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Abstract: In this paper, we developed a solution for controlling 
a tower crane thought as a no-rigid system, and therefore able to 
have deformation and, during the motion, vibrations. Particularly, 
large tower cranes show high structural dynamics. Under external 
excitations, the payload tends to sway around its vertical position 
and this motion is coupled to the resulting dynamic vibration of 
the crane structure. These induced vibrations may cause 
instability and serious damage to the crane system. Furthermore, 
the energy stored in the flexible structure of a tower crane causes 
vibrations in the structure during the acceleration and 
deceleration of slewing movements. A crane operator perceives 
these vibrations as an unstable speed of the boom. Such behavior 
involves the control of the crane, particularly precise positioning 
and manual control of the crane movement at low pivoting speed. 
We define an Elastic model of the Slewing crane and analyze the 
bending and Torsional elasticity of the Tower, and the Jib 
Elasticity. With an approximated method, we calculate the natural 
wavelengths of the crane structure in the slewing direction. We 
consider the tower crane as a nonlinear under-actuated system. 
The motion equations are obtained considering both the normal 
vibration modes of the tower crane and the sway of the payload. 
An elastic model of the Slewing crane is achieved, modeling the 
crane jib as an Euler-Bernoulli beam. Even the payload dynamic 
is considered, developing an Anti-sway solution by the equation of 
the movement. We define an iterative calculation of the sway 
angles and obtain the corresponding velocity profiles, 
implementing two kinds of solution: an input-shaping control in 
open-loop, to be used with automatic positioning, and a 
“command smoothing” method in open-loop, used for reducing 
the sway of the payload with the operator control. These solutions 
lead to a reduction of the vibrations of the crane structure. As a 
consequence, the tower crane is not subject to the strong 
horizontal and vertical oscillations during the motion of the elastic 
structure. 

Keywords: Slewing Control, Tower Crane, Vibrational 
Analysis, Finite Element Method, Anti-Sway.   

I. INTRODUCTION

An analysis of the elastic structure of a Tower crane is
obtained in this work. We consider a Tower crane like an 
elastic system during the slewing movement.  

Because the Tower crane structure is not rigid, a resulting 
dynamic vibration of the crane structure is generated also 
without the presence of the payload. Besides, the payload 
swings around its vertical position. These induced vibrations 
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sum up to the payload swaying and may cause dangerous 
instability. Such behavior makes difficult the control of the 
crane, particularly precise positioning and manual control of 
the crane movement at low pivoting speed. Ramli et al. [1] 
gave an exhaustive literature review relative to published 
works related to crane solutions.  

Cranes are under-actuated systems because they have a 
lower number of actuators than degrees of freedom. That is 
the result of decreasing the cost and the complexity. 
However, that means high difficulty to crane control, due to 
their complex dynamics.  

In the last few years, different works have been carried out 
relative to the sway control of a slewing crane. We can 
classify these works into open and closed-loop control 
methods.  Feedback controls (closed-loop) mainly focus on 
disturbance while open-loop controls have the main goal of 
reducing unwanted payload oscillations for defined reference 
or input signals. Some recent papers relative to the 
closed-loop control are [2]-[3]-[4]-[5]-[6]-[7]-[8]-[9]- 
[10]-[11]-[12-[13]-[14]-[15]-[16]-[17]-[18]-[19]. Each of 
these works corresponds to different control methods, for 
example, Adaptive Output Feedback Control, 
Observer-Based Nonlinear Control, Observer Design for 
Non-Linear Systems, Robust adaptive boundary control, and 
Lyapunov Functions-based adaptive control.  

Instead, as regards open-control works are concerned, we 
can cite [20]-[21]-[22-[23]-[24]-[25]-[26]-[27]-[28]-[29]- 
[30]-[31], as well as the works of the author of the present 
paper [32]-[33]. We can also consider the works 
[50]-[51]-[52]. 

Also, some Patents and Thesis have been developed 
regarding the control of the slewing of a tower crane. We can 
cite [34]-[35]-[36]-[37]-[38]. Some of which can be 
associated with important companies in the Crane sector. 
Specifically, torque control of the crane's rotation movement 
was defined with an open-loop system [34]. Nevertheless, the 
torque control of the jib rotation allows efficient control of 
the vibrations of the crane structure, but does not allow 
precise positioning. The positioning is delegated only to the 
skill of the operator. We must consider that a tower crane 
behaves like a spring during the pivoting movement. The 
energy emitted by the engine results in a torsion of the tower 
and the boom. The energy stored in the mechanical system 
can generate vibrations of the crane. These vibrations add to 
the pendulum oscillations due to the payload movement must 
be taken into account to avoid dangerous excitations of 
resonance frequencies.  

