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Abstract—In recent years, the integration of artificial intel-
ligence (AI) techniques has significantly transformed the field
of predictive maintenance, enabling businesses to proactively
monitor and address potential equipment failures before they
occur. One critical aspect of predictive maintenance is the
detection of anomalies, which can serve as early warning signs
for impending faults or failures. In this paper we present some
preliminary results obtained by leveraging autoencoders and the
related vector reconstruction error in the scope of the IMOCO4.E
Project.

Index Terms—Predictive Maintenance, Anomaly Detection,
Neural Networks

I. INTRODUCTION

Maintenance strategies are vital for optimal performance
and longevity of industrial systems. Traditional approaches,
based on fixed schedules or reactive responses, result in
inefficiencies, increased downtime, and high costs. However,
predictive maintenance [1], leveraging AI and data-driven
methods, has revolutionized the industry by enabling proactive
identification and mitigation of potential failures.

Anomaly detection [2] is a crucial component of predictive
maintenance, involving the monitoring of equipment behavior
to detect deviations from normal operational patterns. Ac-
curate identification of anomalies enables timely corrective
actions, risk mitigation, optimized maintenance schedules, and
improved reliability and availability of critical assets.

Autoencoders [3], a type of artificial neural network, have
emerged as a promising approach for anomaly detection.
Their ability to learn compact representations of data, captur-
ing underlying patterns while suppressing noise and outliers,
makes them well-suited for this task. By training autoencoders
on normal operating data, minimal reconstruction errors are
achieved. Consequently, when exposed to anomalous data,
higher reconstruction errors occur, facilitating the detection
and isolation of abnormal instances.

IMOCO4.E [4] is a Key Digital Technologies Joint Under-
taking project, initiated in September 2021 with the partic-
ipation of 46 partners from 13 countries. The project aims
to enhance the intelligence and adaptability of mechatronic
systems by integrating novel sensory information, model-
based approaches, AI, ML, and industrial IoT principles. By
leveraging these advanced technologies, IMOCO4.E aims to
facilitate the transition of European manufacturing toward

Industry 4.0, enabling the perception and management of so-
phisticated machinery and robotics. The project will deliver a
reference architecture tested and validated in diverse industrial
domains, including packaging, industrial robotics, healthcare,
and semiconductors.

In this work we focus on a use case originating from the
food and beverage industries: in particular, the component of
interest is a cutting machine used in a packaging production
line. Our aim is to build an anomaly detection system which
can recognize when the cutting blade need to be replaced due
to its degradation.

The rest of the paper is structured as follows. In Section II
we introduce some basic concepts and definitions. In Sec-
tion III and IV we present our solution for the task of interest
and our experimental results respectively. Finally, in Section V
we present some of our future research plans.

II. BACKGROUND

A. Neural Networks

A sequential neural networks is a machine-learning model
consisting of interconnected computing units, commonly
known as neurons. Such network present a structure composed
by several sequential layers whose neurons are only connected
to the neurons of the immediately previous and following
layers. The first and the last layer of the network are called,
respectively, input and output layers.

Computationally, the l-th layer of a sequential neural net-
work can be defined as a function fl : Il → Ol where Il
and Ol represent respectively the input and output domain of
the function. Similarly, a generic sequential neural network
can be defined as a function ν : I1 → Op where I1 and Op

are, respectively the input (output) domain of both the first
(last) layer of the network and of the network as a whole. In
particular, the neural network function ν can be expressed as:

ν(x) = fp(fp−1(...f1(x)...)) (1)

In this work, we are mainly focused on layers whose inputs
and outputs consist of vectors of real numbers, therefore we
will usually have Il ⊆ Rn and Ol ⊆ Rm.

