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Abstract

Nonlinear dynamical systems can be handily described by the associated Koopman
operator, whose action evolves every observable of the system forward in time.
Learning the Koopman operator and its spectral decomposition from data is enabled
by a number of algorithms. In this work we present for the first time non-asymptotic
learning bounds for the Koopman eigenvalues and eigenfunctions. We focus
on time-reversal-invariant stochastic dynamical systems, including the important
example of Langevin dynamics. We analyze two popular estimators: Extended
Dynamic Mode Decomposition (EDMD) and Reduced Rank Regression (RRR).
Our results critically hinge on novel minimax estimation bounds for the operator
norm error, that may be of independent interest. Our spectral learning bounds are
driven by the simultaneous control of the operator norm error and a novel metric
distortion functional of the estimated eigenfunctions. The bounds indicates that
both EDMD and RRR have similar variance, but EDMD suffers from a larger
bias which might be detrimental to its learning rate. Our results shed new light on
the emergence of spurious eigenvalues, an issue which is well known empirically.
Numerical experiments illustrate the implications of the bounds in practice.

1 Introduction

Recently, researchers have emphasized the utmost importance of developing physically-informed
machine learning models that prioritize interpretability and foster physical insight and intuition, see
for example [22] and references therein. One technique highlighted in these works is the Koopman
operator regression framework to learn and interpret nonlinear dynamical systems see, e.g. [8, 26] and
references therein. A key component of this approach is the Koopman Mode Decomposition (KMD),
which decomposes complex dynamical systems into simpler, coherent structures. When ordinary least
squares are used to learn Koopman operator from data, estimated KMD is known as the Dynamic
Mode Decomposition (DMD) [36]. Koopman operator estimators and their modal decomposition
find many applications, including fluid dynamics, molecular kinetics and robotics [7, 19].

The Koopman operator returns the expected value of observables of the system in the future given the
present, and one relies on estimators of this operator to in turn estimate its spectral decomposition
that leads to the estimation of KMD. Our goal is to study the statistical properties of the eigenvalues
and eigenfunctions of the Koopman operator estimators via two mainstream algorithms: Principal
Component Regression (PCR) and Reduced Rank Regression (RRR) studied in [21, 24]. PCR en-
compasses as particular cases the popular Extended Dynamic Mode Decomposition (EDMD), which
is the de-facto estimator in the data-driven dynamical system literature [see 26, 45, and references
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therein]. Both PCR and RRR are kernel-based algorithms that, given a dataset of observations of the
dynamical system, implement a strategy to approximate the action of the Koopman operator on a
reproducing kernel Hilbert space (RKHS) [3, 38].

We present for the first time non-asymptotic learning bounds on the distance between the Koopman
eigenvalues and eigenfunctions and those estimated by either PCR or RRR. We show that the
eigenvalues produced by such algorithms are biased estimators of the true Koopman eigenvalues, with
PCR incurring larger bias. Our results critically hinge on novel estimation bounds for the operator
norm error, that may be of independent interest, leading to minimax optimal bounds for finite-rank
Koopman operators. Moreover, we introduce the novel notion of metric distortion, which characterize
how the norm of eigenfunctions vary when moving from the RKHS in which learning takes place to
the underlying ambient space where the Koopman operator is properly defined. We show that both
the operator norm error and metric distortion are needed in order to estimate the operator spectra and
our bounds can be used to explain the well-known spuriousness phenomena in eigenvalue estimation
[14], namely, the scenario in which the estimated eigenvalues are not related to the true ones, despite
small operator norm error.

Contributions and Organization. We make the following contributions: i) We introduce the notion
of metric distortion and show that it has to be used alongside the operator norm error to derive
Koopman spectra estimation error bounds (Theorem 1); ii) We establish the first sharp estimation
bound for the operator norm error (Theorem 2); iii) We establish spectral learning rates (Thms. 3 and
4) for both PCR and RRR; iv) We propose how to use the results entailed by Theorem 4 to detect the
presence of spurious eigenvalues from data.

The paper is organized as follows. In Section 2 we recall the notion of Koopman operator, its spectral
decomposition, and review PCR and RRR estimators. Section 3 describes the estimation problem
and outline our main results. Section 4 presents our approach to bound eigenvalue and eigenvector
estimation errors. Section 5 gives sharp upper bounds for the operator norm error. Section 6 presents
our spectral learning bounds. Finally, Section 7 illustrates the implications of the bounds in practice,
and is designed to provide practitioners with the tools to benchmark the performance of algorithms in
real scenarios.

2 Background

Dynamical Systems and Koopman Operator. In this work we study Markovian dynamical systems,
that is collections of random variables {Xt : t ∈ N}, where Xt represents the state at time t, taking
values in some space X . We focus on time-homogeneous (i.e. autonomous) systems hosting an
invariant measure π for which the Koopman operator [24, 27]

(Aπf)(x) := E[f(Xt+1)|Xt = x], x ∈ X (1)

is a well defined bounded linear operator on L2
π(X ), the space of square integrable functions on X

relative to measure π. In the field of stochastic processes, (1) is also known as the transfer operator
and returns the expected value of f in the future given the present. This operator is is self-adjoint
(i.e. Aπ =A∗

π) whenever dynamics is time-reversal invariant w.r.t. π, which is satisfied by many
stochastic processes in the physical sciences.
Example 1 (Langevin Dynamics). Let X = Rd and let β > 0. The (overdamped) Langevin equation
driven by a potential U : Rd → R is given by dXt = −∇U(Xt)dt +

√
2β−1dWt, where Wt is

a Wiener process. The invariant measure of this process is the Boltzman distribution π(dx) ∝
e−βU(x)dx, and the associated Koopman operator is self-adjoint.

The Langevin equation models a wealth of phenomena, such as the evolution of chemical and
biological systems at thermal equilibrium [16], the mechanism regulating cell size in bacteria [1],
chemical reactions [25], the dynamics of synapses [11, 42], stock market fluctuations [6] and many
more. Furthermore, when U(x) = θ∥x∥2/2 (θ > 0), the Langevin equation reduces to the celebrated
Ornstein–Uhlenbeck process [34, Chapter 6].

The operator (1) evolves every observable of the system forward in time. Since it is bounded and
linear, it admits a spectral decomposition, which plays a central role in the analysis and interpretation
of the dynamical system [26], as well as (nonlinear) control [2]. As in [46], to study the spectral
decomposition we further assume that Aπ is a compact operator, which rules out the presence of
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continuous and residual spectrum components and leads to
Aπ =

∑
i∈N µi fi ⊗ fi, (2)

where (µi, fi)i∈N ⊆ R × L2
π(X ) are Koopman eigenpairs, i.e. Aπfi = µi fi. Moreover,

limi→∞ µi = 0 and {fi}i∈N form a complete orthonormal system of L2
π(X ). In the context of

molecular dynamics, the leading eigenvalues and their eigenfunctions are key in the study of long-
term dynamics and so-called meta-stable states [see, e.g., 40].

Koopman Operator Regression in RKHS. Throughout the paper we let H be an RKHS and let
k : X ×X → R be the associated kernel function. We let ϕ : X → H be a feature map [38] such that
k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ for all x, x′ ∈ X . We consider RKHSs satisfying H ⊂ L2

π(X ) [38, Chapter
4.3], so that PCR and RRR approximate Aπ : L2

π(X ) → L2
π(X ) with an operator G : H → H.

Notice that despite H ⊂ L2
π(X ), the two spaces have different metric structures, that is for all

f, g ∈ H ⊂ L2
π(X ), one in general has ⟨f, g⟩H ̸= ⟨f, g⟩L2

π(X ). In order to handle this ambiguity,
we introduce the injection operator S : H → L2

π(X ) such that for all f ∈ H, the object Sf is the
element of L2

π(X ) which is pointwise equal to f ∈ H, but endowed with the appropriate L2
π(X ) norm.

With this in mind, the Koopman operator restricted to H is simply AπS, which is then estimated
by SG for some G ∈ HS (H). We will measure the operator norm error, ∥AπS − SG∥. This is in
contrast to the more frequently used Hilbert-Schmidt (HS) norm.

Koopman operator regression estimators are supervised learning algorithms to learn the Koopman
operator, in which input and output data are consecutive states of the system (Xt, Xt+1) for some t ∈
N. Since the Markov process is time-homogeneous and stationary, the joint probability distribution of
(Xt, Xt+1) is the same for every t ∈ N and we denote it by ρ. Furthermore, stationarity also implies
that Xt ∼ π for all t ∈ N. Given a dataset1 Dn := (xi, yi)

n
i=1 of consecutive states, PCR and RRR

are two different strategies to minimize, under a fixed-rank constraint, the mean square error

R̂(G) := 1
n

∑
i∈[n]∥ϕ(yi)−G∗ϕ(xi)∥2, (3)

where G ∈ HS (H), the space of Hilbert-Schmidt operator acting on H. PCR and RRR estimators
are expressed as functions of the input and cross empirical covariances, defined respectively as

Ĉ = 1
n

∑
i∈[n] ϕ(xi)⊗ϕ(xi), and T̂ = 1

n

∑
i∈[n] ϕ(xi)⊗ϕ(yi).

Likewise, the population risk is R(G) = E(X,Y )∼ρ∥ϕ(Y ) − G∗ϕ(X)∥2, and the population co-
variance and cross convariance are C =EX∼πϕ(X)⊗ϕ(X), and T =E(X,Y )∼ρϕ(X)⊗ϕ(Y ), respec-
tively. We note that by the reproducing kernel property one finds that C = S∗S; see e.g. [38].

Two Important Estimators. We next briefly recall two operator regression estimators that we study
in this paper. The Principal Component Regression (PCR) estimator works by first projecting the
input data into the r-dimensional principal subspace of the covariance matrix Ĉ, and then ordinary
least squares are solved for such projected data, yielding the estimator [see e.g. 24]

ĜPCR
r,γ = [[Ĉ−1

γ ]]rT̂ . (4)

Here Ĉγ := Ĉ + γIH and [[·]]r denotes the r-truncated SVD. The population counterpart is GPCR
r,γ =

[[C−1
γ ]]rT , where Cγ := C + γIH. Note, however, that the empirical PCR estimator does not

minimize the empirical risk (3) under the low-rank constraint.

The Reduced Rank Regression (RRR) algorithm, in contrast, is the exact minimizer of (3) under fixed
rank constraint. Specifically, RRR is defined as ĜRRR

r,γ := arg min{R̂(G) + γ∥G∥2HS : G ∈ Br(H)},
where the regularization term γ∥G∥2HS is added to ensure stability, and Br(H) denotes the set of
bounded operators on H that have rank at most r. The closed form solution of the empirical RRR
estimator is [24]

ĜRRR
r,γ = Ĉ−1/2

γ [[Ĉ−1/2
γ T̂ ]]r, (5)

while the population counterpart is given by GRRR
r,γ = C

−1/2
γ [[C

−1/2
γ T ]]r.

Once either the PCR or RRR estimators are fitted, their spectral decomposition is a proxy for
the spectral decomposition of the Koopman operator Aπ. Theorem 2 in [24] shows how such a
decomposition can be calculated via the kernel trick for both ĜPCR

r,γ and ĜRRR
r,γ .

1For simplicity we consider the i.i.d. setting, however our forthcoming analysis is directly applicable to
sample trajectories following [24].
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Bad kernel
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Ugly kernel

Reduced Rank (RRR) Principal Components (PCR) a.k.a. EDMD

Figure 1: PCR vs. RRR in estimating the largest eigenvalues of the 1D Ornstein–Uhlenbeck
process with three different kernels over 50 independent trials. Vertical lines correspond to Koopman
eigenvalues. The good kernel is such that its H corresponds to the leading eigenspace of the Koopman
operator, while the other two are spans of scaled and permuted eigenfunctions for which the distortion
with respect to the original metric structure of Aπ introduce slow (bad kernel) and fast (ugly kernel)
spectral decay of the covariance.

3 The Problem and Main Result in a Nutshell

In this section we introduce the spectral estimation problem, outline our main results in a distilled
form, and discuss some important implications. Recall the definition of Koopman operator (1) and
its spectral decomposition (2). Given a rank r estimator Ĝ∈Br(H) of Aπ , we let (λ̂i, ψ̂i)

r
i=1 be its

spectral decomposition, satisfying Ĝψ̂i = λ̂i ψ̂i. We aim to study how well a nonzero eigenvalue λ̂i
of Ĝ estimates its closest Koopman eigenvalue µj(i), where

j(i) = argminj∈N|λ̂i − µj |. (6)

Moreover we wish to compare ψ̂i with the corresponding true Koopman eigenfunction. To this end,
we embed ψ̂i in L2

π(X ) by means of the operator S and define the normalized estimated eigenfunction

f̂i = Sψ̂i / ∥Sψ̂i∥. (7)

One of the key quantities studied in this work is the eigenvalue estimation error |λ̂i − µj(i)|, i ∈ [r].
Recalling that Aπ is compact and self-adjoint, the classical Davis-Kahan result [17] implies that the
eigenvalue estimation error |λ̂i −µj(i)| also bounds the quality of the eigenfunction approximation as

∥f̂i − fj(i)∥2 ≤
2|λ̂i − µj(i)|

[gapj(i)(Aπ)− |λ̂i − µj(i)|]+
(8)

where gapj(Aπ)=minℓ ̸=j |µℓ−µj | is the distance between µj and its closest Koopman eigenvalue.

Let σj(·) denotes the j-th singular value of an operator. To give a flavour of our results, here we
report spectral bounds for the Gaussian kernel. In this case, Theorem 3 below gives a high probability
bound on the estimation error |λ̂i − µj(i)|, that is of order

O
(
σr+1(AπS)

σr(AπS)
+

1√
n

)
for ĜRRR

r,γ , and O
(

σr+1(S)

[σr(AπS)− σr+1(S)]+
+

1√
n

)
for ĜPCR

r,γ .

If the Koopman operator has finite rank then σr+1(AπS)= 0, the RRR estimator is unbiased, and its
error goes to zero at the rate 1/

√
n. Otherwise, recalling that σr+1(S) is the square root of the (r+1)-

th eigenvalue of the kernel operator [38, Chapter 4.5], if H is infinite dimensional σr+1(S) > 0, i.e.
PCR has a strictly positive bias. In general, the presence of a bias in the estimated eigenvalues may
result in the appearance of spurious eigenvalues. This phenomenon for PCR is well documented
in practice, see e.g. [13, 14, 26, 28]. In Figure 1 we illustrate such an effect on a simple dynamical
system discussed both in Example 3 and in Section 7.

4 Approach

The core of our analysis is Theorem 1. It reveals that in order to derive spectral estimation bounds for
the Koopman operator, it is not enough to study the excess risk in the HS norm. Indeed, our spectral
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bounds are determined by both the operator norm error of the Koopman estimator

E(Ĝ) := ∥AπS − SĜ∥, Ĝ ∈ HS (H) (9)

and the metric distortion between H and L2
π(X ),

η(h) := ∥h∥ / ∥Sh∥, h ∈ H. (10)

Note that since Sh ∈ L2
π(X ) is just an equivalence class of a function h, ∥Sh∥ is simply L2

π(X )-
norm of h, and hence the metric distortion can be written, with a slight abuse of notation, as
η(h) := ∥h∥H/∥h∥L2

π(X ). While the (HS norm) error was studied before [see 29, and references
therein], little is know about operator norm error bounds. Moreover, the metric distortion is, to the
best of our knowledge, a novel quantity in the spectral analysis of Koopman operator.
Theorem 1. Let Aπ be a self-adjoint compact operator and let r ∈ N. Then, for every empirical
estimator Ĝ ∈ Br(H) and every i ∈ [r]

|λ̂i − µj(i)| ≤ η(ψ̂i) E(Ĝ), and ∥f̂i − fj(i)∥2 ≤ 2η(ψ̂i) E(Ĝ)
[gapj(i)(Aπ)− η(ψ̂i) E(Ĝ)]+

. (11)

Proof Sketch. First, note that for compact self-adjoint operators |λ̂i − µj(i)| ≤ ∥(Aπ − λ̂i I)
−1∥−1.

