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Abstract—In the realm of predictive maintenance, the incorpo-
ration of artificial intelligence (AI) methods has revolutionized the
field by empowering businesses to actively monitor and preemp-
tively address equipment malfunctions. Detecting anomalies plays
a crucial role in predictive maintenance as it serves as an early
indicator of potential faults or failures. This paper introduces
initial findings from the use of autoencoders and their associated
vector reconstruction error within the context of the IMOCO4.E
project.

Index Terms—Predictive Maintenance, Anomaly Detection,
Neural Networks

I. INTRODUCTION

Predictive maintenance using AI has transformed industrial
systems by proactively identifying and addressing potential
failures. Anomaly detection [1] plays a crucial role in this
approach, monitoring equipment behavior for deviations from
normal patterns. Autoencoders [2], a type of neural network,
have emerged as a promising method for anomaly detection.
The IMOCO4.E project [3] aims to enhance mechatronic
systems’ intelligence and adaptability by integrating novel
sensory information, model-based approaches, AI, ML, and
industrial IoT principles. In this work, we focus on a cutting
machine in the food and beverage industries and aim to build
an anomaly detection system for blade degradation. The paper
presents our solution, experimental results, and future research
plans.

II. CASE STUDY

In this particular investigation, we center our attention on
the One Year Industrial Component Degradation Dataset [4].
This dataset captures a comprehensive set of measurements
acquired over the course of one year from an OCME Vega
shrink-wrapper, a machine employed in the packaging in-
dustry. The dataset consists of sampling sessions with a
duration of 8 seconds and a time resolution of 4 milliseconds.
Each session encompasses 2048 samples, and the number
of sessions varies across different months, yielding a rich
dataset comprising a total of 1,062,912 samples. Various
sensors installed on the machine contribute to the dataset, with
primary emphasis placed on monitoring the performance of the
cutting blade component, responsible for slicing the packaging
plastic film. The specific measurements examined in this study

involve motor torque, blade and film position, blade and film
speed, the time lag between expected and actual positions of
the blade and film, as well as a performance evaluation metric.

The fundamental objective of this case study revolves
around developing a detection system that can effectively
recognize instances where the cutting blade component ex-
periences degradation, indicating the need for replacement.
By thoroughly analyzing the collected data and employing
suitable training techniques, such as autoencoders, our aim is
to construct an anomaly detection model that facilitates timely
maintenance and replacement of the cutting blade component,
ensuring the continuous optimal performance of the packaging
process.

III. METHODOLOGY

In this preliminary analysis, we evaluate two different ar-
chitectures for our autoencoders. Both architectures have three
hidden linear layers followed by ReLU activation functions.
The output layer present an identity activation function. The
first autoencoder (A1) has 32, 8, and 32 hidden neurons in the
first, second, and third hidden layers, respectively, whereas the
second autoencoder (A2) has 64, 16, and 64 hidden neurons
in the same layers. As can be seen, our models presents an
expansion of the output space in the first and third hidden
layers and a contraction in the second hidden layer. This
structures can be interpreted as an encoder and a decoder,
which work together to learn a compact representation of input
data: the encoder maps the input data into a lower-dimensional
latent space representation, capturing the most salient features
and patterns of the input data and effectively reducing its
dimensionality; The decoder then reconstructs the original
input data from the encoded representation. During training,
autoencoders aim to minimize the reconstruction error between
the input and output data. By optimizing this reconstruction
loss, the autoencoder learns to capture the underlying structure
of the data, enabling it to generate accurate reconstructions.

To quantify the magnitude of an anomaly, we utilize the
vector reconstruction error (VRE), following an approach
similar to [5]. The VRE measures the discrepancy between
the reconstructed output and the corresponding input data. By
assuming that the autoencoder has been properly trained, this
measurement enables the recognition of anomaly presence and



Fig. 1. Graphical representation of the results of our experimental evaluation.
On the x-axis are reported the input samples of interest divided in the 12
months of measurements, whereas on the y-axis the VRE of our models is
reported.

magnitude. The underlying principle is that if the autoencoder
fails to accurately reconstruct the input data, then such data is
anomalous in some way. In our experimental evaluation, we
employ the mean square error (MSE) between the output and
the corresponding target as the VRE.

IV. TRAINING PROCESS

We employed PYNEVER [6], a neural network management,
training, and verification tool, to train the networks of interest.
PYNEVER utilizes PYTORCH [7] as a backend and provides
a user-friendly custom training loop.

For training, we utilized the Adam optimizer with a learning
rate of 0.001 and the mean square error as the loss function.
The networks were trained for 50 epochs, with a batch size
of 512 for training and 128 for validation and testing. The
validation set constituted 30% of the training data, while
20% of the dataset was reserved for testing. These learning
parameters remained consistent across all trained networks.

It is worth noting that, for anomaly detection tasks, the
autoencoders must be trained on a subset of the dataset
devoid of anomalies. Therefore, in our training and testing
procedures, we only considered the first 200,000 samples of
the dataset. This choice is based on the reasonable assumption
that significant blade degradation would not occur within the
initial period of operations.

V. RESULTS

The experiments were conducted on a MacBook Air laptop
equipped with an Apple M2 CPU and 24 GB of RAM. The
operating system used was macOS Ventura 13.4. To train
the autoencoders, we employed MPS. The code necessary to
replicate our experiments can be found in our repository [8].

Both our autoencoders reached reasonable performance dur-
ing the training phase. Specifically, the mean square errors
(MSEs) computed on the test set were 5.72 · 10−7 and
3.59 · 10−6 for A1 and A2 respectively. Notably, increasing

the number of neurons in the hidden layers did not lead to a
significant enhancement in network accuracy.

In Figure 1, the scatter plot representing the vector recon-
struction error for our autoencoders is presented. Remarkably,
an anomaly is detected in the data during the 4th month.
Even the smallest MSE value computed during the anomaly
is significantly higher than the maximum VRE observed in
the non-anomalous data points. It is important to note that
while A1 exhibits the greatest proficiency in identifying the
anomaly, both the autoencoders demonstrate the ability to
correctly detect it. As observed previously in terms of network
accuracy, there appears to be no significant correlation between
the size of the autoencoders and their performance in anomaly
detection.

VI. FUTURE WORK

Our current focus involves expanding our experimental
evaluation and further investigating the other minor anomalies
observable during the cutting blade’s operation. Understanding
the underlying causes of these anomalies is an intriguing
avenue for exploration [9]. We plan to explore additional
network architectures to assess their impact on autoencoder
performance. Additionally, we are interested in utilizing for-
mal verification techniques to enhance the reliability of our
autoencoders [10], [11].
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