References

Batjes, Niels H, Eloi Ribeiro, Ad van Oostrum, Johan Leenaars, Tom Hengl, and Jorge Mendes de Jesus. 2017. “WoSIS: Providing Standardised Soil Profile Data for the World.” Earth System Science Data 9 (1): 1. https://doi.org/10.5194/essd-9-1-2017.
Fritz, Steffen, Linda See, Christoph Perger, Ian McCallum, Christian Schill, Dmitry Schepaschenko, Martina Duerauer, et al. 2017. “A Global Dataset of Crowdsourced Land Cover and Land Use Reference Data.” Scientific Data 4 (June): 170075. https://doi.org/10.1038/sdata.2017.75.
Hengl, Tomislav, Jorge Mendes de Jesus, Gerard BM Heuvelink, Maria Ruiperez Gonzalez, Milan Kilibarda, Aleksandar Blagotić, Wei Shangguan, et al. 2017. “SoilGrids250m: Global Gridded Soil Information Based on Machine Learning.” PLoS One 12 (2). https://doi.org/10.1371/journal.pone.0169748.
Hengl, Tomislav, Markus G Walsh, Jonathan Sanderman, Ichsani Wheeler, Sandy P Harrison, and Iain C Prentice. 2018. “Global Mapping of Potential Natural Vegetation: An Assessment of Machine Learning Algorithms for Estimating Land Potential.” PeerJ 6: e5457. https://doi.org/10.7717/peerj.5457.
Iversen, CM, AS Powell, ML McCormack, CB Blackwood, GT Freschet, J Kattge, C Roumet, et al. 2018. Fine-Root Ecology Database (FRED): A Global Collection of Root Trait Data with Coincident Site, Vegetation, Edaphic, and Climatic Data, Version 2. TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.: Oak Ridge National Laboratory. https://doi.org/10.25581/ornlsfa.012/1417481.
Iversen, Colleen M, M Luke McCormack, A Shafer Powell, Christopher B Blackwood, Grégoire T Freschet, Jens Kattge, Catherine Roumet, et al. 2017. “A Global Fine-Root Ecology Database to Address Below-Ground Challenges in Plant Ecology.” New Phytologist 215 (1): 15–26. https://doi.org/10.1111/nph.14486.
Jian, J., R. Vargas, K. Anderson-Teixeira, E. Stell, V. Herrmann, M. Horn, N. Kholod, et al. 2020. “A Restructured and Updated Global Soil Respiration Database (SRDB-V5).” Earth System Science Data Discussions 2020: 1–19. https://doi.org/10.5194/essd-2020-136.
Kattge, Jens, Gerhard Bönisch, Sandra Dı́az, Sandra Lavorel, Iain Colin Prentice, Paul Leadley, Susanne Tautenhahn, et al. 2020. TRY Plant Trait Database–Enhanced Coverage and Open Access.” Global Change Biology 26 (1): 119–88. https://doi.org/10.1111/gcb.14904.
Kulmala, Markku. 2018. “Build a Global Earth Observatory.” Nature Publishing Group. https://doi.org/10.1038/d41586-017-08967-y.
Panagos, Panos, Pasquale Borrelli, Katrin Meusburger, Bofu Yu, Andreas Klik, Kyoung Jae Lim, Jae E Yang, et al. 2017. “Global Rainfall Erosivity Assessment Based on High-Temporal Resolution Rainfall Records.” Scientific Reports 7 (1): 1–12. https://doi.org/10.1038/s41598-017-04282-8.
Pena Luque, S. 2018. “Synergies of a High Resolution and Multi-Source Water Surface Product "SurfWater" in an Integrated Water Database: Hydroweb-NG.” AGUFM 2018: H23C–07.
Shi, Qian, Da He, Zhengyu Liu, Xiaoping Liu, and Jingqian Xue. 2023. “Globe230k: A Benchmark Dense-Pixel Annotation Dataset for Global Land Cover Mapping.” Journal of Remote Sensing 3: 0078. https://doi.org/10.34133/remotesensing.0078.
Sparks, Adam, Tomislav Hengl, and Andrew Nelson. 2017. GSODR: Global Summary Daily Weather Data in R.” Journal of Open Source Software 2 (10): 177.
Ukkola, AM, N Haughton, MG De Kauwe, G Abramowitz, and AJ Pitman. 2017. FluxnetLSM R package (v1. 0): a community tool for processing FLUXNET data for use in land surface modelling.” Geosci. Model Dev. https://doi.org/10.5194/gmd-10-3379-2017.
Whitmee, Sarah, Blanca Anton, and Andy Haines. 2023. “Accountability for Carbon Emissions and Health Equity.” Bulletin of the World Health Organization 101 (2): 83. https://doi.org/10.2471/BLT.22.289452.