So, following the reasoning of [24, Theorem 1] and observing that ∥(AπS − SĜ)ψ̂i∥/∥Sψ̂i∥ ≤
E(Ĝ)η(ψ̂i) gives the right hand side of the first equation in (11). Next, since additionally ∥(AπS −
SĜ)ψ̂i∥/∥Sψ̂i∥ ≤ E(Ĝ)η(ψ̂i), we can apply the Davis-Kahan spectral perturbation result for
compact self-adjoint operators (Proposition 2, Appendix C) to bound sin(θ̂), where θ̂i := ∢(f̂i, fj(i)).
The claim then follows since ∥f̂i − fj(i)∥2 ≤ 2(1− cos(θ̂i))≤ 2 sin(θ̂i). The full proof can be found
in Appendix C.

Note that the error (9), at least for universal kernels, can be made arbitrary small, see [24, Proposi-
tion 1]. Still, the metric distortion may dominate the error and, since the bound (11) is tight, one may
have that the operator is well estimated in norm, but the estimated eigenpairs are far from the true
ones. This phenomenon is at the origin of spurious eigenvalues. The proposed way to detect them
for deterministic systems in [14] is to check if eigenvalue equations are satisfied empirically, which,
however, is not useful for stochastic systems, see Rem. 4 of Appendix C.

Spuriousness may also originate from poor conditioning of the true eigenvalues, i.e. when the angle
between true left and right eigenfunctions is small. Here, however, we assume Aπ = A∗

π , so that we
restrict ourselves to the case in which the only source of spuriousness is due to the learning method.

While we defer the discussion of the operator norm error to the next section, the following result
bound the metric distortion; the proof can be found in Appendix C.

Proposition 1. Let Ĝ∈Br(H). For all i ∈ [r] the metric distortion of ψ̂i can be tightly bounded as

1 /
√
∥C∥ ≤ η(ψ̂i) ≤ min(|λ̂i| cond(λ̂i), ∥Ĝ∥) / σ+

min(SĜ), (12)

where cond(λ̂i) := ∥ξ̂i∥∥ψ̂i∥/|⟨ψ̂i, ξ̂i⟩| is the condition number of λ̂i, and ξ̂i is its left eigenfunction.

The upper bound (12) depends on the estimator’s eigenvalues and their conditioning. Notice that
while the true eigenvalues of Aπ have condition number one, the conditioning of the estimated ones
depends on the choice of the kernel. Moreover, the upper bound can be controlled by tuning the
estimator rank. Since the bound is tight (see Rem. 3 in Appendix C), the metric distortion can grow
with the rank of the estimator, further motivating the use of low-rank estimators of Aπ in practice,
see [26].

We end this section by introducing an empirical estimator of the metric distortion η(ψ̂i), given by

η̂i := ∥ψ̂i∥ /
√
⟨Ĉψ̂i, ψ̂i⟩. (13)

Proposition 4 of Appendix C shows that η̂i can be efficiently computed and report upper bounds for
concentration around its mean. The empirical metric distortion (13), used in conjunction with the
spectral bounds in Theorem 4 below, provides a proxy to assess the reliability of the PCR and RRR
estimators and can be successfully used as novel model selection criterion.We refer the reader to the
second and third experiment in Section 7 for concrete use-cases.
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5 Controlling the Operator Norm Error

The HS norm error of the PCR estimator was already studied, either in the "well-specified" setting, i.e.
when there exists GH ∈ HS (H) such that AπS = SGH, i.e. GH is π-a.e. Koopman operator [12,
Theorem B.10]. On the other hand, KRR estimator is studied also in the "misspecified setting" [29].
But, up to our knowledge, the operator norm error has not yet been studied. To analyse these learning
rates, we make the following assumptions:

(RC) Regularity of Aπ . For some α ∈ (0, 2] there exists a > 0 such that TT ∗ ⪯ a2C1+α;

(BK) Boundedness. There exists cH> 0 such that ess sup
x∼π

∥ϕ(x)∥2 ≤ cH, i.e. ϕ ∈ L∞
π (X ,H);

(SD) Spectral Decay. There exists β ∈ (0, 1] and b> 0 such that λj(C)≤ b j−1/β , for all j ∈ J .

While we keep assumptions (BK) and (SD) as in [18, 29], assumption (RC) is, up to our knowledge,
novel. The rationale behind it is that for α = 1 (RC) is equivalent to Im(AπS) ⊆ Im(S), in which
case there exists a bounded π-a.e. Koopman operator GH : H → H [24]. On the other hand, as
α→ 0 (RC) becomes closer to Im(AπS) ⊆ cl(Im(S)) which is always satisfied for universal kernels
since cl(Im(S)) = L2

π(X ) [38, Chapter 4]. Importantly, as the next example shows, (RC) is weaker
condition than the usual regularity conditions; see Appendix D.1 for a detailed discussion.
Example 2. LetX be an X -valued random variable with law π. Consider the Markov chain (Xt)t∈N
such that Xt = X for all t ∈ N. Then π is an invariant measure and Aπ = IL2

π(X ) is the identity
map on L2

π(X ). Clearly, (RC) holds for all α ∈ (0, 1]. On the other hand, since AπS = SGH for
bounded operator GH = IH ̸∈ HS (H), HS-norm learning rates derived in [29] do not apply.

In order to study the error of any empirical finite rank estimator Ĝ we rely on the error decomposition

E(Ĝ) ≤ ∥AπS − SGγ∥︸ ︷︷ ︸
regularization bias

+ ∥S(Gγ −G)∥︸ ︷︷ ︸
rank reduction bias

+ ∥S(G− Ĝ)∥︸ ︷︷ ︸
estimator’s variance

, (14)

where Gγ := C−1
γ T is the minimizer of the full (i.e. without rank constraint), Tikhonov regularized,

HS norm error, and G is the population version of the empirical estimator Ĝ.

While the last two terms in the r.h.s. of (14) depend of the estimator of choice, the first term depends
only on the choice of H and the regularity of Aπ w.r.t. H. In this work we focus on the classical
kernel-based learning of the Koopman operator [20, 24, 29], where one chooses a universal kernel [38,
Chapter 4] for which Im(AπS) ⊆ cl(Im(S)), and controls the regularization bias with a regularity
condition. For details see Rem. 7 of Appendix D.2.

The second source of bias and the estimator’s variance in our error decomposition depends on the
choice of the low rank estimator. While throughout this section we consider (RC) for α ∈ [1, 2], we
discuss extensions of our results to α < 1 in Appendix D.5.
Theorem 2. Assume the operator Aπ satisfies σr(AπS) > σr+1(AπS) ≥ 0 for some r ∈ N. Let
(SD) and (RC) hold for some β ∈ (0, 1] and α ∈ [1, 2], respectively, and let cl(Im(S)) = L2

π(X ).
Let

γ ≍ n−
1

α+β and ε⋆n := n−
α

2(α+β) . (15)
Let δ ∈ (0, 1). Then, there exists a constant c> 0, depending only on H, such that for large enough
n ≥ r, with probability at least 1− δ in the i.i.d. draw of Dn from ρ

E(Ĝ) ≤

σr+1(AπS)+c ε
⋆
n ln δ−1 if Ĝ = ĜRRR

r,γ , (16a)

σr+1(S) + c ε⋆n ln δ−1 if Ĝ = ĜPCR
r,γ and σr(S) > σr+1(S). (16b)

Proof Sketch. The regularization bias is bounded by a γ
α
2 by Proposition 5 of Appendix D.2. For the

RRR estimator, the rank reduction bias is upper bounded by σr+1(AπS), while for PCR by σr+1(S).
The bounds on the variance terms critically rely on the well-known perturbation result for spectral
projectors reported in Proposition 3, Appendix A. This result is then chained to two versions of the
Bernstein inequality in separable Hilbert spaces. The first one is Pinelis-Sakhanenko’s inequality
and the second is Minsker’s inequality extended to self-adjoint HS-operators, Props. 9 and 11 in
Appendix D.3.1, respectively. These inequalities provide high probability bounds for the norms
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of C−1/2
γ (Ĉ −C) and C−1/2

γ (Ĉ −C)C
−1/2
γ , as well as C−1/2

γ (T̂ −T ) and C−1/2
γ (T̂ −T )C

−1/2
γ .

Combining the bias due to regularization and variance terms, for both estimators we obtain the
balancing equation γ

α
2 = γ−

β
2 n−

1
2 ln δ−1, which yields the optimal choice of γ and the rates.

We stress that the number of samples in the previous theorem depends on the problem’s complexity,
expressed in the constants cRRR = 1

σ2
r(AπS)−σ2

r+1(AπS)
, and cPCR = 1

σr(S)−σr+1(S) . Namely, the
better the separation of singular values, the smaller number of needed samples. Furthermore,
analyzing the bounds (16a) and (16b), we see that faster spectral decay is, in general, preferable.
For example, for the Gaussian kernel β can be chosen arbitrarily small, yielding the rate n−1/2. On
the other hand, kernels with slow spectral decay for which β = 1 can give slower rates between
n−1/4 and n−1/3. Finally, from the variance bounds for RRR and PCR, c.f. Appendix D.3, one
can specify constants. Namely, in the slower regime when ε⋆n > n−1/2 we have that c = a +

7.2 log(10)
√
2cH(1 + ac

(α−1)/2
H )(

√
cH ∧ bβ/2

√
1−β

), while in fastest regime ε⋆n = n−1/2, there is a
significant difference between RRR and PCR since c should be multiplied with the constants cRRR

and cPCR, respectively.

As argued in Section 3, the bound (16a) indicates that for rank r Koopman operators the error
converges to zero w.r.t. the number of training samples, while the bias of PCR is strictly positive.
Hence, in order to ensure small error for PCR, high values of the rank parameter might be necessary.
To theoretically explain this effect, in Theorem 6 of Appendix D.4 we give also lower bounds of
operator norm error for the RRR and PCR estimators showing that E(ĜRRR

r,γ ) always concentrates
around σr+1(AπS), while the concentration of E(ĜPCR

r,γ ) around σr+1(S) depends on the irreducible
risk of the learning problem. To illustrate the tightness of the error concentration bounds we present
Example 3 (see also Appendix D.4).
Example 3. Let X =R. Consider the 1D equidistant sampling of the Ornstein–Uhlenbeck process,
obtained by integrating the Langevin equation of Example 1 with β = 1 and U(x) = x2/2, given
by Xt = e−1Xt−1 +

√
1−e−2 ϵt,, where {ϵt}t≥1 are i.i.d. standard Gaussians. For this process it is

well-known [34] that π is N (0, 1) and thatAπ admits a spectral decomposition (µi, fi)i∈N in terms of
Hermite polynomials. We study the family of kernel functions kΠ,ν(x, x

′) :=
∑

i∈N µ
2ν
Π(i)fi(x)fi(x

′),
where Π is a permutation of the indices of the eigenvalues and ν is a scaling factor. The rationale
behind this class of kernels is that by varying Π and ν one morphs the original metric structure of
Aπ in a way which is harder and harder to revert when learning from finite sets of data. In particular,
for any target rank r, setting ν := 1/r2 and Π to the permutation such that i 7→ 2r− i+1 (i≤ r),
i 7→ i− r (r+1 ≤ i≤ 2r) and i 7→ i elsewhere, elementary algebra and our concentration bounds
give

|E(ĜPCR
r,γ )− e−1/r| ≲ n−1/2 ln δ−1, |E(ĜRRR

r,γ )− e−r| ≲ n−1/2 ln δ−1.

We refer the reader to Figure 1 and to Section 7 for a numerical implementation of this example.

We conclude this section with remarks on the tightness of our statistical analysis of operator norm
error. Since discussed results are not the main focus of the paper, we present them in Appendix D.5.

Remark 1 (Lower bound). The rate ε⋆n = n−
α

2(α+β) guaranteed by (16a) matches the minimax lower
bound for the operator norm error when learning finite rank Aπ. Formal statement and its proof is
given in Theorem 7 of Appendix D.5.

Remark 2 (Extension to misspecified setting). The optimal rates for HS-norm error of the KRR
estimator are developed in [29] under a stronger condition than (RC). In Theorem 9 of Appendix D.6
we extended this analysis to PCR and RRR estimators, deriving the optimal operator norm rates that
also cover cases when Koopman operator cannot be properly defined as bounded operator on the
chosen RKHS space H.

6 Spectral Learning Rates

Collecting all the previous results, we are now ready to present our spectral learning rates for the two
estimators in a general form. For brevity, we focus on two different type of bounds in which (i) we
analyse the uniform bound for the whole estimated spectra, and (ii) we express the estimators’ bias in
empirical form to provide an insight into spuriousness of eigenvalues. Moreover, we present only
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eigenvalue estimation bounds, noting that the eigenfunction estimation bounds readily follow from
(8). The complete results are presented in detail in Appendix E.
Theorem 3. Let Aπ be a compact self-adjoint operator. Under the assumptions of Theorem 2, there
exists a constant c > 0, depending only on H, such that for every δ ∈ (0, 1), for every large enough
n ≥ r and every i ∈ [r] with probability at least 1− δ in the i.i.d. draw of Dn from ρ

|λ̂i − µj(i)| ≤


2σr+1(AπS)
σr(AπS) + c ε⋆n ln δ

−1 if Ĝ = ĜRRR
r,γ ,

2σr+1(S)
[σr(AπS)−σα

r+1(S)]+
+ c ε⋆n ln δ

−1 if Ĝ = ĜPCR
r,γ .

(17)

The uniform eigenvalue learning rates for RRR and PCR estimators, differ in the estimator’s bias.
While the PCR bias has a factor σr+1(S) in the numerator, RRR has σr+1(AπS) ≤ σr+1(S). The
striking difference happens when the Koopman operator is of finite rank. Then, assuming that r is
properly chosen, RRR estimator has no bias, and cRRR is typically moderate. On the other hand,
PCR’s bias can be potentially large, depending of the choice of the kernel, and choosing higher rank
increases cPCR, thus requiring larger sample sizes. Therefore, even in well-conditioned problems
(self-adjoint operator) the spurious eigenvalues may arise purely from the learning method. To
facilitate detection of such occurrences, we further provide an empirical estimator of the bias of both
methods and illustrate their use experimentally in Section 7.
Theorem 4. Under the assumptions of Theorems 2 and 3, there exists a constant c > 0, depending
only on H, such that for large enough n ≥ r and every i ∈ [r] with probability at least 1− δ in the
i.i.d. draw of Dn from ρ

|λ̂i − µj(i)| ≤


η̂i σr+1(Ĉ

−1/2T̂ ) + c ε⋆n ln δ−1, Ĝ = ĜRRR
r,γ ,

η̂i

√
σr+1(Ĉ) + c ε⋆n ln δ−1, Ĝ = ĜPCR

r,γ .
(18)

We remark that when Aπ is of finite rank r, the bound above for the RRR estimator reduces to

|λ̂i − µi| ≤ c ε⋆n ln δ−1 and ∥f̂i − fi∥2 ≤ 2 c ε⋆n ln δ−1

[gapi(ĜRRR
r,γ )− 3 c ε⋆n ln δ−1]+

,

see Cor. 1 in Appendix E. Hence, in this case RRR algorithm can learn all the eigenvalues and
eigenfunctions of Aπ with rate ε⋆n = n−

α
2(α+β) . On the other hand, even in this case, the bounds for

the PCR estimator do not guarantee unbiased estimation of Koopman eigenvalues and eigenfunctions.