To date, a limited number of papers have considered the 
fundamental contribution of tower crane vibrations to the 
stability of the slewing movement.  
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Because of under-actuation, the dynamic model of the 
tower crane requires dynamic feedback linearization with the 
inclusion of some control inputs and the associated time 
derivatives in an extended state vector and in the form of 
additional state variables. The solution to the closed-loop 
feedback control problem for tower cranes through global 
linearization-based techniques requires complicated 
state-space model transformations. Ghazwani et al. [39] 
defined a Failure Analysis of Tower Crane using FEM. 
Nevertheless, they studied the tower crane’s stability during 
cyclones, without considering the slewing of the crane during 
the work phase. 

In the work of Ju et al. [40] a perturbation approximation 
and the assumption of small pendulum angles are applied to 
the non-linear system. The tower crane is modeled using the 
finite element method. The limit of this work is given by the 
high non-linearity of the crane system.  

In a recent paper [41], Liu et al. describe and simulate 
dynamic models to understand tower crane's dynamic 
characteristics and vibration features under compound 
working conditions. This paper introduces two mathematical 
models by D’Alembert’s principle and corresponding model 
verification.  

Cao et al. [42] developed a mathematical model of a tower 
crane with a long flexible boom. Both the vertical 
deformation and the horizontal deformation of the boom 
(thought of as an Euler–Bernoulli boom) are considered in 
the model. The Lagrangian method and the considered mode 
method are combined to formulate the rigid-flexible coupling 
model in order to describe the motion equations. In these 
works, a solution to the swaying of the payload is not given. 

Also, the author of this paper developed a work [43] on the 
vibration of a Tower crane during the slewing movement. 
Nevertheless, although an anti-sway solution was developed 
in that work, the limit was that its applicability might be 
limited for cranes with large jibs. This effectively also applies 
to the previously cited works. Instead, in their relevant paper, 
Rauscher et al. [44] developed a modal approach for the 
slewing control based on a distributed-mass model. The crane 
jib is considered an Euler-Bernoulli beam. The partial 
differential equations are discretized using finite differences 
and a modal order reduction is developed to describe the 
slewing dynamics as a low-order model to use for 
anti-swaying control of the payload. A possible limit of this 
work is given by the high number of discretization nodes. 
This number should be chosen high enough to precisely 
model the elastic jib dynamics, hence representing a 
high-order ODE. Therefore, they had to perform a complex 
modal order reduction. 

The solution to the closed-loop feedback control problem 
for tower cranes through global linearization-based 
techniques requires complicated state-space model 
transformations. However, there exist results on nonlinear 
optimal (H-infinity) control of tower cranes which are based 
on approximate linearization and which avoid 
transformations of this system's state-space description. This 
is the case considered, for example, in the work of Rigatos et 
al. [45]. 

On the contrary, in this paper we propose a different and 
practical approach to the analysis of the vibration during the 
Tower crane slewing. We, first, define an elastic analysis of 

the deformation of the Tower and the Jib, determining the 
approximated normal modes of vibration. However, unlike 
[44], in our Finite Element Analysis, we model the Jib with 3 
fundamental zones. These zones are modeled as 3 beams with 
distributed weight that can be bent, connected with 3 nodes 
where the concentrated weights are located. This method, 
relative only to the elastic analysis of the Jib deformation is 
described in a detailed way in the recent paper of the author 
[46]. In this way the system is greatly simplified and 
streamlined in its complex calculations; it has been verified 
that the error made when considering a large number of nodes 
is negligible and the method is much simpler to determine. 

The analysis of the System Stability, for the anti-Sway 
method relative to a Slewing Crane, was implemented and a 
stability proof was made by the author in a recent paper [47]. 
Open loop control methods would require an exactly known 
dynamic model of the controlled system, while they can be 
easily destabilized because of exogenous perturbations and 
model uncertainty. Because of under-actuation, the dynamic 
model of the tower crane requires dynamic feedback 
linearization with the inclusion of some control inputs, and 
the associated time derivatives are defined in the form of 
additional state variables. Obviously, the solution of the 
closed-loop feedback control problem, for tower cranes, 
through global linearization-based techniques requires 
complicated state-space model transformations. However, 
there exist results on nonlinear optimal (H-infinity) control of 
tower cranes which are based on approximate linearization 
and avoid transformations of this system's state-space 
description (see in example [45]).  

Furthermore, based on the work [32] of the author of this 
paper, the control of the payload sway is implemented in 
open-loop, using the information on the frequency of the 
payload swaying. In this way, it is possible to define a Tower 
crane control method that takes into account the vibrational 
analysis. In fact, two solutions are distinguished: with 
command smoothing, when the system is controlled by an 
operator, and with Input-shaping, controlled by an automatic 
command, using the frequencies corresponding to the first 
vibrational normal modes. 

