating across
cohort fertility (Jasilioniene et al. 2015; Smallwood 2002). This is similar to the approach
taken by Ellison et al. (2023), however an important difference is that our cumulation occurs
during model fitting rather than only being applied post-hoc to separate model outputs
for each parity. The implementation of such an approximation would be necessary even
if the denominators for the fitting period were known, as estimates consistent with the rate
projections would be required for the forecast period. Despite this, the fact remains that
fitting the proposed model relies on having at least some parity-specific data available at
the population level, which may pose a difficulty in less-developed countries.

A second challenge is how to obtain forecasts that are plausible, especially given that we
are extrapolating multiple two-dimensional smooth surfaces within the same model. We
do this by applying various constraints that express our prior knowledge about the likely
progression of demographic rates (see Camarda 2019 for an example of such an approach in
the context of mortality forecasting). The first instance is at the parity-specific level (Section
3.2.1), constraining the parameters to borrow strength across cohorts where the rates are
erratic at the youngest ages, and to enforce the known biological limitations of fertility at
the oldest ages. The second application is at the aggregate level (Section 3.3), where we
constrain summary fertility measures to change slowly from cohort to cohort, informed by
the historical variability of these measures in a pooled dataset from the Human Fertility
Database (Human Fertility Database 2023). These constraints, when taken together, should
lead to increased forecast plausibility in terms of the shapes of the cohort schedules of rates
at the parity-specific level, and the progression of summary measures at the aggregate level.

To assess the forecast performance of our proposed model we fit it to four countries, each
across four cohort ranges with a different jump-off year (JOY ), i.e. the last year of data used
for model fitting. We also fit an analogous ‘aggregate’ model, which only smooths the overall
age-specific fertility rates (ASFRs) and constrains the CFR, as well as several competitive
aggregate models from the literature, informed by the results of Bohk-Ewald et al. (2018).
We perform a comprehensive quantitative and visual comparison of the resulting ASFR
and CFR forecasts to ascertain whether the incorporation of parity information improves
forecast accuracy and precision. We can address this question directly by comparing the
parity-specific and aggregate models, which only differ in this respect; we find that the
former is strongly preferable under nearly all of the measures. In contrast, the comparison
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with existing approaches has mixed findings, with the comparator methods tending to
perform better for particular countries and JOY values. However, this comparison only
addresses the question indirectly – there are many differences between our proposed model
and the existing methods which do not relate to parity and cannot be eliminated. We
consider the discrepancies in more detail below.

Under the ‘benchmark’ freeze rates approach, it is interesting that noticeably poorer ASFR
and CFR forecasts under our proposed model are evidenced only for the Netherlands,
for JOY values 2000 and 2010 (Figure 6); we also note that these are the only occasions
where freeze rates is the preferred model overall. In both cases, our projected parity 0
cohort schedules appear quite extreme, with steep increases across cohorts at the central
reproductive ages that are not realized. In contrast with the 2015-based forecasts (Section
4.1.1), it seems likely that this is driven by the strongly rising trends in the observed rates
at the end of the fitting period. Clearly this is also a challenge for the comparator methods,
however it indicates that our proposed model could benefit from further methodological
development. This could include applying additional constraints to improve forecast
plausibility, modelling countries jointly (Schmertmann et al. 2014 provides an example of
this), and accounting for inter-parity correlations.

Other areas for future investigation include extending the comparative analysis, for example
to cover a wider range of countries and time periods, or to use as case studies countries
that produce annual age-parity population estimates, such as Nordic countries through
population registers, to assess the accuracy of our approximation method. Conversely,
we could consider countries with limited parity-specific data availability to explore model
adaptations to borrow strength across countries. Our proposed model could be refined
further, for example by testing the sensitivity to different implementations of the constraints
or prior specifications. We could also extend the model to incorporate the last of the “five
clocks” (Raftery et al. 1996:1), i.e. time since last birth, to capture the important dependence
of birth events on this variable (Ellison et al. 2022). Furthermore, scenario testing could be
of great interest to policymakers, whereby the effect of various parity-specific interventions
on overall childbearing levels could be explored. Lastly, our proposed model could be
incorporated into a kinship projection model, where advancements have already been
made through an efficient matrix formulation and the inclusion of parity as a characteristic
(Caswell 2020).