Choosing γ and r. The bias term σr+1(AπS)/σr(AπS) appearing in (17) represents the theoretical
limit when estimating eigenvalues using RRR. It reflects the capacity of the RKHS to detect the
separation of the leading r Koopman eigenvalues from the rest of its spectra. If Aπ has infinite rank
and slowly decaying eigenvalues, estimating the leading ones becomes challenging, since increasing
r leads to smaller operator norm error, but larger bias. Luckily, in many practical problems there
is a separation of time-scales in the dynamics and the above ratio can be controlled by choosing r
appropriately. While we do not have access to AπS, we can still choose r via the empirical operator
Ĉ−1/2T̂ , see Proposition 20 of Appendix D.4. Note also that the optimal γ depends on α which is
typically unknown. In practice, one can implement a standard grid-search CV procedure for time
series to tune this parameter.

Spectral Bias as a Tool for Model Selection. In equation (18), the data dependent quantities
ŝi(Ĝ

RRR
r,γ ) := η̂i σr+1(Ĉ

−1/2T̂ ) and ŝi(ĜPCR
r,γ ) := η̂i σr+1(Ĉ) represent the empirical spectral

biases of RRR and PCR estimators of the Koopman operator, respectively. When they are small
enough, the spectral estimation error is dominated by the same variance term, which decreases as the
number of samples grows. Therefore, given a number of different kernels, we propose to select the
best one (w.r.t. spectral estimation) by choosing the smallest spectral bias. This is illustrated in the
Alenine Dipeptide example of following section.

Normal operators. Since Davis-Kahan theorem [17] also holds for normal operators, the results in
this section apply whenever AπA

∗
π = A∗

πAπ. While in this case Koopman eigenfunctions remain
orthogonal in L2

π(X ), the eigenvalues are in general complex. On the other hand, extension beyond
normal compact operators asks for involved spectral perturbation analysis and a new statistical
learning theory.
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Figure 2: Estimated eigenfunctions ψ̂i of a Langevin dynamics vs. ground truth. The average
empirical biases ŝi, i ∈ [4] are discussed at the end of Section 6. The results correspond to 50
independent estimations on 2000 training points each. PCR and RRR estimators were fitted with the
same parameters: Gaussian kernel of length scale 0.175, γ = 10−5 and r = 4.

7 Experiments

We illustrate various aspects of our theory with simple experiments. They have been imple-
mented in Python using the library Kooplearn (available at https://github.com/CSML-IIT-UCL/
kooplearn) to fit the PCR and RRR estimators. Full details are in Appendix F.

Learning the Spectrum of the Ornstein–Uhlenbeck Process. In this experiment we designed three
different kernel functions (the “good ”, the “bad ” and the “ugly ”) to illustrate how an unseemly
kernel choice can induce catastrophic biases in the estimation of Koopman eigenvalues. We focus
on the uniformly sampled Ornstein-Uhlenbeck (OU) process, discussed in Example 3, relying on
the spectral decomposition of its Koopman operator (µi, fi)i∈N to design the three kernel functions.
The good kernel is just the sum of the leading T = 53 terms of the spectral decomposition of Aπ , i.e.
kgood(x, y) :=

∑T
i=1 µifi(x)fi(y). The associated RKHS coincides with the leading eigenspace of

Aπ , and no deformation of the metric structure takes place, so that the injection map S : H ↪→ L2
π(X )

is a partial isometry. The bad kernel is defined according to the construction presented in Example 3
for ν = 1/r2 where r is the rank of the estimator. For this kernel, the introduced bias is innocuous for
RRR, but lethal for PCR. Finally, the ugly kernel corresponds to ν = r2, introducing large quotients
σr+1(AπS)/σr(AπS) and σr+1(S)/σr(S), and, hence, an irreparable bias in both estimators.

Figure 1 depicts the distribution of the eigenvalues estimated by PCR and RRR over 50 independent
simulations, against the ground truth. For both algorithms each simulation is comprised of 20000
training points, the regularization is γ = 10−4 and the rank is r = 3. The three largest eigenvalues of
Aπ are correctly estimated by both algorithms for kgood and by RRR for kbad. On the contrary, the
distribution of the eigenvalues for kugly (and kbad for PCR) does not concentrate around any true
eigenvalue of Aπ , signaling the presence of spurious eigenvalues in the estimation.

1 2 3 4 5

Forecast horizon [ns]

10−1

100

R
M

S
E

Model selection for Alanine Dipeptide

Best estimator

Figure 3: Forecasting RMSE on the Alanine Dipeptide dataset for 19 different RRR estimators, each
corresponding to a different kernel, which show how the best model, according to the empirical
spectral bias metric, also attains the best forecasting performances by a large margin.
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A Realistic Example: Langevin Dynamics. Because of its ubiquitous use in modelling real systems,
we now study a numerical implementation of the Langevin dynamics Example 1 with β = 1 and a
potential U(x) = 4(x8+0.8e−80x2

+0.2e−80(x−0.5)2 + 0.5e−40(x+0.5)2) that is a mixture of three
Gaussians barriers at x ∈ {−0.5, 0, 0.5} and a smooth “bounding” term ∝ x8 constraining most of
the equilibrium distribution in the interval [−1, 1], see [37]. In Figure 2, for i ∈ [r], we compare the
f̂i estimated by PCR and RRR against the ground truth fi. The visible difficulty of PCR compared to
RRR in estimating eigenfunctions is nicely explained by larger values of the empirical bias for PCR,
which we report in the upper part of the figure. The reference eigenpairs of Aπ have been obtained
by diagonalizing a finely discretized approximation of the infinitesimal generator (see Appendix A).

Spectral Bias and Model Selection: the Case of Alanine Dipeptide. In this example we show that
minimizing the first term on the r.h.s. of (18) over a validation dataset, is also a good criterion for
Koopman model selection. We use a realistic simulation of the small molecule Alanine Dipeptide
already discussed in [24, 44]. We trained 19 RRR estimators each corresponding to a different kernel
and then we evaluated the forecasting RMSE on 2000 initial conditions drawn from a test dataset. In
Figure 3 we report these errors, highlighting the model with the smallest average empirical spectral
bias (18) evaluated on 5000 validation points.

8 Conclusion

We established minimax optimal rates for the operator norm error in the Koopman regression problem,
which we then used to derive sharp estimation bounds for eigenvalues and eigenfunctions of the
Koopman operator associated with a time-invariant Markov chain. We considered two important
estimators that implement either principal component regression (PCR) or reduced rank regression
(RRR) to learn a linear operator on a reproducing kernel Hilbert space. Our bounds indicate that RRR
may be advantageous over PCR (also known as EDMD, the de-facto estimator in the data-driven
dynamical system literature) which may exhibit a larger estimation bias. This ultimately depends on
the choice of the kernel, which significantly impacts the rate. A bad choice of the kernel could also
introduce spurious eigenvalues, a phenomena which has been observed in the literature and which is
now explained by our theory. Finally, we proposed a method to detect spuriousness in practice, which
can be used also as a kernel selection tool. A limitation of this work is that it applies to compact
normal operators only. While many real dynamical systems involve such operators, in the future our
analysis may be extended using more sophisticated spectral perturbation theory.
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Union – NextGenerationEU, and EU Project ELIAS under grant agreement No. 101120237.

References
[1] Amir, A. (2014). Cell size regulation in bacteria. Physical Review Letters, 112(20).
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Supplementary Material
The supplementary material is organized as follows.

• Appendix A contains additional background on stochastic processes with self-adjoint Koop-
man operator, on Markov processes and spectral theory. Additionally, it contains a notation
table.

• Appendix B discusses learning of the Koopman operator with kernel-based methods.
• Appendix C contains details for the content presented in Section 4, notably proving the key

perturbation result of Theorem 1.
• Appendix D contains details of the content presented in Section 5. In particular, in Ap-

pendix D.1 we discuss the main assumptions and their relationship with the existing literature,
in Appendix D.2 we prove the bounds of different bias terms: bias due to RKHS, bias due to
estimator of choice and bias in the effective rank estimation, in Appendix D.3 we prove the
bounds of the corresponding variance terms, and in Appendix D.4 we show the error bounds
for the RRR and PCR estimators under stronger (RC) condition, while in Appendix D.6 we
extend them and prove the matching lower bound in Theorem 7 in Appendix D.5.

• In Appendix E we prove the spectral learning rates of Section 6 in more detailed form.
• Finally, in Appendix F we provide more details on the experimental section, as well as

present additional experiments.

A Notation and Background

First, we briefly recall the basic notions related to Markov chains and Koopman operators and refer
to [27, 31, 32] for further details.

Let X := {Xt : t ∈ N} be a family of random variables with values in a measurable space (X ,ΣX ),
called state space. We call X a Markov chain if P{Xt+1 ∈ B |X[t]} = P{Xt+1 ∈ B |Xt}. Further,
we call X time-homogeneous if there exists p : X × ΣX → [0, 1], called transition kernel, such that,
for every (x,B) ∈ X × ΣX and every t ∈ N,

P {Xt+1 ∈ B|Xt = x} = p(x,B).

A large class of Markov chains consists of these who posses an invariant measure π satisfying
π(B)=

∫
X π(dx)p(x,B), B ∈ ΣX , see e.g. [15]. For those, we can consider the space of square

integrable functions on X relative to the measure π, denoted as L2
π(X ), and define Markov transfer

operator, i.e. Stochastic Koopman operator, Aπ : L
2
π(X ) → L2

π(X )

Aπf(x) :=

∫
X
p(x, dy)f(y) = E [f(Xt+1)|Xt = x] , f ∈ L2

π(X ), x ∈ X . (19)

Since it easy to see that ∥Aπ∥ = 1, we conclude that the Markov transfer operator is a bounded linear
operator.

This work focuses on the Markov chains that originate from a dynamical system that is time-reversal
invariant, which as a consequence has that Koopman operator on the L2

π(X ) space is self-adjoint.
Since a many microscopical equations of motion in both classical and quantum physics are time-
reversal invariant, learning self-adjoint Koopman operators is of paramount importance in the field of
machine learning for physical sciences.

Next, we discuss the (overdamped) Langevin equation

dXt = −∇U(Xt)dt+
√

2β−1dWt,

where Wt is a Wiener process. For any f ∈ C2(Rd) we let u(x, t) := E[f(Xt)|X0 = x]. As showed
in Section 6.3, pp. 95-96 of Ref. [41], u(x, t) is the solution of the backward Kolmogorov equation

∂tu = Lu u(x, 0) = f(x), (20)

where (Lf)(x) := β−1∇2f(x)−∇U(x) · ∇f(x). A straightforward calculation shows that L is a
self-adjoint operator with respect to the scalar product ⟨f, g⟩ :=

∫
X
f(x)g(x)π(dx) where π(dx) is
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notation meaning notation meaning

∧ minimum ∨ maximum
[ · ] set {1, 2 . . . , ·} [ · ]+ nonegative part of a number
X state space of the Markov chain (Xt)t∈N time-homogeneous Markov chain
p transition kernel of the Markov chain π invariant measure of the Markov chain

L2
π(X ) L2 space of functions on X w.r.t. measure π Aπ Koopman operator on L2

π(X )

Ker(·) null space of an operator Im(·) range of an operator
cl(·) closure of a subspace tr(·) trace of an operator
σi(·) i-th singular value of an operator λi(·) i-th eigenvalue of an operator
[[ · ]]r r-truncated SVD of an operator I identity operator
k(x, y) kernel ϕ canonical feature map

H reproducing kernel Hilbert space S canonical injection H ↪→ L2
π(X )

HS (H,G) space of Hilbert-Schmidt operators H → G Br(H) set of rank-r Hilbert-Schmidt operators on H
∥A∥ operator norm of an operator A ∥A∥HS Hilbert-Schmidt norm of operator A
Z restriction of the Koopman operator to H gp conditional mean embedding
σj j-th singular value of S J countable index set of singular values of S
ℓj j-th left singular function of S hj j-th right singular function of S
1 function in L2

π(X ) with the constant output 1 γ regularization parameter
R true risk E operator norm error
EHS excess risk, i.e. HS norm error R0 irreducible risk
Dn dataset (xi, yi)i∈[n] R̂ empirical risk
Ŝ sampling operator of the inputs Ẑ sampling operator of the outputs
G population Koopman estimator in HS (H) Ĝ empirical Koopman estimator in HS (H)

Gγ population KRR estimator Ĝγ empirical KRR estiamator
GPCR

r,γ population PCR estimator ĜPCR
r,γ empirical PCR estiamator

GRRR
r,γ population RRR estimator ĜRRR

r,γ empirical RRR estiamator
C covariance operator Ĉ empirical covariance operator
Cγ regularized covariance operator Ĉγ regularized empirical covariance operator
T cross-covariance operator T̂ empirical cross-covariance operator
K input kernel matrix L output kernel Gramm matrix
Kγ regularized input kernel matrix M cross-kernel matrix
B operator C−1/2

γ T B̂ empirical operator Ĉ−1/2
γ T̂

P spectral projector P̂ empirical spectral projector
η metric distortion η̂ empirical metric distortion
µ Koopman eigenvalue λ̂ eigenvalue of the empirical estimator
f Koopman eigenfunction in L2

π(X ) f̂ empirical eigenfunction in L2
π(X )

ψ̂ right empirical eigenfunction ξ̂ left empirical eigenfunction
gapJ(·) spectral gap of an operator w.r.t. indices J cond eigenvalue condition number
cH boundness constant PH orthogonal projector in L2

π(X ) onto Im(S)

α regularity parameter a regularity constant
β spectral decay parameter b spectral decay constant
τ embedding parameter cτ embedding constant

Table 1: Summary of used notations.
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the Boltzmann (invariant) distribution π(dx) := Z−1e−βU(x)dx for the process Xt (Z being just a
normalizing constant). Technically, L is the infinitesimal generator of the semigroup associated to
the Markov process Xt on L2

π(X ) and completely defines [4] the Koopman operator via the unique
solution of (20). As usual, the infinitesimal generator is well defined on a dense domain of L2

π(X ),
that is C2(Rd).

A.1 Spectral Decomposition

Recalling that for a bounded a bounded linear operator A on some Hilbert space H the resolvent
set of the operator A is defined as Res(A) := {λ ∈ C : A− λI is bijective}, and its spectrum
Sp(A) := C \ {Res(A)}, let λ ⊆ Sp(A) be isolated part of spectra, i.e. both λ and µ := Sp(A) \ λ
are closed in Sp(A). Than, the Riesz spectral projector Pλ : H → H is defined by

Pλ :=
1

2π

∫
Γ

(zI −A)−1dz, (21)

where Γ is any contour in the resolvent set Res(A) with λ in its interior and separating λ from
µ. Indeed, we have that P 2

λ = Pλ and H = Im(Pλ) ⊕ Ker(Pλ) where Im(Pλ) and Ker(Pλ) are
both invariant under A and Sp(A|Im(Pλ)

) = λ, Sp(A|Ker(Pλ)
) = µ. Moreover, Pλ + Pµ = I and

PλPµ = PµPλ = 0.