The advantageous novelty of this method is given by the 
fact that the eigenfrequencies can be calculated in real-time, 
using a supervisor PC, which sends the data of the same 
eigen-frequencies to the PLC that controls the Jib crane. In 
fact, the method uses a low number of discretization nodes 
and the calculations can be implemented in real-time. 
Therefore, these data are according to the variable position on 
the Jib of the trolley and payload, so that the PLC determines 
the most correct anti-vibration speed profiles. 

We organized this work in the following way. In Section II 
the dynamical model of the Jib crane is represented. The 
tower crane is modeled as an elastic system, deriving from 
the finite element method. The bending and torsional 
elasticity of the Tower, and the bending elasticity of the Jib 
are taken into account, considering the jib as a continuous 
beam.  
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From Lagrange equations, the two dynamical equations 
relative to the two sway angles are obtained. In Section III, an 
implementation of the method is presented using data 
representative of a real case. We obtain a strong reduction of 
the vibration mode and of the payload swaying. The two 
possible control solutions are presented. At the end, in 
Section IV concluding remarks are defined.  

II. ELASTIC MODEL OF THE SLEWING CRANE 

The crane system can be described as a vertical column, 
the Tower, a flexible Jib, a trolley system, a hoisting line, and 
a payload.ϕ and l represent the slew angle and the length of 
the hoisting line respectively. Sway angles are generated by 
the system operates: they are the tangential sway tϕ , and the 

radial sway rϕ . In this study, the payload is considered as a 
point mass and the payload shows the behavior of a 
pendulum. A geometric description of the Tower Crane 
system is given in Fig.1. 

 
Fig. 1.    Geometric Description of the Tower Crane 

System 

A. Bending Elasticity of the Vertical Tower  
Towers with long jibs exhibit both torsional and bending 

elasticities. We can neglect the bending movement in the jib 
direction since it slightly regards the slewing control. 
Therefore, we consider the bending movement perpendicular 
to the jib direction. Let's assume that the tower stiffness is 
high enough so that only its first eigenfrequency is taken into 
account and approximated by a spring-mass system. We will 
define the stiffness kb and mass mT of the spring-mass system 
approximating the bending motion such that it exhibits the 
same deflection and the same first eigenfrequency as a 
homogeneous Euler-Bernoulli beam. It will have a constant 
second moment of inertia JT, an elastic modulus E, a length lT 
and a linear density μT for the mass per length.  

 
Fig. 2.   Bending of the Vertical Tower Perpendicular to 

the Jib Direction 

With reference to Fig.2, based on the theory of bending 
deformation of a thin beam, we obtain the elastic deflection 
y0 with load F concentrated on the end of the beam: 

                                     
3

0 =
3

T

T

Fl
y

EJ
                                   (1) 

We will apply the Euler-Bernoulli theory, by ignoring the 
effects of shear deformation and rotatory inertia; it is thus a 
special case of Timoshenko–Ehrenfest beam theory. The 
Euler–Bernoulli equation describes the relationship between 
the beam's deflection w and the applied load q: 

        
2

2T
d d wEJ q
dy dy

 
= 

 
                    (2) 

As a consequence, by the Euler-Bernoulli theory we 
obtain, applying the boundary conditions (fixed beam at y=0) 
for the first natural (eigen)frequency of vibration. These 
eigenfrequencies are obtained considering the free vibrations 
of a cantilevered beam and applying the boundary conditions. 
The first natural (eigen)frequency of vibration was: 

0 2

3.5160=
T

T

T

EJ
l
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                    (3) 

We obtain, using the spring-mass model, the stiffness kb 
and mass mT modeling the bending motion: 

  3 2 2
0 1

3 3= ; =
(3.5160)

bT T T
b T

T

kEJ lFk m
y l

µ
ω

= =           (4) 

B.   Torsional Elasticity of the Vertical Tower  
The torsional movement of the vertical Tower can be 

obtained using the model of a rotating slim body with JT as a 
moment of Inertia, linked to the ground with a spring having 
stiffness kT. For shafts of uniform cross-section unrestrained 
against warping, the torsion is: 

                            = Tt

T

JT G
l

ϕ                                         (5) 

where T is the torsion, JTt is the Tower torsional moment, G 
is the shear modulus, and φ is the torsion angle. 
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Fig.3.  Equivalent Mass-spring for the Torsion of the 

Vertical Tower  
From the equation for the first natural self-frequency of the 

vibrational rotating system (with boundary condition given 
by a fixed slim beam at y=0), we can deduce the expressions 
of the equivalent JT and kT. We obtain: 

               = ; = (0.405)Tt
T T T T T

T

GJk J l
l

ρ Γ           (6) 

where Tt is the torsion, JTt is the torsional moment of the 
Tower, G is the shear modulus, ΓT is polar momentum, ρT is 
the mass density and φ is the torsion angle. Hence, for a slim 
beam, we obtain the approximated expression for the 
equivalent length lTt (see [44]). 