In conclusion, our proposed model provides a sophisticated Bayesian methodology for
obtaining parity-specific fertility projections. The ability of such projections to express
aggregate rates in terms of the underlying parity dynamics that interact to produce
them undoubtedly adds a great deal of richness and incorporates an awareness of the
sequential nature of childbearing, features which are currently absent from existing
methods. The model is also efficient to run and appears to have reasonable forecast
performance when compared to some of the best-performing models from the literature.
This demonstrates that enhancing explanatory capacity, in this case through explicitly
modelling the childbearing mechanism by parity, yields a model that is at least comparable
in terms of its predictive performance and errors. This provides a strong argument for
the use and further development of fertility projections that more accurately capture the
process of childbearing, thus having the potential to enable more tailored policy solutions.
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Table 1: Summary statistics for the ASFR and CFR forecasts under various models
Forecast Measure P-S A S M FR

ASFR

MAE 0.0063 0.0070 0.0097 0.0073 0.0083
MAPE (%, 1 decimal place) 11.5 12.9 21.9 14.3 18.3
RMSE 0.011 0.011 0.015 0.012 0.013
Coverage of 90% PI (%) 66 73 69 - -
Coverage of 50% PI (%) 30 37 38 - -
Average CRPS 0.0074 0.0088 0.0073 0.0073 0.0083

CFR

MAE 0.024 0.028 0.041 0.033 0.048
MAPE (%, 1 decimal place) 1.3 1.5 2.3 1.8 2.6
RMSE 0.051 0.057 0.084 0.074 0.096
Coverage of 90% PI (%) 82 83 69 - -
Coverage of 50% PI (%) 52 58 48 - -
Average CRPS 0.024 0.030 0.032 0.033 0.048

Notes: Summary statistics are calculated across all countries and JOY values for the ASFR
and CFR forecasts under the proposed parity-specific (P-S) and aggregate (A) models, the
Schmertmann et al. (S) and Myrskylä et al. (M) models, and the freeze rates approach (FR).
Values are given to 2 significant figures unless stated otherwise. MAE = mean absolute error;
MAPE = mean absolute percentage error; RMSE = root mean square error; PI = prediction
interval; CRPS = continuous ranked probability score. The most preferable value/values
is/are in bold.
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Figure 1: (a) Left: Lexis surface of England & Wales age-specific fertility rate estimates
for the 1961–2000 cohorts, observed up to JOY = 2015, from Office for National Statistics
(2022a). Right: same data presented in the form of cohort-specific rate curves. (b) Top row:
Lexis surfaces of England & Wales conditional parity-specific fertility rate estimates for the
1961–2000 cohorts and parities 0, 1, 2 and 3+, observed up to JOY = 2015, from Office for
National Statistics (2022a); note that the rate estimates have been top-coded at 0.3. Bottom
row: same data presented in the form of cohort-specific rate curves. Note the non-standard
age-cohort axes in the Lexis surfaces.
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Figure 2: Overview of the proposed modelling framework. Straight-edged rectangles are
demographic arrays, rounded rectangles are prior models and hexagons are data models.
Only the gray rectangles are observed.

Figure 3: Illustration of penalties applied to basis function coefficients for a 2D age-cohort
surface with P = 8 basis functions across age and Q = 10 across cohort. Gray areas:
coefficients fixed across cohort; White and hatched areas: first-order differences penalized
in cohort direction; White area: first-order differences penalized in age direction.
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Figure 4: Row 1: England & Wales posterior median ASFRs and parity-specific rates
from the aggregate and parity-specific fertility projection models for JOY = 2015; Row 2:
corresponding observed rates from Office for National Statistics (2022a). Rows 3 and 4:
Equivalent plots for Czechia, with observed rates from Human Fertility Database (2023).
Dashed lines indicate values after the year JOY .
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Figure 5: CFR (top row) and PPR (bottom row) posterior medians and 95% prediction
intervals for the aggregate and parity-specific fertility projection models for JOY = 2015
and the selected countries; note that the PPRs are only estimable by the parity-specific
model. Points are observed values from Office for National Statistics (2022a) and Human
Fertility Database (2023); vertical lines indicate the last fully-observed cohort (born in the
year 1971 = JOY −amax).
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Figure 6: Relative differences in the average CRPS compared to the proposed parity-specific
model for the aggregate, Schmertmann et al. and Myrskylä et al. models, and the freeze rates
approach, for each country-JOY combination and the ASFR (top row) and CFR (bottom row)
forecasts.
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Figure 7: Rows 1 and 2: CFR posterior medians and 95% prediction intervals for the
proposed parity-specific and aggregate models and the Schmertmann et al. model, and
point forecasts for the Myrskylä et al. model and the freeze rates approach, for JOY values
2000 and 2005, and the selected countries; vertical lines indicate the last fully-observed
cohort (born in the year JOY − amax). Rows 3–5: For the same models and the selected
countries, ASFR posterior medians and 95% prediction intervals for the 1975 cohort at JOY
values 2000, 2005 and 2010; vertical lines indicate the truncation age (equal to JOY −1975).
Points are observed values from Office for National Statistics (2022a) and Human Fertility
Database (2023).
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Appendices