Finally if A is compact operator, then the Riesz-Schauder theorem, see e.g. [35], assures that Sp(T )
is a discrete set having no limit points except possibly λ = 0. Moreover, for any nonzero λ ∈ Sp(T ),
then λ is an eigenvalue (i.e. it belongs to the point spectrum) of finite multiplicity, and, hence, we can
deduce the spectral decomposition in the form

A =
∑

λ∈Sp(A)

λPλ, (22)

where geometric multiplicity of λ, rλ := rank(Pλ), is bounded by the algebraic multiplicity of λ. If
additionally A is normal operator, i.e. AA∗ = A∗A, then Pλ = P ∗

λ is orthogonal projector for each
λ ∈ Sp(A) and Pλ =

∑rλ
i=1 ψi ⊗ ψi, where ψi are normalized eigenfunctions of A corresponding to

λ and rλ is both algebraic and geometric multiplicity of λ.

We conclude this section with well-known perturbation bounds for eigenfunctions and spectral
projectors of self-adjoint compact operators.

Proposition 2 ([17]). Let A be compact self-adjoint operator on a separable Hilbert space H.
Given a pair (λ̂, f̂) ∈ C × H such that ∥f̂∥ = 1, let µ be the eigenvalue of A that is closest to
λ̂ and let f be its normalized eigenfunction. If ĝ := min{|λ̂ − λ| |λ ∈ Sp(A) \ {µ}} > 0, then
sin(∢(f̂ , f)) ≤ ∥Af̂ − λ̂f̂∥/ĝ.

Proposition 3 ([48]). Let A and Â be two compact operators on a separable Hilbert space. For
nonempty index set J ⊂ N let

gapJ(A) := min {|λi(A)− λj(A)| | i ∈ N \ J, j ∈ J}

denote the spectral gap w.r.t J and let PJ and P̂J be the corresponding spectral projectors of A and
Â, respectively. If A is self-adjoint and for some ∥A− Â∥ < gapJ(A), then

∥PJ − P̂J∥ ≤ ∥A− Â∥
gapJ(A)

.

A.2 Koopman Operator and Mode Decomposition

The main reason for the use of (stochastic) Koopman operator in dynamical systems lies in the fact
that its linearity can be exploited to compute a spectral decomposition. Indeed, in many situations,
and notably for compact Koopman operators, there exist scalars µi ∈ C, called Koopman eigenvalues,
and observables ψi ∈ L2

π(X ) \ {0}, called Koopman eigenfunctions, such that Aπfi= µifi. Then,
the dynamical system can be decomposed into superposition of simpler signals that can be used in
different tasks such as system identification and control, see e.g. [8]. This becomes particularly
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elegant when Aπ is compact, then for every observable f ∈ L2
π(X ) there exist corresponding scalars

γfi ∈ C known as Koopman modes of f , such that

Aπ
tf(x) = E[f(Xt) |X0 = x] =

∑
j∈N

µt
jγ

f
j fj(x), x ∈ X , t ∈ N. (23)

This formula is known as Koopman Mode Decomposition (KMD) [2, 9]. It decomposes the expected
dynamics observed by f into stationary modes γfj that are combined with temporal changes governed
by eigenvalues µj and spatial changes governed by the eigenfunctions fj .

KMD is closely related to general theory of spectral decomposition for bounded linear operators, and
in particular the Riesz decomposition theorem. Namely, KMD of a compact self-adjoint Koopman
operator can be stated as

Aπ
tf(x) = E[f(Xt) |X0 = x] =

∑
j∈N

µt
j ⟨fj , f⟩ fj(x), f ∈ L2

π(X ), x ∈ X , t ∈ N. (24)

B Kernel-Based Learning of the Koopman Operator

In many practical scenarios the transition kernel p, hence Aπ, is unknown, but data from one or
multiple system trajectories are available. In such situations a learning framework called Koopman
operator regression was proposed in [24] to estimate Koopman operator on L2

π(X ) using reproducing
kernel Hilbert spaces (RKHS). More precisely, let H be an RKHS with kernel k : X ×X → R [3] and
let ϕ : X → H be an associated feature map, such that k(x, y) = ⟨ϕ(x), ϕ(y)⟩ for all x, y ∈ X . We
assume that k(x, x) ≤ cH <∞, π- almost surely. This ensures that H ⊆ L2

π(X ) and the injection
operator S : H → L2

π(X ) given by (Sf)(x) = f(x), x ∈ X is a well defined Hilbert-Schmidt
operator [10, 38]. Then, the Koopman operator restricted to H is given by

Z := AπS : H → L2
π(X ).

Since operator Z is, unlike Aπ, Hilbert-Schmidt, one can aim to approximate Z by minimizing the
following risk R(G) = Ex∼π

∑
i∈N E

[
(hi(Xt+1) − (Ghi)(Xt))

2 |Xt = x
]

over Hilbert-Schmidt
operators G ∈ HS (H), where (hi)i∈N is an orthonormal basis of H. Moreover, there is a bias-
variance decomposition of the risk R(G) = R0 + EHS(G), where

R0 = ∥S∥2HS − ∥Z∥2HS ≥ 0 and EHS(G) = ∥Z − SG∥2HS, (25)

are the irreducible risk (i.e. the variance term in the classical bias-variance decomposition) and the
excess risk, respectively. This can be equivalently expressed in the terms of embedded dynamics in
RKHS as:

E(x,y)∼ρ∥ϕ(y)−G∗ϕ(x)∥2︸ ︷︷ ︸
R(G)

= E(x,y)∼ρ∥gp(x)− ϕ(y)∥2︸ ︷︷ ︸
R0

+Ex∼π∥gp(x)−G∗ϕ(x)∥2︸ ︷︷ ︸
EHS(G)

, (26)

where the regression function gp : X → H is defined as gp(x) := E[ϕ(Xt+1) |Xt = x] =∫
X p(x, dy)ϕ(y), x ∈ X , and is known as the conditional mean embedding (CME) of the conditional

probability p into H. It was also shown that using universal kernels one can approximate the restriction
of Koopman arbitrary well, i.e. excess risk can be made arbitrarily small infG∈HS(H) EHS(G) = 0.

Therefore, to develop estimators one can consider the problem of minimizing the Tikhonov regularized
risk

min
G∈HS(H)

Rγ(G):=R(G) + γ∥G∥2HS, (27)

where γ > 0. Denoting the covariance matrix as C := S∗S = Ex∼πϕ(x) ⊗ ϕ(x) and cross-
covariance matrix T := S∗Z = E(x,y)∼ρϕ(x) ⊗ ϕ(y), where ρ(dx, dy) := π(dx)p(x, dy) is the
joint probability measure of two consecutive states of the Markov chain, and regularized covariance
as Cγ := C + γIH, one easily shows that Gγ := C−1

γ T is the unique solution of (27) which is
known as the Kernel Ridge Regression (KRR) estimator of Aπ .

To approximate the leading eigenvalues of the Koopman operator low rank estimators have been
also considered. Notably, Principal Component Regression (PCR) estimator given by [[C]]†rT , where
[[·]]r denotes the r-truncated SVD of the Hilbert-Schmidt operator. However, it is observed that both
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KRR and PCR estimators can fail in estimating well the leading Koopman eigenvalues. To mitigate
this, Reduced Rank Regression (RRR) estimator has been introduced in [24] as the optimal one that
solves (27) with an additional rank constraint by minimizing over the class of rank-r HS operators
Br(H) := {G ∈ HS (H) | rank(G) ≤ r}, where 1 ≤ r <∞, i.e.

C−1/2
γ [[C−1/2

γ T ]]r = arg min
G∈Br(H)

Rγ(G). (28)

Now, assuming that data Dn = {(xi, yi)}i∈[n] is collected, the estimators are typically obtained
via the regularized empirical risk R̂γ(G):= 1

n

∑
i∈[n]∥ϕ(yi)−G∗ϕ(xi)∥2 + γ∥G∥2HS minimization

(RERM). Introducing the sampling operators for data Dn and RKHS H by

Ŝ : H → Rn s.t. f 7→ 1√
n
[f(xi)]i∈[n] and Ẑ : H → Rn s.t. f 7→ 1√

n
[f(yi)]i∈[n],

and their adjoints by

Ŝ∗ : Rn → H s.t. w 7→ 1√
n

∑
i∈[n]

wiϕ(xi) and Ẑ∗ : Rn → H s.t. w 7→ 1√
n

∑
i∈[n]

wiψ(yi),

we obtain R̂γ(G)=∥Ẑ−ŜG∥2HS + γ∥G∥2HS.

In the following we also use the empirical covariance operators defined as

Ĉ := Ŝ∗Ŝ = 1
n

∑
i∈[n]

ϕ(xi)⊗ ϕ(xi) and D̂ := Ẑ∗Ẑ = 1
n

∑
i∈[n]

ϕ(yi)⊗ ϕ(yi), (29)

empirical cross-covariance operator

T̂ := Ŝ∗Ẑ = 1
n

∑
i∈[n]

ϕ(xi)⊗ ϕ(yi), (30)

and kernel Gramm matrices

K := ŜŜ∗ = 1
n [k(xi, xj)]i,j∈[n] ∈ Rn×n and L := ẐẐ∗ = 1

n [k(yi, yj)]i,j∈[n] ∈ Rn×n. (31)

Additionally, we let Ĉγ := Ĉ+γIH be the regularized empirical covariance and Kγ := K+γIn the
regularized kernel Gram matrix. Then we obtain the empirical estimators of the Koopman operator on
an RKHS that correspond to the population ones: empirical KRR estimator Ĝγ := Ĉ−1

γ T̂ , empirical

PCR estimator [[Ĉ]]†rT̂ , and empirical RRR estimator Ĉ−1/2
γ [[Ĉ

−1/2
γ T̂ ]]r.

Noting that all of the empirical estimators above are of the form Ĝ = ŜUrV
⊤
r Ẑ, where Ur, Vr ∈

Rn×r and r ∈ [n], see [24], we conclude this section with the result on how their spectral decomposi-
tions can be computed in an infinite dimensional RKHS.

Theorem 5 ([24]). Let 1 ≤ r ≤ n and Ĝ = ŜUrV
⊤
r Ẑ, where Ur, Vr ∈ Rn×r. If

V ⊤
r MUr ∈ Rr×r, for M = n−1[k(yi, xj)i,j∈[n]], is full rank and non-defective, the spectral

decomposition (λ̂i, ξ̂i, ψ̂i)i∈[r] of Ĝ can be expressed in terms of the spectral decomposition
(λ̂i, ûi, v̂i)i∈[r] of V ⊤

r MUr as ξ̂i = λ̂iẐ
∗Vrûi/|λ̂i| and ψ̂i = Ŝ∗Urv̂i, for all i ∈ [r].

C Approach

In this section, we prove key perturbation result and discuss the properties of the metric distortion.
We conclude this section with the approximation bound for arbitrary estimator G ∈ Br(H) that is the
basis of the statistical bounds that follow. This result is a direct consequence of [24] and Davis-Khan
spectral perturbation result for compact self-adjoint operators, [17].
Theorem 1. Let Aπ be a self-adjoint compact operator and let r ∈ N. Then, for every empirical
estimator Ĝ ∈ Br(H) and every i ∈ [r]

|λ̂i − µj(i)| ≤ η(ψ̂i) E(Ĝ), and ∥f̂i − fj(i)∥2 ≤ 2η(ψ̂i) E(Ĝ)
[gapj(i)(Aπ)− η(ψ̂i) E(Ĝ)]+

. (11)
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Proof. We first remark that

∥(Aπ − λ̂i IL2
π(X ))

−1∥−1 ≤ ∥(AπS − SĜ)ψ̂i∥/∥Sψ̂i∥ ≤ E(Ĝ)η(ψ̂i).

Then, from the first inequality, using that Aπ is normal, we obtain the first bound in (11). So,
observing that for every µ ∈ Sp(Aπ) \ {µi},

|λ̂i − µ| ≥ |µi − µ| − |λ̂i − µi| ≥ |µi − µ| − E(Ĝ) η(ψ̂i),

we conclude that

min{|λ̂i − µ| |µ ∈ Sp(Aπ) \ {µi}} ≥ gapi(Aπ)− E(Ĝ) η(ψ̂i).

So, applying Proposition 2, we obtain

sin(∢(f̂i, fi)) ≤
∥Aπ f̂i − λ̂i f̂i∥

[gapi(Aπ)− E(Ĝ) η(ψ̂i)]+
≤ ∥(AπS − SĜ)ψ̂i∥/∥Sψ̂i∥

[gapi(Aπ)− E(Ĝ) η(ψ̂i)]+

≤ E(Ĝ) η(ψ̂i)

[gapi(Aπ)− E(Ĝ) η(ψ̂i)]+
.

Since, clearly ∥f̂i − fi∥2 ≤ 2(1− cos(∢(f̂i, fi)) ≤ 2 sin(∢(f̂i, fi)), the proof of the second bound
in (11) is completed.

The following result shows how for the finite rank estimators one can control the metric distortion.

Proposition 1. Let Ĝ∈Br(H). For all i ∈ [r] the metric distortion of ψ̂i can be tightly bounded as

1 /
√
∥C∥ ≤ η(ψ̂i) ≤ min(|λ̂i| cond(λ̂i), ∥Ĝ∥) / σ+

min(SĜ), (12)

where cond(λ̂i) := ∥ξ̂i∥∥ψ̂i∥/|⟨ψ̂i, ξ̂i⟩| is the condition number of λ̂i, and ξ̂i is its left eigenfunction.

Proof. First, we have that ψ̂i = λ̂−1
i Ĝψ̂i = λ̂−1

i ĜĜ†Ĝψ̂i. But, then gi := Ĝ†Ĝψ̂i ∈ Ker(Ĝ)⊥ and
λ̂iψ̂i = Ĝgi.

Next, recall that

inf
g∈Ker(C1/2Ĝ)⊥

∥C1/2Ĝg∥
∥g∥

= σ+
min(C

1/2Ĝ) = σr(SĜ).

So, since Im(Ĝ∗C1/2) ⊆ Im(Ĝ∗), then gi ∈ Ker(Ĝ)⊥ ⊆ Ker(C1/2Ĝ)⊥, and we conclude

σr(SĜ)∥gi∥ ≤ ∥C1/2Ĝψ̂i∥ = |λ̂i|∥Sψ̂i∥.

Therefore, since

∥gi∥2 = ⟨ψ̂i, gi⟩ = cos(∢(ψ̂i,Ker(Ĝ)⊥))∥ψ̂i∥∥gi∥ = cos(∢(ψ̂i, Im(Ĝ∗))) ∥ψ̂i∥∥gi∥,

we have that

|λ̂i|∥Sψ̂i∥
σr(SĜ)

≥ ∥gi∥ = cos(∢(ψ̂i, Im(Ĝ∗))) ∥ψ̂i∥ ≥
(
|cos(∢(ψ̂i, ξ̂i))| ∧ |λ̂i| ∥Ĝ∥−1

)
∥ψ̂i∥

where the last inequality holds since ξ̂i ∈ Im(Ĝ∗) and

∥gi∥ = |λ̂i|−1∥Ĝgi∥ = |λ̂i|−1∥Ĝψ̂i∥ ≤ |λ̂i|−1∥Ĝ∥∥ψ̂i∥.