C.   Jib Elasticity: Bending Vibrations of the thin Beam 
using the Finite Element Method 

As regards the analysis of the elastic deformations of the 
Jib (referring to the books [48] and [49] we will make the 
hypothesis of approximating the Jib to a thin beam, with a 
load concentrated in well-defined nodes. We will apply the 
Euler-Bernoulli theory, not considering the effects of shear 
deformation and rotary inertia.  

Reference is made to Fig.4 which represents the jib as a 
single continuous beam that is clamped onto an elastic tower. 
The flexing effect is strongly emphasized to highlight the 
elasticity of the jib. 

The method used is essentially a discretization technique 
to derive approximate solutions of the system's equation of 
motion when the displacement v(x,t) is obtained as a linear 
combination of prescribed functions multiplied by the 
unknown functions. The degree of correctness of the method 
lies in the goodness of the prescribed shape functions and 
their number. In a paper recently published [46], we 
described in depth this method, applied to the case in question 
of the bending of the Slewing Crane. The methodology 
followed through the finite element method is defined and 
summarized in the following points.  
1. The structure of the Jib is divided into a number of 
elements of finite size. The elements are joined to each other 
by knots. In our system, each node corresponds to a relevant 
point of the thin flexible beam with which the Jib is 
schematized: either it is the fixing point to the ground (knot 0, 
via the vertical Tower) or that of the final end of the Jib (knot 
2 ), or those where the concentrated masses are defined (knots 
1 and 3). Therefore, with reference to Fig.4, we set: 
 
 
 

1 2 3; ;Tr cj Tr cjL x L L l x L l≡ ≡ − − ≡                       (7) 

( )
( )

( )

1

2

3

Tr L Tr

cj Tr

cj cj

M m m x

M L l x

M m l

µ

µ

µ

≡ + + ⋅
≡ ⋅ − − 


≡ + ⋅ 

                        (8) 

where M1, M2, M3 are the mass corresponding to the 
positions 1, 2, 3 including the distributed masses respectively 
on the elements 0-3, 0-1, 1-2, being μ the mass per length unit 
on the Jib. cjl is the length of the counter-jib, Trx is the trolley 

position on the x-axes on the Jib, L is the total length of the 
Jib. 
2. A given number of d.o.f. is associated with each node. To 
study the bending vibrations of the beam, each node i was 
associated with a displacement vi along the y-axis and a 
rotation ϕi  around the z-axis. 
3. A set of functions (shape functions) are constructed for 
each beam element between 2 nodes, such that each has a unit 
value in one degree of freedom and zero in all others. A 
third-order polynomial is used which describes the flexural 
deformation of the finite element written as a function of the 
x coordinate perpendicular to the direction of the bent beam. 
From here on out, we will use a single underscore to define 
one-dimensional vectors and a double lowercase underscore 
for two-dimensional matrices. Since x is the coordinate that 
describes the direction perpendicular to the beam in the 
horizontal plane, the aforementioned polynomial is given, for 
each single node i, by an expression in which the temporal (t) 
and spatial (x) dependencies are separated: 
 

( , ) ( ) ( )v x t p x tα= ⋅                        (9)          
2 3( ) 1p x x x x =                           (10)          

[ ]0 1 2 3( )T tα α α α α=                           (11)      

being ( )tα  the vector of the time coefficients. It turns out 
like this: 

( ) 2( , ) , 0 1 2 3 ( )z
dx t v x t x x t
dx

ϕ α ≡ = ⋅     (12)  

For the single beam element between nodes i and j we will 
then obtain:        

1( , ) ( ) ( ) ( ) ( ) ( )

( ) ( )
ij ij ij ij ij ij

ij ij

v x t p x t p x A x v t

N x v t

α −= ⋅ ⇒ ⋅ ⋅

≡ ⋅
    (13) 

so we arrive at defining and can calculate the matrices of the 
shape functions ( )ijN x relating to the individual ij elements 

with the A  is the Coefficient matrix. as:         
1( ) ( ) ( )ij ij ijN x p x A x−≡ ⋅                    (14)    

4. Once the shape functions ( )ijN x of an element ij are 

known, these are replaced in the expression of the kinetic 
energy and the potential energy to obtain the mass and 
stiffness matrices of each finite element.  
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In the following we will study only the bending vibrations 
of the beam (Fig. 4); therefore the expressions to use for the 
kinetic energy T and the elastic potential energy U, relative to 
the single beam element ij, will be (referring to the books [48] 
and [49]):    