A Adjusting the post-2012 England & Wales birth counts by birth order

In May 2012, a change in legislation came into effect stating that information on true birth
order was to be requested at all birth registrations in England & Wales (Office for National
Statistics 2023). Analysis of the births by birth order data collected following this change
found that there was a large decrease in the proportion of women reporting that they had
no previous live births compared to 2011 estimates (Office for National Statistics 2018).
This was thought to be due to a lack of clarity in the wording of the question or the way
in which it was being asked, leading to misreporting whereby the current child, i.e. the
child being registered, was included in the count of previous children. The greatest decrease
was observed for teenagers, where the proportion with no previous children should be the
highest. In subsequent years the age-specific proportions of women reporting no previous
children increased across the reproductive age range, and in 2016 were very close to the 2011
estimates. This is thought to be in part due to an amendment made to the question on the
online registration system in 2016 to improve its clarity.

To improve the accuracy of the England & Wales data that we use to fit our parity-specific
fertility projection model, we make an adjustment to the birth counts. We consider ages
14–19 and the years 2012–2016, where the phenomenon was observed most strongly. For
each age, we perform the following steps:

1. For each year, calculate the proportion of total births attributable to each birth order.

2. Adjust these proportions so that they change linearly from 2011–2017 for each order.

3. Adjust the order-specific birth counts to be in accordance with the new proportions,
ensuring that the total number of births remains fixed.

4. Recalculate the approximate parity-specific exposures using the method of
Smallwood (2002) (see Section 2.2).

In Figure A.1 we plot the underlying order-specific birth proportions, with the original
and adjusted proportions represented by the solid and dashed lines respectively and the
2011–2017 period indicated by the shaded area. The largest changes are in the proportions
of first and second births, with the adjusted proportions exhibiting substantial increases
and decreases respectively compared to the original proportions. The adjusted proportions
for third and higher-order births, which have been combined for simplicity, are also lower
than the original proportions, but only marginally. In this way, the main adjustment being
made is the reclassification of second births as first births, thereby reducing the proportion
of women reporting a previous birth as desired.

Figure A.2 plots the original and adjusted parity-specific fertility rate estimates in the top
and bottom rows respectively. Following the discussion of Figure A.1, we should expect to
see increased parity 0 rates and decreased parity 1 rates at ages under 20 over the 2012–2016
period. Indeed we see that the parity 1 rates are noticeably lower at the youngest ages, much
more consistent with earlier and later years. The parity 2 rates are also generally lower at
these ages, but to a lesser extent, and we see very little difference for parities 3 and 4+.
Interestingly, the adjusted parity 0 rates are very similar to the original rates despite the
increase in first births – this is likely due to the large exposures meaning that the relatively
large increase in the numerator makes a negligible difference on the scale of the rates.
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Figure A.1: England & Wales original (solid lines) and adjusted (dashed lines) order-specific
birth proportions by year for the period 2008–2020, birth orders 1, 2 and 3+, and ages 15–19
(Office for National Statistics 2022a); the shaded area indicates the period over which the
adjustment was made (2011–2017).

Figure A.2: England & Wales original (top row) and adjusted (bottom row) conditional
fertility rate estimates for 2008–2020 and parities 0–4+ (Office for National Statistics 2022a).
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B Illustration of P-spline approach for the univariate case

We illustrate the P-spline approach in Figure B.1 for the simple one-dimensional case where
we are smoothing across a single variable, in this case age. Below we describe the three steps
depicted in the panels of the figure:

1. Step 1 displays the cubic B-spline basis with eight basis functions.

2. Step 2 scales each of the basis functions by different weights which are constrained to
change smoothly across age. Summing the values of the weighted curves for each age
then gives the black smooth curve of fitted log-rates.

3. Step 3 exponentiates the fitted log-rates to give the smooth fitted rate curve.

Figure B.1: Illustration of smoothing of age pattern of log-rates under a P-spline approach.
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C Summary fertility measure estimates for JOY = 2015

Figure C.1: CFR and PPR estimates for the 1945–1971 cohorts, computed from Human
Fertility Database (2023).
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D Additional rate forecasts for JOY = 2015

Figure D.1: Row 1: Canada posterior median ASFRs and parity-specific rates from
the aggregate and parity-specific fertility projection models for JOY = 2015; Row 2:
corresponding observed rates from Human Fertility Database (2023). Rows 3 and 4:
Equivalent plots for the Netherlands. Dashed lines indicate values after the year JOY .
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