We remark that this inequality becomes equality when the eigenvalue λ̂i is simple. Finally, noticing
that |cos(∢(ψ̂i, ξ̂i))| = cond(λ̂i) we have

η(ψ̂i) ≤
|λ̂i| cond(λ̂i) ∧ ∥Ĝ∥

σr(SĜ)
,

and application of Weyl’s inequality to the denominator completes the proof.
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Remark 3. We remark that in Example 3 of the main text, for the choice of kernel with Π: i 7→ i,
i ∈ N, after some basic algebra, for the r-th eigenpair (λr, ψr) of GRRR

r,γ we obtain that η(ψr) =

λr cond(ψr)/σr(SG
RRR
r,γ ). This makes inequality (12) tight. Moreover, for small enough γ > 0 and

r = 1, |λr − µr| = η(ψr)E(GRRR
r,γ ), where . Hence, (11) is also tight.

Next result provides the reasoning for using empirical metric distortion given by (13) in the main
body.

Proposition 4. Given r ∈ N, let (λ̂, ψ̂i)
r
i=1 be nonzero eigenpairs of Ĝ = Ŝ∗UrV

⊤
r Ẑ ∈

Br(H). If (v̂i)i∈[r] are eigenvectors of the non-defective matrix V ⊤
r MUr ∈ Rr×r, for M =

n−1[k(yi, xj)i,j∈[n]], then for every i ∈ [r]

η̂i =
∥ψ̂i∥
∥Ŝψ̂i∥

=

√
v̂∗i U

⊤
r KUrv̂i

∥KUrv̂i∥2
, (32)

and ∣∣∣η̂i − η(ψ̂i)
∣∣∣ ≤ (η(ψ̂i) ∧ η̂i

)
η(ψ̂i) η̂i ∥Ĉ − C∥. (33)

Proof. First, note that (32) follows directly from Theorem 5. Next, since for every i ∈ [r],

(η̂i)
−2 − (η(ψ̂i))

−2 =
⟨ψ̂i, (Ĉ − C)ψ̂i)⟩

∥ψ̂i∥2
≤ ∥Ĉ − C∥,

we obtain

∣∣∣η̂−1
i − (η(ψ̂i))

−1
∣∣∣ ≤

∣∣∣η̂−2
i − (η(ψ̂i))

−2
∣∣∣

(η(ψ̂i))−1 ∨ η̂−1
i

≤
(
η(ψ̂i) ∧ η̂i

)
∥Ĉ − C∥.

Remark 4. We remark that for deterministic dynamical systems, to check if an eigenpair (λ̂i, ψ̂i) is
spurious authors in [14, 26] suggest to check if the ψ̂i(yi) ≈ λ̂iψ̂i(xi) on a training set Dn. Clearly,
one should check the same on the validation set in order to assure that over-fitting does not occur. It
is interesting to note that such strategies rely on the empirical estimate ∥(Ẑ − ŜĜ)ψ̂i∥, while our
analysis aims to give high-probability finite sample guarantees via the bounds on metric distortion
and operator norm error.

D Controlling the Operator Norm Error

D.1 Main Assumptions

We start by observing that S ∈ HS
(
H, L2

π(X )
)
, according to the spectral theorem for positive

self-adjoint operators, has an SVD, i.e. there exists at most countable positive sequence (σj)j∈J ,
where J := {1, 2, . . . , } ⊆ N, and ortho-normal systems (ℓj)j∈J and (hj)j∈J of cl(Im(S)) and
Ker(S)⊥, respectively, such that Shj = σjℓj and S∗ℓj = σjhj , j ∈ J .

Now, given α ≥ 0, let us define scaled injection operator Sα : H → L2
π(X ) as

Sα :=
∑
j∈J

σα
j ℓj ⊗ hj . (34)

Clearly, we have that S = S1, while ImS0 = cl(Im(S)). Next, we equip Im(Sα) with a norm ∥·∥α
to build an interpolation space.

[H]α :=

f ∈ Im(Sα) | ∥f∥2α :=
∑
j∈J

σ−2α
j ⟨f, ℓj⟩2 <∞

 .
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We remark that for α = 1 the space [H]α is just an RKHS H seen as a subspace of L2
π(X ). Moreover,

we have the following injections

[H]α1
↪→ [H]1 ↪→ [H]α2

↪→ [H]0 = L2
π(X ),

where α1 ≥ 1 ≥ α2 ≥ 0.

In addition, from (BK) we also have that RKHS H can be embedded into L∞
π (X ), i.e. for some

τ ∈ (0, 1]
[H]1 ↪→ [H]τ ↪→ L∞

π (X ) ↪→ L2
π(X ),

Now, according to [18], if Sτ,∞ : [H]τ ↪→ L∞
π (X ) denotes the injection operator, its boundedness

implies the polynomial decay of the singular values of S, i.e. σ2
j (S) ≲ j−1/τ , j ∈ J , and the

following condition is assured

(KE) Kernel embedding property: there exists τ ∈ [β, 1] such that

cτ := ∥Sτ,∞∥2 = ess sup
x∼π

∑
j∈J

σ2τ
j |ℓj(x)|2 < +∞. (35)

In what follows we discuss how our novel assumption (RC) compares to the existing ones, quantifying
how miss-specified the learning problem is. We consider the following assumption made in [29] to
analyze the HS error of CME

(SRC) Source condition from [29]: for for some α ∈ (0, 2]

Im(Z) ⊆ Im(Sα) and Gα
H := S†

αT ∈ HS (H) .

Remark 5 (Finite-dimensional RKHS). When H is finite dimensional, all spaces [H]α are finite
dimensional. Hence, Im(Z) ⊂ Im(S) implies also Im(Z) ⊂ Im(Sα) for every α > 0. Moreover, we
can set τ arbitrary close to zero.

Remark 6 ((SRC) vs. (RC)). According to [47, Theorem 2.2], the condition (RC) is equivalent to
Im(Z) ⊆ Im(Sα), i.e. Gα

H := S†
αT is bounded operator on H and Z = SαG

α
H. Hence, if (SRC)

holds for some α ∈ (0, 2], then (RC) holds, too. Indeed, we have that T = S∗Z = S∗SαG
α
H,

and, thus, TT ∗ ⪯ ∥Gα
H∥2C1+α. On the other hand, for the Koopman operator Aπ = IL2

π(X ), of
Example 2, while G1

H = IH implies (RC) for at least one α ∈ [1, 2], one can show that (SRC)
doesn’t hold for any α > 0, c.f. [29, Appendix D].

D.2 Bounding the Bias

Recalling the decomposition

E(Ĝ) := ∥Z − SĜ∥︸ ︷︷ ︸
operator norm error

≤ ∥Z − SGγ∥︸ ︷︷ ︸
bias due to regularization

+ ∥S(Gγ −G)∥︸ ︷︷ ︸
bias due to rank reduction

+ ∥S(G− Ĝ)∥.︸ ︷︷ ︸
variance of the estimator

(36)

we first prove the bound of the first term.
Proposition 5. Let Gγ = C−1

γ T for γ > 0, and PH : L2
π(X ) → L2

π(X ) be the orthogonal projector

onto cl(Im(S)). If the assumptions (BK), (SD) and (RC) hold, then ∥Gγ∥ ≤ ac
(α−1)/2
H for α ∈ [1, 2],

∥Gγ∥ ≤ a γ(α−1)/2 for α ∈ (0, 1], and

∥AπS − SGγ∥ ≤ a γ
α
2 + ∥(I − PH)AπS∥. (37)

Proof. Recalling that PH :=
∑

j∈J ℓj ⊗ ℓj , start by denoting the orthogonal projectors on the
subspace of k leading left singular functions of S as Pk :=

∑
j∈[k] ℓ⊗ ℓ, respectively. Next, observe

that

Z − SGγ = (IL2
π(X ) − SC−1

γ S∗)Z = (IL2
π(X ) − (SS∗ + γIH)−1SS∗)Z

= γ(SS∗ + γIH)−1Z =

∑
j∈J

γ

σ2
j + γ

ℓj ⊗ ℓj

Z =

∑
j∈J

γ

(σ2
j + γ)σj

ℓj ⊗ hj

T.
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Therefore, for every k ∈ J

∥Pk(Z − SGγ)∥2 =

∥∥∥∥∥∥
∑

j∈[k]

γ

(σ2
j + γ)σj

ℓj ⊗ hj

TT ∗

∑
j∈[k]

γ

(σ2
j + γ)σj

hj ⊗ ℓj

∥∥∥∥∥∥ ,
which, due to (RC), implies that

∥Pk(Z − SGγ)∥ ≤ a

∥∥∥∥∥∥
∑
j∈[k]

γ σα
j

σ2
j + γ

ℓj ⊗ ℓj

∥∥∥∥∥∥ .
On the other hand,∑

j∈[k]

γ σα
j

σ2
j + γ

ℓj ⊗ ℓj = γ
α
2

∑
j∈[k]

(σ2
jγ

−1)
α
2

σ2
jγ

−1 + 1
ℓj ⊗ ℓj ⪯ γ

α
2

∑
j∈[k]

ℓj ⊗ ℓj ,

where the inequality holds due to xs ≤ x + 1 for all x ≥ 0 and s ∈ [0, 1]. Since the norm of the
projector equals one, we get ∥Pk(Z − SGγ)∥ ≤ aγ

α
2 .

Next, observe that

∥(PH − Pk)(Z − SGγ)∥2 =

∥∥∥∥∥∥
∑

j∈J\[k]

γ2

(σ2
j + γ)2

(Z∗ℓj)⊗ (Z∗ℓj)

∥∥∥∥∥∥ ≤
∑

j∈J\[k]

γ2

(σ2
j + γ)2

∥Z∗ℓj∥2

≤
∑

j∈J\[k]

γ2 σ2α
j

(σ2
j + γ)2

≤
∑

j∈J\[k]
σ2α
j

So, using triangular inequality, for every k ∈ J we have

∥PH(Z − SGγ)∥ ≤ ∥Pk(Z − SGγ)∥+ ∥(PH − Pk)(Z − SGγ)∥ ≤ aγ
α
2 +

∑
j∈J\[k]

(σ2β
j )

α
β ,

and, hence, letting k → ∞ we obtain ∥PHZ − SGγ∥ ≤ aγ
α
2 . Hence, (37) follows from triangular

inequality.

To estimate the ∥Gγ∥, note that (RC) implies ∥Gγ∥ ≤ a ∥C−1
γ C

1+α
2 ∥ and considering two cases.

First, if (RC) holds for some α ∈ [1, 2], then, clearly ∥Gγ∥ ≤ ac
(α−1)/2
H . On the other hand, if

α ∈ (0, 1], then

σ1+α
j

σ2
j + γ

= γ−1

(
σ2
jγ

−1
) 1+α

2

σ2
j γ

−1 + 1
≤ γ

α−1
2 ,

and, thus, ∥Gγ∥ ≤ a γ(α−1)/2.

Remark 7. Inequality (37) says that the regularization bias is comprised of a term depending on
the choice of γ, and on a term depending on the “alignment” between H and Im(AπS). The term
∥(I − PH)AπS∥ can be set to zero by two different approaches. One is choose a kernel which in
some way minimizes ∥(I − PH)AπS∥. Another is to choose a universal kernel [38, Chapter 4],
for which Im(AπS) ⊆ cl(Im(S)). While the former approach is common to several methods using
finite-dimensional kernels, see e.g. [5, 30, 43, 46], the latter is classical in kernel-based learning of
the Koopman operator, [20, 24, 29].

In order to proceed with bounding the bias due to rank reduction for both considered estimators, we
first provide auxiliary result.

Proposition 6. Let B := C
−1/2
γ T , let (RC) hold for some α ∈ (0, 2]. Then for every j ∈ J

σ2
j (Z)− a2 c

α/2
H γα/2 ≤ σ2

j (B) ≤ σ2
j (Z). (38)
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Proof. Start by observing that

B∗B = Z∗SC−1
γ S∗Z = Z∗Z − γZ∗(SS∗ + γIL2

π(X ))
−1Z,

implies that
Z∗Z −

∑
j∈J

γ

σ2
j + γ

(Z∗ℓj)⊗ (Z∗ℓj) = B∗B ⪯ Z∗Z.

Next, similarly to the above, for every k ∈ J , we have∥∥∥∥∥∥
∑
j∈[k]

γ

σ2
j + γ

(Z∗ℓj)⊗ (Z∗ℓj)

∥∥∥∥∥∥ ≤ a2

∥∥∥∥∥∥
∑
j∈[k]

σ2α
j

σ2
jγ

−1 + 1
ℓj ⊗ ℓj

∥∥∥∥∥∥
= a2

∥∥∥∥∥∥
∑
j∈[k]

(σ2
jγ

−1)α/2σα
j γ

α/2

σ2
jγ

−1 + 1
ℓj ⊗ ℓj

∥∥∥∥∥∥ ≤ a2γα/2∥C∥α/2,

and ∥∥∥∥∥∥
∑

j∈J\[k]

γ

σ2
j + γ

(Z∗ℓj)⊗ (Z∗ℓj)

∥∥∥∥∥∥ ≤ a2
∑

j∈J\[k]

γ

σ2
j + γ

σ2α
j ≤ a2

∑
j∈J\[k]

(σ2β
j )α/β .

So, as before, letting k → ∞ we get the result

Now, the bounds for the rank reduction bias of the two estimator follow.
Proposition 7 (RRR). Let (RC) hold for some α ∈ (0, 2]. Then the bias of GRRR

r,γ due to rank
reduction is bounded as

σr+1(Z)− a c
α/4
H γα/4 − 2 a γ(1∧α)/2 ≤ ∥S(Gγ −GRRR

r,γ )∥ ≤ σr+1(Z). (39)

Proof. Observe that

∥S(Gγ −GRRR
r,γ )∥ ≤ ∥C1/2

γ (Gγ −GRRR
r,γ )∥ = ∥B − [[B]]r∥ = σr+1(B) ≤ σr+1(Z)

while

∥S(Gγ −GRRR
r,γ )∥ ≥ ∥C1/2

γ (Gγ −GRRR
r,γ )∥ − γ1/2∥Gγ −GRRR

r,γ ∥

≥ σr+1(Z)− a∥C∥α/4γα/4 − 2aγ(1∧α)/2.

Proposition 8 (PCR). Let (RC) hold for some α ∈ (0, 2]. Then the bias of GPCR
r,γ due to rank

reduction is bounded as

σr+1(S)−
√

Rr+1
0 − a γα/2 ≤ ∥S(Gγ −GPCR

r,γ )∥ ≤ σr+1(S), (40)

where Rr+1
0 := ⟨(SS∗ − ZZ∗)ℓr+1, ℓr+1⟩ ≥ 0 is the irreducible risk restricted to the (r+ 1)-st left

singular function of S.

Proof. Let Pr denote the orthogonal projector onto the subspace of leading r eigenfunctions of C.
Then the upper bound is easily obtained as

∥S(Gγ −GPCR
r,γ )∥ = ∥C1/2(I − Pr)Gγ∥ ≤ σr+1(S)∥(I − Pr)Gγ∥ ≤ σr+1(S).