2

2

2

1 ( , ) ;
2

1 ( , )
2

j

ij i

j

ij zi

v x tT dx
t

v x tU EI dx
t

µ ∂ =  ∂ 
 ∂

=  ∂ 

∫

∫
        (15)      

where μ is the mass per unit length. But, since T and U can 
also be expressed by:                               

 
{ } { }

{ } { }

1 ( ) ( ) ;
2
1 ( ) ( )
2

T

ij ij ij ij

T

ij ij ij ij

T v t M v t

U v t K v t

 =  

 =  

 
           (16)    

Therefore, by comparing eq. (15) with eq.(16) we obtain 
the expressions of the element ij of the mass matrix M and of 
the stiffness matrix K, which can thus be calculated for all 
individual beam elements:                

{ } { }
2 2

2 2

( ) ( ) ;

( ) ( )

j T

ij ij iji
T

j ij ij
ij z i

M N t N t dx

d N t d N t
K EI dx

dx dx

µ=

      =    
      

∫

∫
    (17) 

5. The kinetic and potential energies of each element are 
added to obtain the energies of the complete system and then 
the so-called "assembly" of the mass M  and stiffness 

matrices K  is carried out. Let ( , )v x t be the vector 

containing all the d.o.f. of the 3-element beam considered:  

{ } [ ]0 0 1 1 2 2( ) Tv t v v vφ φ φ=               (18) 
It can be related to the vectors containing the d.o.f. of each 
single finite element using the transformation matrix Γ : 

ij ijv v= Γ                   (19) 
The total kinetic energy is given by the sum of the individual 
kinetic energies of the element, according to the relation: 

{ } ( ){ }

{ } { }

2 2

0 0

1
2

1
2

j TT
ij ij ij iji

ij ij

T

T T v M v

v M v

= =

     = = Γ Γ     

 ≡  

∑ ∑∫  

 

(20) 

{ } ( ){ }

{ } { }

2 2

0 0

1
2

1
2

j TT
ij ij ij iji

ij ij

T

U U v K v

v K v

= =

     = = Γ Γ     

 ≡  

∑ ∑∫
(21)   

From these relations, it is thus possible to calculate the 
expressions of the total mass M  and stiffness K matrices. In 

order to assemble both structural and payload dynamics as 
one system, the masses of the counter-jib ballast mcj, the 
tower approximation body mT, and the trolley mTr are added 
to the distributed mass matrix.       

III. PAYLOAD DYNAMICS AND ANTI-SWAY 
CONTROL    

Regarding the dynamics of the payload we will refer to the 
works of the author of this paper [32] and [43]. The slewing 
crane is defined, as regards the motion, by: 
1) a rotating Jib; 
2) a translating trolley on the jib;  
3) a load-cable having length L; 
4) a payload of mass mL attached to the trolley with mass mTr.  
Since the specific variable dimension of possible payloads is 
usually unknown, the payload is considered as a mass point. 
Besides, we consider the mass of the rope small as regards the 
payload, and therefore it is neglected. The dynamics of the 
generalized slewing crane is represented by a system with 
five independent degrees of freedom, described by five 
Lagrangian coordinates qi : 

1q r=   :  the radial position of the mass center of the trolley 
on the axis x. 

2q ϕ=   :  slewing angle (rotation around the z axis). 

lq =3   :  hoisting position of the crane (along the z axis). 

xq ϕ=4  :  sway angle tangential to the radial direction. 

yq ϕ=5  :  sway angle normal to the radial direction. 
By the Lagrange function: 
L T U= −                  (22)   
where T is the Kinetic Energy of the crane system, U is the 
Potential Energy, and applying the generalized Lagrange 
equations: 

 i
ii

Q
q
L

q
L

dt
d

=
∂
∂

−







∂
∂


                    (23)   

we obtain the system of equations in the generalized 
coordinates qi . 
In the Lagrange equations, the generalized non-conservative 
Forces Qi are introduced relative to the dissipative forces. 
These forces represent: 
1) the components, on the axes x and y, of air resistance 
forces acting on both the payload and the hoisting system,  
2) the components of the wind force and the components of 
the forces responsible for the rotation movement damping.  

The Kinetic energy of the slewing crane is given the sum 
of the corresponding terms for the rigid slewing tower TT, for 
the jib TB, for the trolley TR, and the payload TL. Therefore, 
the Kinetic energy T of the crane system is obtained as:    
 T B R LT T T T T= + + +             (24) 
 We focus our interest relative to the Lagrangian 
coordinates φ

x
and φ

y
since ϕ , r and l are obtained by the 

generated profiles that the Plc. From Lagrange equations 
(23), we obtain the system of the following two equations:  

( )
( )

( )

2

2

 

2

y x x

x y y x

x x

L

r l l r l

l l l g

l F
l m

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ

 − + − + 
 

+ − − +  

− =

   

    



        (26) 
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 Fig. 4 Finite Elements Distribution on the Jib 
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L
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l F
l m

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ

 + + − 
 

+ + + + +  

− =

  

     


(25)                                                                                               

where: mL is the Load mass; g is the gravity acceleration. 

xF  and yF  are the generalized, non-conservative, 

dissipative and active forces working on the system. 
Particularly, they represent the components, on the axes x and 
y, of air resistance forces acting on the payload and on the 
hoisting system, the components of the wind force, the 
components of the forces due to the damping of the rotation 
movement and due to the structure’s elasticity of the hoisting 
system. 