The structure defined by the various layers of a neural
network, their connections, and their hyper-parameters is com-
monly known as the network architecture. In this paper we



focus on sequential neural networks presenting linear layers
and non-linear activation functions. A linear layer applies to
its input a simple affine transformation y = Wx + b, where
x ∈ Rn and y ∈ Rm are respectively the input and output
vector and W and b are the learnable weight matrix and bias
vector. The size m of the output is determined by the number
of hidden neurons in the layer. An activation function layer, in
general, applies a certain activation function to all the element
of the vector provided as input. In this work, we consider only
ReLU activation functions.

B. Autoencoders

Autoencoders are a class of neural networks widely used
in unsupervised learning tasks, including data compression,
dimensionality reduction, and anomaly detection. They consist
of an encoder and a decoder, which work together to learn a
compact representation of input data. The encoder maps the
input data into a lower-dimensional latent space representation,
often referred to as the bottleneck layer or code. This encoding
process captures the most salient features and patterns of the
input data, effectively reducing its dimensionality. The decoder
then reconstructs the original input data from the encoded
representation. During training, autoencoders aim to minimize
the reconstruction error between the input and output data.
By optimizing this reconstruction loss, the autoencoder learns
to capture the underlying structure of the data, enabling it
to generate accurate reconstructions. One key advantage of
autoencoders is their ability to learn robust representations by
extracting meaningful features from the input data. This is
achieved through the use of bottleneck layers, which force
the network to capture the most important information needed
for reconstruction. As a result, autoencoders can effectively
denoise input data and suppress outliers, making them partic-
ularly well-suited for anomaly detection tasks.

III. MATERIALS AND METHODS

A. Dataset

The dataset of interest is the One Year Industrial Component
Degradation1 Dataset. It comprises measurements obtained
during one year of operation of an OCME Vega shrink-
wrapper. The data is collected in sampling sessions last-
ing 8 seconds, with a time resolution of 4 milliseconds.
Each session consists of 2048 samples, and the number of
sessions varies across different months. In total, there are
519 sessions, amounting to 1,062,912 samples. The dataset
includes measurements from various sensors on the machine,
with a primary focus on the blade’s operations for cutting
the packaging plastic film. Specifically, the measurements
considered in this study encompass the motor torque, blade
and film position, blade and film speed, lag between expected
and actual positions of the blade and film, and a performance
evaluation value. The objective is to detect instances when
the cutting blade component becomes worn out, prompting its
replacement with a new one.

1https://www.kaggle.com/datasets/inIT-OWL/
one-year-industrial-component-degradation

B. Autoencoder Architecture

In this initial analysis, we examine four different archi-
tectures for our autoencoders. These architectures share a
similar structure, consisting of three hidden linear layers, each
followed by a layer of ReLU activation functions. The output
layer does not present an activation function. Specifically, the
considered autoencoders have different numbers of neurons in
each hidden layer: 32, 50, 64, and 128 in the first layer, 8,
10, 16, and 32 in the second layer, and 32, 50, 64, and 128
in the third layer, respectively. As expected in autoencoders,
there is an expansion of the output space in the first and third
hidden layers and a contraction in the second hidden layer. For
simplicity, we label these autoencoders as A1, A2, A3, and A4
respectively. Currently, we do not explore activation functions
other than ReLU, as it remains one of the most commonly
used activation functions in practice.

C. Training Process

We utilized PYNEVER [5], a neural network management,
training, and verification tool, to train the networks of interest.
PYNEVER employs PYTORCH [6] as a back-end and provides
a user-friendly custom training loop.

During training, we employed the Adam optimizer with a
learning rate of 0.001. The mean square error was used as the
loss function. We utilized a batch size of 512 for training, 128
for validation, and the same value for testing. The networks
were trained for 50 epochs. The validation set constituted 30%
of the training data, while 20% of the dataset was reserved for
testing. These learning parameters were consistent across all
the networks trained.

It is important to note that for anomaly detection tasks, the
autoencoders must be trained on a subset of the dataset where
anomalies are absent. Therefore, in our training and testing
processes, we considered only the first 200,000 samples of the
dataset. This choice is based on the reasonable assumption that
significant degradation of the blade would not occur within the
initial period of operations.