Next, observe that

∥S(Gγ −GPCR
r,γ )∥2 = ∥Z∗S(I − Pr)CC

−2
γ S∗Z∥ =

∥∥∥∥∥∥
∑

j≥r+1

σ4
j

(σ2
j + γ)2

(Z∗ℓj)⊗ (Z∗ℓj)

∥∥∥∥∥∥
≥
∥∥∥∥ σ4

r+1

(σ2
r+1 + γ)2

(Z∗ℓj)⊗ (Z∗ℓj)

∥∥∥∥ =
σ4
r+1

(σ2
r+1 + γ)2

∥Z∗ℓr+1∥2.
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But, since ∥Z∗ℓr+1∥ = ∥Thr+1∥/σr+1 ≤ a∥C(1+α)/2hr+1∥/σr+1 = a σα
r+1, we obtain

∥S(Gγ −GPCR
r,γ )∥ ≥

(
1− γ

σ2
r+1 + γ

)
∥Z∗ℓr+1∥ ≥ ∥Z∗ℓr+1∥ − a

γσr+1

σ2
r+1 + γ

= ∥Z∗ℓr+1∥ −
(σ2

r+1γ
−1)α/2

σ2
r+1γ

−1 + 1
≥ ∥Z∗ℓr+1∥ − a γα/2.

Finally,
∥Z∗ℓr+1∥2 = ⟨ZZ∗ℓr+1, ℓr+1⟩ = ⟨SS∗ℓr+1, ℓr+1⟩ − Rr+1

0 ,

which completes the proof

We observe that Rr+1
0 measures the variance of the Koopman operator Aπ over the (r + 1)-st left

singular function of S. Hence, it is immediate that Rr+1
0 ≤ R0, and the previous result indicates that

when Koopman operator has small irreducible risk the bias introduced by PCR is indeed of the order

σr+1(S). Namely, the bound in (40) is sharp provided that σr+1(S) ≥ (1 + c)
√
Rr+1

0 for some
absolute constant c > 0. This means that the learning rate of PCR can be significantly worse than
that of RRR in bias dominating scenarios which can occur when the kernel is somehow "misaligned"
with the Koopman operator (that is σr+1(S) ≫ σr+1(Z) ∨ n−

α
2(α+β) ). We have provided one such

example in Example 3.

D.3 Bounding the Variance

D.3.1 Concentration Inequalities

All the statistical bounds we present will relay on two versions of Bernstein inequality. The first
one is Pinelis and Sakhanenko inequality for random variables in a separable Hilbert space, see [10,
Proposition 2].

Proposition 9. Let Ai, i ∈ [n] be i.i.d copies of a random variable A in a separable Hilbert
space with norm ∥·∥. If there exist constants L > 0 and σ > 0 such that for every m ≥ 2
E∥A∥m ≤ 1

2m!Lm−2σ2, then with probability at least 1− δ∥∥∥∥∥∥ 1n
∑
i∈[n]

Ai − EA

∥∥∥∥∥∥ ≤ 4
√
2√
n

log
2

δ

√
σ2 +

L2

n
(41)

On the other hand, we recall that in [33], a dimension-free version of the non-commutative Bernstein
inequality for finite-dimensional symmetric matrices is proposed (see also Theorem 7.3.1 in [39] for
an easier to read and slightly improved version) as well as an extension to self-adjoint Hilbert-Schmidt
operators on a separable Hilbert spaces.

Proposition 10. Let Ai, i ∈ [n] be i.i.d copies of a Hilbert-Schmidt operator A on the separable
Hilbert space. Let ∥A∥ ≤ c almost surely, EA = 0 and let E[A2] ⪯ V for some trace class operator
V . Then with probability at least 1− δ∥∥∥∥∥∥ 1n

∑
i∈[n]

Ai

∥∥∥∥∥∥ ≤ 2c

3n
LA(δ) +

√
2∥V ∥
n

LA(δ), (42)

where

LA(δ) := log
4

δ
+ log

tr(V )

∥V ∥

We use the same strategy in combination with a standard dilation method to extend a deviation
inequality on rectangular matrices of [39] (Corollary 7.3.2) to Hilbert-Schmidt operators on a
separable Hilbert space.

23



Proposition 11. Let Ai, i ∈ [n] be i.i.d copies of a Hilbert-Schmidt operator A on the separable
Hilbert space. Let ∥A∥ ≤ c almost surely and let E[AA∗] ⪯ V and E[A∗A] ⪯ V ′ for some trace
class operators V and V ′. Then with probability at least 1− δ∥∥∥∥∥∥ 1n

∑
i∈[n]

Ai − EA

∥∥∥∥∥∥ ≤ 4c

3n
LA(δ) +

√
2max{∥V ∥, ∥V ′∥}

n
LA(δ), (43)

where

LA(δ) := log
4

δ
+ log

tr(V + V ′)
max{∥V ∥, ∥V ′∥}

Proof. Let

Bi =

[
0 Ai

A∗
i 0

]
and B =

[
0 A
A∗ 0

]
,

then ∥B∥ = ∥A∥, ∥ 1
n

∑
i∈[n]Bi − EB∥ = ∥ 1

n

∑
i∈[n]Ai − EA∥ and

E(B − EB)2 ⪯ EB2 =

[
E[AA∗] 0

0 E[A∗A]

]
⪯
[
V 0
0 V ′

]
=: V ′′.

Moreover, ∥B−EB∥ ≤ ∥B∥+
√

E∥B∥2 ≤ 2c. Applying Proposition 10 we complete the proof.

Proposition 12. Given δ > 0, with probability in the i.i.d. draw of (xi, yi)ni=1 from ρ, it holds that

P{∥T̂ − T∥ ≤ εn(δ)} ∧ P{∥Ĉ − C∥ ≤ εn(δ)} ≥ 1− δ,

where

εn(δ) :=
4cH
3n

L(δ) +
√

2∥C∥
n

L(δ) and L(δ) := log
4 tr(C)
δ ∥C∥

. (44)

Proof. Proof follows directly from Proposition 11 applied to operators ϕ(xi)⊗ ϕ(xi) and ϕ(xi)⊗
ϕ(yi), respectively using the fact that C = Eϕ(xi)⊗ ϕ(xi) = Eϕ(yi)⊗ ϕ(yi) and T = Eϕ(xi)⊗
ϕ(yi).

Proposition 13. Let (KE) hold for τ ∈ [β, 1]. Given δ > 0, with probability in the i.i.d. draw of
(xi, yi)

n
i=1 from ρ, it holds that

P
{
∥C−1/2

γ (Ĉ − C)C−1/2
γ ∥ ≤ ε1n(γ, δ)

}
∧ P

{
∥C−1/2

γ (T̂ − T )C−1/2
γ ∥ ≤ ε1n(γ, δ)

}
≥ 1− δ,

(45)
where

ε1n(γ, δ) :=
4cτ
3nγτ

L1(γ, δ) +

√
2 cτ
nγτ

L1(γ, δ), (46)

where

L1(γ, δ) := ln
4

δ
+ ln

tr(C−1
γ C)

∥C−1
γ C∥

, .

Moreover,

P

{
∥C1/2

γ Ĉ−1
γ C1/2

γ ∥ ≤ 1

1− ε1n(γ, δ)

}
≥ 1− δ. (47)

Proof. The idea is to apply Proposition 11 for operator A = ξ(x)⊗ ξ(x), where ξ(x) := C
−1/2
γ ϕ(x).

To that end, observe that for every τ > 0 we have that

∥ξ(x)∥2 =
∑
j∈J

⟨C−1/2
γ ϕ(x), hj⟩

2
=
∑
j∈J

1

σ2
j + γ

⟨ϕ(x), hj⟩2 =
∑
j∈J

σ
2(1−τ)
j

σ2
j + γ

⟨ϕ(x), hj⟩2

σ2
j

σ2τ
j

= γ−τ
∑
j∈J

(σ2
jγ

−1)1−τ

σ2
jγ

−1 + 1

|hj(x)|2

σ2
j

σ2τ
j ≤ γ−τ

∑
j∈J

|(Shj)(x)|2

σ2
j

σ2τ
j = γ−τ

∑
j∈J

|ℓj(x)|2σ2τ
j
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So, due to (35), we obtain ∥A∥ ≤ ∥ξ∥2∞ ≤ γ−τ cτ . On the other hand, since

Ex∼π(ξ(x)⊗ ξ(x))2 ⪯ ∥ξ∥2∞Ex∼πξ(x)⊗ ξ(x) = ∥ξ∥2∞C−1/2
γ CC−1/2

γ .

Next, we observe that

∥IH − C−1/2
γ ĈγC

−1/2
γ ∥ = ∥C−1/2

γ (C − Ĉ)C−1/2
γ ∥ ≤ ε1n(γ, δ).

Thus, for ε1n(γ, δ) smaller than one, it follows that

∥C1/2
γ Ĉ−1

γ C1/2
γ ∥ = ∥(C−1/2

γ ĈγC
−1/2
γ )−1∥ ≤ 1

1− ∥IH − C
−1/2
γ ĈγC

−1/2
γ ∥

,

and the proof is completed.

Proposition 14. Let (KE) hold for τ ∈ [β, 1]. Given δ > 0, with probability in the i.i.d. draw of
(xi, yi)

n
i=1 from ρ, it holds

P
{
∥C−1/2

γ (Ĉ − C)∥HS ≤ ε2n(γ, δ)
}
∧ P

{
∥C−1/2

γ (T̂ − T )∥HS ≤ ε2n(γ, δ)
}
≥ 1− δ,

where

ε2n(γ, δ) := 4
√
2 cH ln

2

δ

√
tr(C−1

γ C)

n
+

cτ
n2γτ

. (48)

Proof. First, recall that HS (H) equipped with ∥·∥HS is separable Hilbert space. Hence, we will
apply Proposition 9 for A = ξ(x)⊗ ϕ(y), where ξ(x) := C

−1/2
γ ϕ(x). To that end, observe that

E[∥A∥mHS] = E [∥ξ(x)∥m ∥ϕ(y)∥m] ≤ ∥ξ∥m−2
∞ ∥ϕ∥m∞ E [∥ξ(x)∥2] (49)

= ∥ξ∥m−2
∞ ∥ϕ∥m∞ tr(C−1

γ C) ≤ 1

2
m!
(
γ−τ/2 √cτ cH

)m−2
(√

cH tr(C−1
γ C)

)2

. (50)

Proposition 15. Let (KE) hold for τ ∈ [β, 1]. Given δ > 0, with probability in the i.i.d. draw of
(xi, yi)

n
i=1 from ρ, it holds

P
{
∥C−1

γ (Ĉ − C)∥HS ≤ ε3n(γ, δ)
}
∧ P

{
∥C−1

γ (T̂ − T )∥HS ≤ ε3n(γ, δ)
}
≥ 1− δ,

where

ε3n(γ, δ) := 4
√
2 cH ln

2

δ

√
tr(C−1

γ C)

n
+

cτ
n2γτ+1

. (51)

Proof. Similar to the above, we apply Proposition 9 for A = ξ(x)⊗ ϕ(y), where ξ(x) := C−1
γ ϕ(x).

Hence,

∥ξ(x)∥2 =
∑
j∈J

⟨C−1
γ ϕ(x), hj⟩

2
=
∑
j∈J

1

(σ2
j + γ)2

⟨ϕ(x), hj⟩2 =
∑
j∈J

(
σ
(1−τ)
j

σ2
j + γ

)2

⟨ϕ(x), hj⟩2

σ2
j

σ2τ
j

= γ−(1+τ)
∑
j∈J

(
(σ2

jγ
−1)(1−τ)/2

σ2
jγ

−1 + 1

)2

|ℓj(x)|2σ2τ
j ≤ γ−(1+τ)cτ ,

completes the proof.

Next, we develop concentration bounds of some key quantities used to build RRR and PCR empirical
estimators.
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D.3.2 Variance and Norm of KRR Estimator

Proposition 16. Let (RC), (SD) and (KE) hold for some α ∈ [1, 2], β ∈ (0, 1] and τ ∈ [β, 1]. Given
δ > 0 if ε1n(γ, δ) < 1, then with probability at least 1− δ in the i.i.d. draw of (xi, yi)ni=1 from ρ

P

{
∥C1/2

γ (Ĝγ −Gγ)∥ ≤
(1 + a c

(α−1)/2
H ) ε2n(γ, δ/3)

1− ε1n(γ, δ/3)

}
≥ 1− δ,

and

P

{
∥Ĝγ∥ ≤ 1 +

2 ε3n(γ, δ/3)

1− ε3n(γ, δ/3)

}
≥ 1− δ.

Proof. Note that C1/2
γ (Ĝγ −Gγ) = C

1/2
γ (Ĉ−1

γ T̂ − C−1
γ T ), and, hence,

C1/2
γ (Ĝγ −Gγ) = C1/2

γ Ĉ−1
γ (T̂ − ĈγC

−1
γ T ± T )

= C1/2
γ Ĉ−1

γ C1/2
γ

(
C−1/2

γ (T̂ − T )− C−1/2
γ (Ĉ − C)C−1

γ T
)
. (52)

Thus, taking the norm and using ∥C−1
γ T∥ ≤ a σα−1

1 (S) with the Propositions 14 and 13 we prove
the first bound. For the second one, we use

Ĝγ −Gγ = C−1
γ (T̂ − T )− C−1

γ (Ĉ − C)Ĝγ

with Proposition 15 to obtain
∥Ĝγ∥ − 1 ≤ ∥Ĝγ∥ − ∥Gγ∥ ≤ ∥Ĝγ −Gγ∥ ≤ ε3n(γ, δ/2)(1 + ∥Ĝγ∥),

which completes the proof.

D.3.3 Variance of Singular Values

Proposition 17. Let (RC), (SD) and (KE) hold for some α ∈ [1, 2], β ∈ (0, 1] and τ ∈ [β, 1]. Let
B := C

−1/2
γ T and B̂ := Ĉ

−1/2
γ T̂ . Given δ > 0 if ε1n(γ, δ/5) < 1, then with probability at least

1− δ in the i.i.d. draw of (xi, yi)ni=1 from ρ

∥B̂∗B̂ −B∗B∥ ≤ (c2 − 1) εn(δ/5) + c2
(ε2n(γ, δ/5))

2

1− ε1n(γ, δ/3)
, (53)

where c := 1 + a c
(α−1)/2
H . Consequently, for every i ∈ [n]

|σ2
i (B̂)− σ2

i (B)| ≤ (c2 − 1) εn(δ/5) + c2
(ε2n(γ, δ/5))

2

1− ε1n(γ, δ/5)
. (54)

Proof. We start from the Weyl’s inequalities for the square of singular values
|σ2

i (B̂)− σ2
i (B)| ≤ ∥B̂∗B̂ −B∗B∥, i ∈ [n].