We used an iterative method, where the calculated values 
of the sway angles and of the sway angle velocities are used 
to compute the correction at the trolley and slewing velocity. 
These corrections are added to the set-point velocities, 
obtaining the speed profiles for the drives. 

Focusing, for example, on eq. (25), 
y

ϕ and 
y

ϕ are 

obtained with an iterative procedure, at any time t, in the 
following way: 

( )
( )
( )

, ,

2

, ,

,

, ,

,

sin cos

sin cos
1

sin

y t t t y t

t t y t y t

y t
t t f y t t y t

w y t t l

g r

l

l l k kl

k r m

ϕ ϕ ϕ

ϕ ϕ ϕ
ϕ

ϕ ϕ

ϕ

 − −
 

+ ⋅  =  
+ − ⋅ + 

 
 + ⋅   



  



(27)                                                                                                                                                 

                                                                                                          
ttytyty ∆⋅+= −− 1,1,, ϕϕϕ                                          (28)                                                                    

ttytyty ∆⋅+= −− 1,1,, ϕϕϕ                                         (29)    
                                                                   
In these equations, we have: 
1) 

,y t
ϕ and 

, 1y t
ϕ −  are the sway angle along the y direction 

respectively at the time t and at the previous time t-1,  
2) 

,y t
ϕ and 

, 1y t
ϕ −
  are the velocity of the sway angle along 

the y direction respectively at the time t and at the previous 
time t-1,  
3) 

,y t
ϕ  and 

, 1y t
ϕ −
 are the acceleration of the sway angle 

along the x direction respectively at the time t and at the 
previous time t-1.  
The same considerations can be applied to the direction x. 
To the initial instant, the values of the sway angle 

y
ϕ the 

velocity of the sway angle 
y

ϕ and the acceleration of the 

sway angle 
y

ϕ are equal to zero, because the pendulum is in 

quiet conditions. Therefore, for t=0, we have: 

00,0,0, === yyy ϕϕϕ                 (30)   

We obtain (see [32]) the correction ϕ∆   of the angular 
velocity of the movement along the axis y according to the 
following equation:  

0, 1,y y
K Kφ φϕ ϕ ϕ∆ = ⋅ + ⋅                                (31)  

1) 
0,

K φ , 
1,

K φ are the observer gains applied at 
y

ϕ , 
y

ϕ . 

2) ϕ∆   is the correction added to the velocity set-point 
set

ϕ  
along the axis y. 
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Therefore, the reference of velocity 
ref

ϕ as an input to 
the inverter driving the motor relative to the axis y is the 
angular velocity set is the velocity set, given by:  

ϕϕϕ  ∆+= setref                    (32)  
The same considerations can be applied along the axis x 

(trolley rotation movement). The length l has to be 
considered in order to compute the total Period time T and the 
corresponding angular frequency 𝜔𝜔 of the pendulum 
describing the sway of the load attached to the crane. They 
will be equal, to a first approximation, neglecting the cable 
elasticity, to: 

2π=Load
lT
g

  ; ω =Load
g
l

          (33) 

The latter typically represents the fundamental frequency 
in the vibrational system constituted by the Slewing Tower 
Crane, since it corresponds to the longest period T among the 
normal modes of vibration. 

IV. VIBRATIONAL MODES OF THE OVERALL 
SYSTEM 

Ultimately we obtain four eigenmodes with the slowest 
eigenfrequencies of the overall system. Typically, using the 
most usual experimental data, we will obtain that the first 
mode is characterized by the payload oscillation, while the 
second one by the effect of the torsional motion of the tower 
on the deformation of the Jib. The third eigenmode is relative 
to a deflection due to the tower bending while the fourth, like 
all the further modes, is characterized by the perpendicular 
deformation of the jib along the x-axis.  

The definition of a state-space model for the flexible crane 
would not be free of modeling error since one would have to 
consider only a small number of vibrations in this model and 
would have to truncate higher-order vibration modes. This is 
the prize paid for turning the infinite-dimensional model of 
the flexible crane into a finite-dimensional one. As a 
consequence of that, we will consider only the modes with 
frequencies lower than the cutoff frequency of the drive used 
for the definition of the slewing trajectory setting. 