D. Anomaly Detection with Vector Reconstruction Error

As discussed in Subsection II-B, the trained autoencoders
generate an internal compact representation of the input data
and then reconstruct the original data based on this represen-
tation. However, the output of the autoencoders alone does
not provide a measure of the anomaly level in a specific input
data.

To quantify the degree of anomaly, we utilize the vector
reconstruction error, following a similar approach as proposed
in [7]. The vector reconstruction error measures the discrep-
ancy between the reconstructed output and the correspond-
ing target data. By assuming that the autoencoder has been
properly trained, this measurement enables the recognition of
anomaly presence and intensity. The underlying principle is
that if the autoencoder fails to accurately reconstruct the input
data, it indicates that the input data is anomalous in some way.

https://www.kaggle.com/datasets/inIT-OWL/one-year-industrial-component-degradation
https://www.kaggle.com/datasets/inIT-OWL/one-year-industrial-component-degradation


In our experimental evaluation, we employ the mean square
error between the output and the corresponding target as the
vector reconstruction error.

IV. RESULTS

The experiments were performed on a MacBook Air
laptop with 24 GB of RAM and an Apple M2 CPU.
The operating system used was macOS Ventura 13.4.
We utilized MPS for training the autoencoders. The code
required to replicate our experiments can be found at
https://github.com/darioguidotti/imoco4e-pilot3-etfa2023.

All the considered autoencoders achieved a reasonable level
of performance during the training process. Specifically, the
mean square errors computed on the test set were 7.54 · 10−7,
3.60 · 10−6, 5.72 · 10−7, 8.05 · 10−6 for A1, A2, A3, and A4
respectively. Notably, increasing the number of neurons in the
hidden layers did not result in a corresponding improvement
in the accuracy of the networks.

As mentioned in Subsection III-D, the test set loss alone is
insufficient to fully assess the performance of our autoencoders
on the task of interest. Consequently, we computed the vector
reconstruction error as the mean square error (MSE) between
the output of the autoencoders and the corresponding target
for all the samples in the dataset.

In Figure 1, we present scatter plots illustrating these
measurements for our autoencoders. Notably, an anomaly is
observed in the data during the 4th month, which is most
effectively detected by A1. Specifically, even the smallest MSE
value computed during the anomaly is significantly greater
than the maximum MSE of the non-anomalous data points.

It is worth mentioning that while A1 appears to be the
most adept at identifying the anomaly, all the autoencoders
demonstrate the ability to correctly detect it. Following A1,
the second, third, and fourth best performers were A3, A4,
and A2, respectively. As previously observed regarding the
accuracy of the networks, the size of the autoencoders does
not appear to be directly correlated with their performance in
anomaly detection.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we investigated how to leverage autoencoders
and the vector reconstruction error to identify anomalies in a
real-world dataset originating from a predictive maintenance
task. In our experimental evaluation we considered various
network architectures and we evaluated both their accuracy
in reconstructing the original data and their sensitivity to the
presence of anomalous data. Surprisingly, our experimental
results reveal that the less complex autoencoder outperforms
the others in detecting anomalous data.

At present, we are working both on extending our ex-
perimental evaluation and on deepening our investigation. In
particular, our experimental results show that, in addition to
the anomaly during the 4th months, other minor anomalies
seems to be present during the operation of the cutting blade.
We believe that understanding the underlying reasons for these

anomalies is an intriguing avenue for exploration. To extend
our experimental evaluation, we plan to extend the network
architectures considered with other activation functions and
different numbers of hidden layers and neurons. Finally, we
would like to investigate if the reliability of our autoencoders
may be certified, and eventually increased, using formal veri-
fication techniques [8], [9].
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Fig. 1. Graphical representation of the results of our experimental evaluation. On the x-axis are reported the input samples of interest divided in the 12
months of measurements, whereas on the y-axis the MSE between the output of A1 and the target is reported. As can be seen, the number of samples for

each months is subject to variation.
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