But, since,
B̂∗B̂ −B∗B = T̂ ∗Ĉ−1

γ T̂ − T ∗C−1
γ T = (T̂ − T )∗Ĉ−1

γ T̂ + T ∗C−1
γ (T̂ − T ) + T ∗(Ĉ−1

γ − C−1
γ )T̂

denoting M = C
−1/2
γ (T̂ − T ), N = C

−1/2
γ (Ĉ − C) and R := C

1/2
γ (Ĝγ −Gγ), we have

B̂∗B̂ −B∗B = B∗M +M∗C1/2
γ Ĝγ −B∗NĜγ = B∗M + (M∗C1/2

γ −B∗N)(Ĝγ ±Gγ)

= B∗M +M∗B −B∗NGγ + (M∗ −B∗NC−1/2
γ )R

= (Gγ)
∗(T̂ − T ) + (T̂ − T )Gγ − (Gγ)

∗(Ĉ − C)Gγ + (M∗ + (Gγ)
∗N∗)R.

Therefore, recalling that, due to (52), R = C
1/2
γ Ĉ−1

γ C
1/2
γ (M −NGγ), we conclude

B̂∗B̂ −B∗B =(Gγ)
∗(T̂ − T ) + (T̂ − T )Gγ − (Gγ)

∗(Ĉ − C)Gγ

+ (M −NGγ)
∗C1/2

γ Ĉ−1
γ C1/2

γ (M −NGγ). (55)

Now, applying Propositions 12, 13 and 14 we obtain (53), and, therefore, (54) follows.

Remark that to bound singular values we can rely on the fact

|σi(B̂)− σi(B)| = |σ2
i (B̂)− σ2

i (B)|
σi(B̂) + σi(B)

≤ |σ2
i (B̂)− σ2

i (B)|
σi(B̂) ∨ σi(B)

.

26



D.3.4 Variance of RRR Estimator

Recalling the notation B := C
−1/2
γ T and B̂ := Ĉ

−1/2
γ T̂ , let denote Pr and P̂r denote the orthogonal

projector onto the subspace of leading r right singular vectors of B and B̂, respectively. Then we
have [[B]]r = BPr and [[B̂]]r = B̂P̂r, and, hence GRRR

r,γ = GγPr and ĜRRR
r,γ = ĜγP̂r.

Proposition 18. Let (RC), (SD) and (KE) hold for some α ∈ [1, 2], β ∈ (0, 1] and τ ∈ [β, 1]. Given
δ > 0 and γ > 0, if ε1n(γ, δ) < 1, then with probability at least 1− δ in the i.i.d. draw of (xi, yi)ni=1
from ρ,

∥S(GRRR
r,γ −ĜRRR

r,γ )∥ ≤ c ε2n(γ, δ/5)

1− ε1n(γ, δ/5)
+

σ1(B)

σ2
r(B)− σ2

r+1(B)

(c2 − 1) εn(δ/5) + c2 (ε2n(γ, δ/5))
2

(1− ε1n(γ, δ/5))
2

,

(56)
where c := 1 + a c

(α−1)/2
H

Proof. Start by observing that ∥S(GRRR
r,γ − ĜRRR

r,γ )∥ ≤ ∥C1/2
γ (GRRR

r,γ − ĜRRR
r,γ )∥ and

C1/2
γ (GRRR

r,γ − ĜRRR
r,γ ) =(C1/2

γ Ĉ−1
γ C1/2

γ )·(
C−1/2

γ (Ĉ − C)GRRR
r,γ + C−1/2

γ (T̂ − T )P̂r +B(P̂r − Pr)
)
. (57)

Using that the norm of orthogonal projector P̂ is bounded by one and that ∥GRRR
r,γ ∥ ≤ ∥Gγ∥, applying

Propositions 13 and 14 together with Propositions 3 and 17 completes the proof.

D.3.5 Variance of PCR

Recall that the PCR population estimator is given by GPCR
r,γ = [[C−1

γ ]]rT while the empirical PCR
estimator is ĜPCR

r,γ = [[Ĉ−1
γ ]]rT̂ . So, in this case by Pr and P̂r we denote the orthogonal projectors

onto the subspace of leading r right singular vectors of C and Ĉ, respectively. Then we have
GPCR

r,γ = [[C−1
γ ]]rT = C−1

γ PrT = PrC
−1
γ T and ĜPCR

r,γ = [[Ĉ−1
γ ]]rT̂ = Ĉ−1

γ P̂rT̂ = P̂rĈ
−1
γ T̂ .

Proposition 19. Let (RC), (SD) and (KE) hold for some α ∈ [1, 2], β ∈ (0, 1] and τ ∈ [β, 1]. Given
δ > 0 and γ > 0, if ε1n(γ, δ) < 1, then for G = [[C−1

γ ]]rT and Ĝ = [[Ĉ−1
γ ]]rT̂ with probability at

least 1− δ in the i.i.d. draw of (xi, yi)ni=1 from ρ,

∥S(GPCR
r,γ − ĜPCR

r,γ )∥ ≤ c ε2n(γ, δ/4)

1− ε1n(γ, δ/4)

√
1 + ε1n(γ, δ/4)

1− ε1n(γ, δ/4)
+

σ1(S)

σr(S)− σr+1(S)
εn(δ/4), (58)

where c := 1 + a c
(α−1)/2
H .

Proof. Start by observing that ∥S(GPCR
r,γ − ĜPCR

r,γ )∥ = ∥C1/2(GPCR
r,γ − ĜPCR

r,γ )∥ and

C1/2(GPCR
r,γ − ĜPCR

r,γ ) = C1/2(Pr − P̂r)Gγ + C1/2P̂r(Gγ − Ĝγ).

Therefore,

∥S(GPCR
r,γ − ĜPCR

r,γ )∥ ≤ ∥C1/2(Pr − P̂r)Gγ∥+ ∥C1/2
γ P̂rC

−1/2
γ C1/2

γ (Gγ − Ĝγ)∥

≤ σ1(S) ∥Pr − P̂r∥+ ∥C1/2
γ P̂rC

−1/2
γ ∥∥C1/2

γ (Gγ − Ĝγ)∥

≤ σ1(S) ∥Pr − P̂r∥+ ∥C1/2
γ Ĉ−1/2

γ P̂rĈ
1/2
γ C−1/2

γ ∥∥C1/2
γ (Gγ − Ĝγ)∥,

Thus, using

∥S(GPCR
r,γ − ĜPCR

r,γ )∥ ≤
√
cH∥Pr − P̂r∥+ ∥C1/2

γ Ĉ−1/2
γ ∥∥Ĉ1/2

γ C−1/2
γ ∥∥C1/2

γ (Gγ − Ĝγ)∥, (59)

and applying Propositions 13 and 16 together with Propositions 3 and 12 we complete the proof.
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D.4 Operator Norm Error Bounds

Summarising previous sections, in order to prove Theorem 2, we just need to analyse the bounds ε1n,
ε2n and ε3n. To that end, we use the following result, see Lemma 11 in [18].
Lemma 1. Let (SD) hold for some β ∈ (0, 1]. Then, if β < 1, for all γ > 0

tr(C−1
γ C) ≤

{
bβ

1−β γ
−β , β < 1,

cH γ−1 , β = 1.

Now, since α ≥ 1 and β ≤ τ , we clearly obtain that for large enough n one has

ε1n(γ, δ) ≲
n−1/2

γτ/2
ln δ−1, (60)

as well as

ε2n(γ, δ) ≲

(
n−1/2

γβ/2
∨ n−1

γτ/2

)
ln δ−1 and ε3n(γ, δ) ≲

(
n−1/2

γ(β+1)/2
∨ n−1

γ(τ+1)/2

)
ln δ−1. (61)

Therefore, as a consequence we have two following results on the estimation of singular values of Z,
and on the operator norm error.
Proposition 20. Let (RC) and (SD) hold for some α ∈ [1, 2] and β ∈ (0, 1].Then, there exists a
constant c > 0 such that for every given δ ∈ (0, 1), large enough n > r and small enough γ > 0
with probability at least 1− δ in the i.i.d. draw of (xi, yi)ni=1 from ρ

|σj(B̂)− σj(AπS)| ≲ n−
α

2(α+2β) ln δ−1. (62)

Proof. The proof is direct consequence of Propositions 6 and 17 using (60)-(61).

Theorem 2. Assume the operator Aπ satisfies σr(AπS) > σr+1(AπS) ≥ 0 for some r ∈ N. Let
(SD) and (RC) hold for some β ∈ (0, 1] and α ∈ [1, 2], respectively, and let cl(Im(S)) = L2

π(X ).
Let

γ ≍ n−
1

α+β and ε⋆n := n−
α

2(α+β) . (15)
Let δ ∈ (0, 1). Then, there exists a constant c> 0, depending only on H, such that for large enough
n ≥ r, with probability at least 1− δ in the i.i.d. draw of Dn from ρ

E(Ĝ) ≤

σr+1(AπS)+c ε
⋆
n ln δ−1 if Ĝ = ĜRRR

r,γ , (16a)

σr+1(S) + c ε⋆n ln δ−1 if Ĝ = ĜPCR
r,γ and σr(S) > σr+1(S). (16b)

Proof. Since σr(Z) > σr+1(Z) implies due to Proposition 6 that for small enough γ > 0 we have
that σr(B) > σr+1(B), Propositions 5, 7 and 18, ensure that for large enough n (16a) holds.

Similarly, Propositions 5, 8 and 19, assure that for large enough n (16b) holds if σr(S) > σr+1(S).

Setting γn = n−
1

α+β we have that

γα/2n =
n−1/2

γ
β/2
n

= n−
α

2(α+β) ,
n−1/2

γ
τ/2
n

= n−
α+β−τ
2(α+β) and

n−1/2

γ
(1+β)/2
n

= n−
α−1

2(α+β) ,

and, hence, recalling that α ≥ 1,

lim
n→∞

ε2n(γn, δ/5) = lim
n→∞

ε1n(γn, δ/5) = lim
n→∞

εn(δ/5) = 0,

while ε3n(γn, δ/5) is, in the worst case, bounded.

Therefore, for this choice of regularization parameter Theorem 2 assures that

E(ĜRRR
r,γ )− σr+1(B) ≤ E(ĜRRR

r,γ )− σr+1(Z) ≲ n−
α

2(α+β) . (63)

Using the same arguments as the above, the following lower bounds follow.
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Theorem 6. Under the assumptions of Theorem 2, recalling (15), there exists a constant c > 0 such
that for large enough n ≥ r and every i ∈ [r] with probability at least 1− δ in the i.i.d. draw of Dn

from ρ

E(ĜRRR
r,γ ) ≥ σr+1(AπS)− c ε⋆n ln δ−1,

and

E(ĜPCR
r,γ ) ≥ σr+1(S)−

√
Rr+1

0 − c ε⋆n ln δ−1,

where Rr+1
0 := ⟨(SS∗ −AπSS

∗Aπ
∗)ℓr+1, ℓr+1⟩ ≥ 0 is the irreducible risk restricted to the

(r + 1)-st left singular function ℓr+1 of S.

The Example 3 in the main body, that we now elaborate, shows that lower bounds of the previous
theorem are tight.

Example 4 (Example3). Consider the 1D equidistant sampling of the Ornstein–Uhlenbeck process,
obtained by integrating Langevin equation of Example 1 with β = 1 and U(x) = x2/2

Xt = e−1Xt−1 +
√

1− e−2 ϵt

where x ∈ R =: X and {ϵt}t≥1 are independent standard Gaussians. For this process it is
well-known that π is N (0, 1) and that Aπ admits a spectral decomposition (µi, fi)i∈N in terms of
Hermite polynomials. Namely, {µj = e−(j−1)}j≥1 with corresponding orthonormal eigenbasis
fj(x) = 1√

(j−1)!
Hj−1(x) where Hj(x) = ∂j1G(0, x), for G(s, x) = esx−

1
2 s

2

, denotes the j-th

probabilists’ Hermite polynomial. See e.g. [23] for more details.

We now make use of the spectral decomposition of Aπ to design the following class of kernel functions

kΠ,ν(x, x
′) :=

∑
i∈N

µ2ν
Π(i)fi(x)fi(x

′),

where Π is a permutation of the indices of the eigenvalues and ν is a scaling factor. The rationale
behind these kernels is to morph the original metric structure of Aπ in a way which is harder and
harder to revert when learning from finite sets of data. In particular, for any target rank r, we set ν :=
1/r2 and Π to the permutation such that i 7→ 2r−i+1 (i ≥ r), i 7→ i−r (r+1 ≤ i ≤ 2r) and i 7→ i
elsewhere. Then, we immediately have Rr+1

0 := ⟨(SS∗ − ZZ∗)ℓr+1, ℓr+1⟩ = µ2ν
r+1 − µ2ν

r+1µ
2
1 = 0,

while σr+1(S) =
√
µ2ν
r+1 = e−νr = e−1/r. On the other hand, σr+1(Z) =

√
µ2
r+1µ

2ν
1 = e−r. In

view of Theorem 6, observing that in this example we can set β → 0,

|E(ĜPCR
r,γ )− e−1/r| ≲ n−1/2 ln δ−1,

and
|E(ĜRRR

r,γ )− e−r| ≲ n−1/2 ln δ−1.

D.5 Minimax optimal operator norm bounds

In this section we first derive a minimax lower bound for the operator norm convergence rate of
the Koopman operator. This approach follows a standard framework already used for instance in
[18, 29] to derive a lower bound on the Hilbert-Schmidt norm convergence rate of the Conditional
Mean Embedding. We typically assume (as in [18, 29]) that condition (SD) is sharp, i.e. there exists
β ∈ (0, 1] and a constant b > 1 such that for every j ∈ J

b−1 j−1/β ≤ λj(C) ≤ b j−1/β . (64)

Then we prove that the learning rate of the RRR estimator is sharp (up to a log factor).

Theorem 7. Let 0 < β ≤ τ ≤ 1 and α ∈ (0, 2] be such that conditions (SD), (RC) and (KE)
hold. Then for any r ≥ 2, there exist absolute constants c, q > 0 such that for all learning methods
Dn → Ĝ ∈ Br(H), δ ∈ (0, 1), and all sufficiently large n ≥ 1, there is a distribution ρ on X × X
used to sample Dn, with marginal distribution π on X , such that with probability at least 1− δ,

E(Ĝ) ≥ c δq n−
α∨τ

2((α∨τ)+β) .
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Proof. We remind first that condition (SRC) is more restrictive than condition (RC) (see Remark
6). This means that a minimax lower under Condition (SRC) also holds under less restrictive
Condition (RC). We remark next that a Koopman operator is fully characterized by the conditional
distribution ofXt+1|Xt. Therefore we will consider the set of well-separated conditional distributions
on X introduced in [20, 29]: {pj(·|x), j ∈ [M ]}. Hence the corresponding set of Koopman
operators Ω = {Aj , j ∈ [M ]} admits rank at most 2 and when restricted to the RKHS H satisfies
gp(x) = E[ϕ(Xt+1)|Xt = x] =

∫
X pj(dy|x)ϕ(y).

Fix now a ∈ X such that ∥ϕ(a)∥ ≥ cH/2 (such a always exists under condition (KE)). The
boundedness of the kernel also guarantees that∫

⟨pj(dy|x)− pj′(dy|x), ϕ(a)⟩2π(dx) ≤ ∥ϕ(a)∥2∥(Aj −Aj′)S∥2 ≤ cH∥(Aj −Aj′)S∥2.

Hence it is sufficient to lower bound the left-hand-side to guarantee the existence of well-separated

hypothesis. It follows from Lemma 7 in [29] that M ≥ 2c n
β

((α∨τ)+β) and

1

c cH
n−

α∨τ
(α∨τ)+β ≤ ∥(Aj −Aj′)S∥2 ≤ cn−

α∨τ
(α∨τ)+β ,

for some absolute constant c > 1. Then, we can apply Lemma 8 in [29] to get the result.