In order to obtain the Tower slewing control mode able to 
not generate vibrations, we must calculate the overall natural 
wavelength of the crane structure in the slewing direction. To 
this end, we will make a fundamental approximation: given 
that each described vibrational mode (modes that contribute 
to the generation of vibration in the slewing direction) can be 
represented by a wave of defined frequency, we will 
hypothesize that these modes have periods whose ratio 
between them is a rational number. This can be thought true 
at first approximation. As a consequence, the period of the 
overall natural wave is the sum of the component periods. 
From this, it is possible to obtain the overall natural 
frequency of the system. So we will have for the overall 
period totT : 

= + + + ∑tot Load bendT torsT bendJT T T T T                  (34) 

where totT is the period of the overall natural wave. LoadT  
is the period of the payload sway. bendTT is the period of the 

Tower bending wave, torsTT is the period of the Tower 

torsion wave.∑ bendJT is the sum of the period of the Jib 

bending waves considering all modes with frequencies lower 
than the cutoff frequency of the used slewing drive. 

There are a variety of signals that satisfy the requirement 
for cancellation of oscillations at a given frequency of a 
system, the simplest signal being represented by two equal 
pulses with an offset in time. This signal must provide the 
shortest acceleration and deceleration ramps, which is one of 
the most important criteria for the operator. The desired 
velocity reference profile is generated by convolution of the 
arbitrary velocity command originating from the operator 
with the frequency-cancellation signal canceling vibrations at 
the overall natural frequency of the crane structure. The result 
of this convolution operation is the velocity reference signal, 
which does not excite vibrations at the overall natural 
frequency of the system, thus allowing smooth slewing 
movement of the Jib. We will consider two cases: Jib slewing 
control with Input-shaping, and Jib slewing with a load 
anti-sway profile. 

V. RESULT AND DISCUSSION 

We used Codesys V3.5 SP7, written in Structured 
Language (SL), in order to simulate the time evolution of the 
motion equations. An example of the used crane parameters 
to model the system is defined in Table.1. 

Table I: Exemplary Crane Parameters 
Symbol Parameter Value Unit 
VRef,Sl Slewing Speed reference 30.0 Hz 
VRef,Tr Trolley Speed reference 40.0 Hz 

VMaxRef,Sl Slewing Max Speed reference 50.0 Hz 
VMaxRef,Tr Trolley Max Speed reference 50.0 Hz 

ϕ  Angular Rotation Velocity 0.1 Rad/s 

AccSl Slewing Acc. Ramp Set  4.0 s 
DecSl Slewing Dec. Ramp Set 4.0 s 
AccTr Trolley Acc. Ramp Set 3.0 s 
DecTr Trolley Dec. Ramp Set 3.0 s 

μ Linear density  
(Mass per length unit) 100 kg/m 

E Elastic Modulus 210·109 Pa 
Iz Second Moment of Inertia 5·10-3 m4 

JT Tower Moment of Inertia 5·103 N/m2 

kT Stiffness of the Tower Torsion 
Elasticity 5·(17.5)6 Nm/rad 

kB Stiffness of the Tower Bending 
Elasticity 110·103 N/m 

Kv Stiffness matrix element along v def. 0.1 N/m 
l Cable length 1-50   m 
L Length of the Jib 60   m 
lT Length of the Tower 60   m 
lCJ Length of the counter-jib 12   m 

XTr 
Variable position of the Trolley on 

the Jib 30    m 

mCJ Counter-Jib mass 5·103 kg 
mL Load mass 2·103 kg 
mT Tower mass 7·103 kg 
mTr Trolley mass 6·102 kg 
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A. Jib Slewing Control with Input-Shaping  
Input shaping is one of the most common open-loop 

feedforward control techniques that can be applied in 
real-time. Input Shaping is easier to implement than 
time-optimal control systems. It does not require the 
feedback mechanisms of closed-loop. This technique was 
used by many researchers for effective feed-forward control 
of minimizing the motions that are induced by the vibrations 
or the oscillations of flexible structures such as cranes. By 
using this technique, the system’s vibration is obtained by the 
convolution of the command input signal with a sequence of 
impulses, based on the natural frequencies of the system. 
Namely, we can say: if two numbers of T/2 delayed 
accelerating pulses of constant magnitude 'k' are applied to a 
linear pendulum the sway will be zero at the end. We will 
apply this technique in the case of Jib slewing in order to 
cancel the vibrations. 

Therefore, once we obtained the first eigenmodes with the 
slowest eigenfrequencies for the overall system, we are able 
to deduce, as described in Subsection IV, the values of the 
periods Ti relating to the different main modes of vibration. 
From these individual values of Ti, using eq. (34) it is 
possible to calculate the period TTot. Once this parameter has 
been obtained, based on the ramps established for the 
Acceleration and Deceleration of the Slewing Jib, the 
movement profile necessary to cancel the vibrations of the 
slewing movement is established. As a consequence, we can 
calculate the Input-shaping control using the period TTot. 

In Fig.5, we can observe the Velocity reference profile of 
the Slewing ϕ obtained using the Input-shaping control. The 
Slewing speed reference is 30 Hz and the ramp set is equal to 
9.0 s. At the end of period T the effect of canceling the main 
vibrations of the system is obtained. In Fig.6, the same 
Velocity reference profile of the Slewing ϕ with the same 30 
Hz of the previous profile, but the ramp set is faster, equal to 
6.0 s. In this way, the internal period time where the velocity 
is constant results, as a consequence, superior to the previous 
case: that is in order to have the same total period. 

The fundamental disadvantage of the Input shaping control 
of the sway (and consequent crane vibration) is that the speed 
profile must be terminated (i.e. the Period TTot must be 
completed) for the anti-vibration effect to be correctly 
implemented. Therefore, the operator cannot define a 
succession of manual commands before the period is over. 
This makes this kind of control essentially effective in the 
case of automatic positioning.        
 

 
Fig. 5. Velocity reference profile of the Slewing ϕ using the 
Input-shaping control for the Anti vibration system. That is in 

correspondence to a command relative to a Slewing 
movement. The specific values are: Slewing speed reference 
= 30 Hz, ramp set = 9.0 s, cable length = 30 m. 
 

 
Fig. 6. Velocity reference profile of the Slewing ϕ using the 
Input-shaping control for the Anti vibration system. That is in 
correspondence to a command relative to a Slewing 
movement. The specific values are: Slewing speed reference 
= 30 Hz, ramp set = 6.0 s, cable length = 30 m. 

B. Jib Slewing with a Load Anti-Sway Profile 
In Fig.7, we see the Slewing speed reference and the 

corresponding normal sway angle. They correspond to a 
Slewing speed reference is 30 Hz and a ramp set equal to 7.0 
s. It is visible how, when the velocity profile reaches its target 
asymptotically, the sway becomes zero. In Fig.8, we describe 
some subsequent commands (3 commands) by the operator, 
in order to reach different velocity targets for the slewing 
movement, before reaching the velocity profile target. It is 
possible to see that the corresponding normal sway angle, 
when the target speed is stabilized, goes to zero. 

Therefore, we see that, with this method, we obtain the 
damping of the sway, also varying many times the velocity 
set. That is obtained also if the previous command, and 
corresponding oscillation, are again in progress. This effect 
allows the operator to change often the target velocity with 
his command (impulse command). The disadvantage of this 
method is that, being asymptotic, a typically longer anti-sway 
ramp is generated than that obtained with the "input-shaping" 
method. 

 
Fig. 7. Velocity reference profile of the Slewing ϕ  and 

corresponding perpendicular sway angle 
y

ϕ using the Load 
Anti-sway profile. That is in correspondence to a command 
relative to a Slewing movement. The specific values are: 
Slewing speed reference = 30 Hz, ramp set = 7.0 s, cable 
length = 30 m. 
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Fig. 8. Velocity reference profile of the Slewing ϕ  and 

corresponding perpendicular sway angle 
y

ϕ using the Load 
Anti-sway profile. That is in correspondence to a succession 
of commands relative to different Slewing speed references. 
The specific values are: initial Slewing speed reference = 30 
Hz, ramp set = 7.0 s, cable length = 30 m. 

VI. CONCLUSION 

This work describes a method for controlling a Tower 
crane taking into account the structure elasticity. An Elastic 
Model of the Slewing Crane is described, considering the 
Bending Elasticity and the Torsional Elasticity of the vertical 
Tower, and the Bending vibrations of the thin beam, 
calculated using a finite element method. 

The normal modes of the vibration are obtained 
considering the jib as a continuous beam; we used a 
simplified method in order to compute the normal modes and 
the corresponding period. It is shown how the structure 
undergoes deformations and how the deformations can be 
reduced with the use of an anti-sway method. We developed 
two kinds of solution: an input-shaping control in open-loop, 
to be used with automatic positioning, and a “command 
smoothing” method in open-loop to use in manual control. 
This allows for the stabilization and correct positioning of the 
payload for cranes with large jibs. The novelty of this method 
is that the eigenfrequencies can be calculated in real time 
during the operational work, using a supervisor PC, which 
sends the data of the same eigenfrequencies to the PLC that 
controls the Jib crane. In fact, the method uses a low number 
of discretization nodes and the calculations can be 
implemented in real-time. In the future, a feedback 
closed-loop control will be implemented for considering 
exogenous perturbations in the present vibrational model. 
The present model must be applied in real cases in order to 
verify experimentally the obtained theoretical results. 
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