This result states that, under conditions (SD), (RC) and (KE), for α ≥ 1 no estimator can achieve a
learning rate faster than n−

α
2(α+β) in the operator norm. Note that this lower bound is matching our

upper bound on the variance term (up to ln δ−1) in (16a) and (16b) of the RRR and PCR estimators
respectively. We note however that a significant difference between these bounds concerns the "bias"
term which is equal to σr+1(AπS) for RRR and σr+1(S) for PCR.

Hence, to have an optimal learning rate for PCR, due to ((SD)), we need to choose r ≥ n
αβ

α+β − 1.
On the other hand, assuming for instance that AπS admits finite rank r, then the bias disappears
completely in (16a) and consequently the RRR estimator is minimax optimal (up to a log factor).
Moreover, even if the Koopman operator is infinite-dimensional with e.g. eigenvalues decaying
exponentially fast, then the bias term is negligible in front of the variance term. Thus RRR is still
minimax (up to a log).

D.6 Extension to misspecified setting

Next, recalling results from [29] on HS-norm error of the KRR estimator, we extend our results for
RRR and PCR beyond the case (RC) for α ∈ [1, 2]. Namely, in the reminder of this section we
will assume (SRC) instead of (RC), i.e. we will assume that Gα

H is not only bounded by also a
HS-operator when α < 1.
Theorem 8. Let (SRC), (SD) and (KE) hold for some α ∈ (0, 2], β ∈ (0, 1] and τ ∈ [β, 1],
respectively, and let cl(Im(S)) = L2

π(X ). Let

γ ≍ n−
1

α+β and ε⋆n := n−
α

2(α+β) when α ≥ τ − β, (65)

and for some s > 1

γ ≍
(

n
lns n

)− 1
τ and ε⋆n :=

(
n

lns n

)− α
2τ when α < τ − β. (66)

Then, for every δ ∈ (0, 1) there exists a constant c> 0, depending only on H, such that for large
enough n ≥ r, with probability at least 1− δ in the i.i.d. draw of Dn from ρ

E(Ĝγ) ≤ c ε⋆n ln δ−1.

Proof. Recalling that E(Ĝγ) = ∥AπS − SĜγ∥ ≤ ∥AπS − SĜγ∥HS, this result is a direct conse-
quence of [29, Theorem 2].

In particular, recalling notation denoting M = C
−1/2
γ (T̂ −T ) and N = C

−1/2
γ (Ĉ−C) we have that

∥M −NGγ∥HS ≤ ε̃2n(γ, δ) w.p. at least 1− δ (67)
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where

ε̃2n(γ, δ) := 4
√
2 ln

2

δ

√
cH tr(C−1

γ C)

n
+

4cHcτ
n2γτ

+
a2cτ
n

γα−τ , (68)

and, since R = C
1/2
γ (Ĝγ −Gγ) = C

1/2
γ Ĉ−1

γ C
1/2
γ (M −NGγ), consequently,

P

{
∥C1/2

γ (Ĝγ −Gγ)∥HS ≤ ε̃2n(γ, δ/2)

1− ε1n(γ, δ/2)

}
≥ 1− δ.

Combining this with the approximation bound of Proposition 5, we obtain the result.

Therefore, when α > τ − β previous theorem shows that the operator norm error of KRR estimator
is optimal. It is important to note that regime α ≤ τ − β the optimal rates are an open problem in
operator learning as well as in the classical regression setting. We conclude this section by extending
Theorem 2 and showing that PCR and RRR also achieve optimal rates when α > τ − β.
Theorem 9. Assume the operator Aπ satisfies σr(AπS) > σr+1(AπS) ≥ 0 for some r ∈ N. Let
(SRC), (SD) and (KE) hold for some α ∈ (0, 2], β ∈ (0, 1] and τ ∈ [β, 1], respectively, and let
cl(Im(S)) = L2

π(X ). Let γ and ε⋆n be given by (65)-(66) and let δ ∈ (0, 1). Then, there exists a
constant c> 0, depending only on H, such that for large enough n ≥ r, with probability at least
1− δ in the i.i.d. draw of Dn from ρ

E(Ĝ) ≤

σr+1(AπS)+c ε
⋆
n ln δ−1 if Ĝ = ĜRRR

r,γ , (69a)

σr+1(S) + c ε⋆n ln δ−1 if Ĝ = ĜPCR
r,γ and σr(S) > σr+1(S). (69b)

Proof. Proof of (69b) readily follows from (59) by applying (67) instead of Proposition 16, i.e. using
ε̃2n given in (68) instead of ε2n given in (48). To show (69a), recalling (55), note that

B̂∗B̂ −B∗B = B∗(M −NGγ) +M∗B + (M −NGγ)
∗C1/2

γ Ĉ−1
γ C1/2

γ (M −NGγ)

we have that w.p. 1− δ

∥B̂∗B̂ −B∗B∥ ≤
√
cH
[
ε̃2n(γ, δ/3) + ε2n(γ, δ/3)

]
+

[ε̃2n(γ, δ/3)]
2

1− ε1n(γ, δ/3)
≲ ε̃2n(γ, δ/3).

Therefore, since

C1/2
γ (GRRR

r,γ − ĜRRR
r,γ ) = C1/2

γ [Ĝγ −Gγ ]P̂r +B[P̂r − Pr],

we conclude that w.p. 1− δ

∥S(GRRR
r,γ − ĜRRR

r,γ )∥ ≲ ε̃2n(γ, δ/3)

(
1 +

σ1(B)

σ2
r(B)− σ2

r+1(B)

)
,

which after balancing with the approximation bound of Proposition 5 yields the final result.

E Spectral Learning Rates

We now prove the statements of Theorems 3 and 4 in slightly more general form.
Theorem 10 (RRR). Let Aπ be a compact self-adjoint operator. Under the assumptions of Theorem
3, if Ĝ = ĜRRR

r,γ , then there exists a constant c > 0 (depending only on the RKHS) such that for every
δ ∈ (0, 1), every large enough n ≥ r and every i ∈ [r] with probability at least 1 − δ in the i.i.d.
draw of Dn from ρ

|λ̂i − µj(i)| ≤
σr+1(Z)

σr(Z)

(
1 + c n−

α−1
2(α+β) ln δ−1

)
+ c n− α

2(α+β) ln δ−1. (70)

Moreover,
|λ̂i − µj(i)| ≤ η̂i σr+1(B̂) + c n−

α
2(α+β) ln δ−1, (71)

and

∥f̂i − fj(i)∥2 ≤ 2(η̂i σr+1(B̂) + c n−
α

2(α+β) ln δ−1)

[gapj(i)(Aπ)− η̂iσr+1(B̂)− c n−
α

2(α+β) ln δ−1]+
. (72)
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Proof. First, observe that Proposition 1 and Weyl’s inequality imply that for every i ∈ [r]

η(ψ̂i) ≤
(|λ̂i| cond(λ̂i)) ∧ ∥ĜRRR

r,γ ∥
[σr(SGRRR

r,γ )− ∥S(ĜRRR
r,γ −GRRR

r,γ )∥]+
≤ (|λ̂i| cond(λ̂i)) ∧ ∥Ĝγ∥

[σr(SGRRR
r,γ )− ∥S(ĜRRR

r,γ −GRRR
r,γ )∥]+

.

But,
σr(SG

RRR
r,γ ) ≥ σr(C

1/2
γ GRRR

r,γ )−√
γ∥GRRR

r,γ ∥ ≥ σr(B)−√
γ∥Ĝγ∥,

and, using Proposition 6 and ∥Gγ∥ ≤ 1 we conclude

η(ψ̂i) ≤
(|λ̂i| cond(λ̂i)) ∧ ∥Ĝγ∥

[σr(Z)− a∥C∥α/4γα/4 −√
γ − ∥S(ĜRRR

r,γ −GRRR
r,γ )∥]+

.

Hence, in view of Propositions 16 and 18, we conclude that for some constant c′ > 0

η(ψ̂i) ≤
(|λ̂i| cond(λ̂i)) ∧ (1 + c′ n−

α−1
2(α+β) ln δ−1)

[σr(Z)− c′ n−
α

4(α+β) ln δ−1]+

and, consequently, for some c > 0,

η(ψ̂i) ≤ 2
|λ̂i| cond(λ̂i)

σr(Z)
∧
(

2

σr(Z)
+ c n−

α−1
2(α+β) ln δ−1

)
.

Therefore, using (63), (70) directly follows.

Next, since we have obtain that η(ψ̂i) is bounded, due to Proposition 4, empirical metric distortions
η̂i are bounded, too.

So, assuming that σr+1(Z) > 0, we have that

η(ψ̂i) E(ĜRRR
r,γ ) ≤ η(ψ̂i)σr+1(B) + η(ψ̂i)

(
E(ĜRRR

r,γ )− σr+1(B)
)

≤ η̂i σr+1(B) + η̂iη
2(ψ̂i)εn(δ/3) + η(ψ̂i)

(
E(ĜRRR

r,γ )− σr+1(B)
)

≤ η̂i σr+1(B̂) + η̂i
|σ2

r+1(B̂)− σ2
r+1(B)|

σr+1(B)
+ η̂iη

2(ψ̂i)εn(δ/3)

+ η(ψ̂i)
(
E(ĜRRR

r,γ )− σr+1(B)
)
.

Thus, recalling Proposition 17, and using (63) we obtain that there exists a constant c > 0 depending
only on the RKHS so that

η(ψ̂i) E(ĜRRR
r,γ ) ≤ η̂i σr+1(B̂) + c n−

α
2(α+β) ln δ−1.

Finally, applying Theorem 1 concludes the proof.

Specifying the previous result to finite rank Koopman operators we obtain the following.
Corollary 1 (RRR). If Aπ is of finite rank r ∈ N, under the assumptions of Theorem 10, with
probability at least 1− δ in the i.i.d. draw of (xi, yi)ni=1 from ρ

|λ̂i − µj(i)| ≤ c n−
α

2(α+β) ln δ−1, (73)

and

∥f̂i − fj(i)∥2 ≤ 2 c n−
α

2(α+β) ln δ−1

[gapi(Ĝ
RRR
r,γ )− 3 c n−

α
2(α+β) ln δ−1]+

. (74)

Proof. First, observe that in the previous proof we could conclude the same having σr+1(Z) instead
of σr+1(B̂). But, since rank of Z is at most r, we conclude (73). Next, since the ranks of ĜRRR

r,γ and
Aπ are equal, we have the same number of nonzero eigenvalues. Hence, in view of the eigenvalue
ordering λ̂1 ≥ λ̂2 ≥ . . . λ̂r and µj1 ≥ µj2 ≥ . . . µjr , we obtain

gapi(Ĝ
RRR
r,γ ) = |λ̂i−λ̂i−1|∧|λ̂i−λ̂i+1| ≤ gapi(Aπ)+|λ̂i−µj(i)|+(|λ̂i−1−µji−1

|∨|λ̂i+1−µji+1
|).

So, applying (73), we conclude (74).
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In analogous way we have the following theorem for PCR estimator.

Theorem 11 (PCR). Let Aπ be a compact self-adjoint operator. Under the assumptions of Theorem
3, if Ĝ = ĜPCR

r,γ , then there exists a constant c > 0 (depending only on the RKHS) such that for every
δ ∈ (0, 1), every large enough n ≥ r and every i ∈ [r] with probability at least 1 − δ in the i.i.d.
draw of Dn from ρ

|λ̂i − µj(i)| ≤
σr+1(S)

[σr(Z)− σα
r+1(S)]+

(
2 + c n−

α−1
2(α+β) ln δ−1

)
+ c n−

α
2(α+β) ln δ−1. (75)

Moreover,
|λ̂i − µj(i)| ≤ η̂i σr+1(Ŝ) + c n−

α
2(α+β) ln δ−1, (76)

and

∥f̂i − fj(i)∥2 ≤ 2(η̂i σr+1(Ŝ) + c n−
α

2(α+β) ln δ−1)

[gapj(i)(Aπ)− η̂iσr+1(Ŝ)− c n−
α

2(α+β) ln δ−1]+
. (77)

Proof. The proof follows along the same lines of reasoning as for the RRR estimator, with the
exception that we use

σr(SG
PCR
r,γ ) = σr(PrC

1/2Gγ) ≥ σr(C
1/2Gγ)−∥(I−Pr)C

1/2C−1
γ T∥ ≥ σr(B)−√

γ−σα
r+1(S),

where Pr denotes the projector onto a subspace of r leading eigenfunctions of C.

We finally remark that form the proofs of Theorems 11 and 11, recalling notation of the uniform bias
in Eq. (17), we also have

|λ̂i − µj(i)|
|λ̂i| cond(λ̂i)

≤ s+ c n−
α

2(α+β) ln δ−1, (78)

which may also be of interest.

Remark 8 (Limitation to (RC) for α ≥ 1). Note that, according to Proposition 5, Gγ may become
unbounded as γ → 0 for α < 1. This, recalling Proposition 1, implies that the metric distortion of
estimated eigenfunctions may deteriorate. So, proving tight spectral rates in the misspecified regime
remains an interesting open problem.

F Experiments

A Realistic Example: Langevin Dynamics. We here append some additional data on the Langevin
dynamics experiment not fitting in the main body. We recall that the eigenpairs of Aπ in this
experiment have a tangible physical interpretation [37]. Indeed µi is related to the typical time scale
needed for a particle to cross one of the potential barriers, while fi is approximately constant in the
regions of the phase space where the particle spends a lot of time (metastable states) and have sharp
variations near the unstable points of the dynamics (transition states)

In Figure 4 we show the eigenvalue and eigenfunction errors, and fitted the lines appearing in the
log-log plots to get the decay rates for the eigenvalue and eigenfunctions errors reported in Table 2
and 3.

RRR PCR

λ̂0 -0.801699 -0.009406
λ̂1 -0.617175 -0.410670
λ̂2 -0.553720 -0.631005
λ̂3 -0.699849 -0.697323

Table 2: Fitted decay rates for the estimated Koopman eigenvalues for the Langevin dynamics
experiment
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Figure 4: Eigenvalue errors (left pair) and Eigenfunction errors (right pair) vs. sample size. Solid,
dashed, dash-dotted, and dotted lines denote the error on the four leading eigenpairs, in order. Both
axes are in log scale, so straight lines correspond to a polynomial decay of the error with rate the line
slope. RRR estimator is unbiased and attains smaller errors than the biased PCR one.

RRR PCR

f̂0 -0.635680 -0.139309
f̂1 -0.577666 -0.326457
f̂2 -0.573375 -0.505743
f̂3 -0.476403 -0.450845

Table 3: Fitted decay rates for the estimated Koopman eigenfunctions for the Langevin dynamics
experiment.

Model selection and the Alanine dipeptide dataset We use a simulation of the small molecule
Alanine dipeptide reported in Ref. [44]. For each RRR estimator we set the rank r = 5 and the
Tikhonov regularization γ = 10−6. The 19 different kernels are the following: 7 RBF kernels with
length scales σ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}, and 12 Matérn kernels corresponding to each
possible combination of ν ∈ {1.5, 2.5} and length scale σ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The
optimal kernel turned out to be RBF with σ = 0.35. We report forecasting RMSE of 30 = 3 ∗ 10
positions of the 10 atoms of the system.
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