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Abstract

This work addresses the problem of Near-Duplicate
Video Retrieval (NDVR). We propose an effective video-
level NDVR scheme based on deep metric learning that
leverages Convolutional Neural Network (CNN) features
from intermediate layers to generate discriminative global
video representations in tandem with a Deep Metric Learn-
ing (DML) framework with two fusion variations, trained
to approximate an embedding function for accurate dis-
tance calculation between two near-duplicate videos. In
contrast to most state-of-the-art methods, which exploit
information deriving from the same source of data for
both development and evaluation (which usually results to
dataset-specific solutions), the proposed model is fed dur-
ing training with sampled triplets generated from an inde-
pendent dataset and is thoroughly tested on the widely used
CC WEB VIDEO dataset, using two popular deep CNN
architectures (AlexNet, GoogleNet). We demonstrate that
the proposed approach achieves outstanding performance
against the state-of-the-art, either with or without access to
the evaluation dataset.

1. Introduction
Near-duplicate video retrieval (NDVR) is a research

topic of increasing interest in recent years, due to the expo-
nential growth of social media applications and video shar-
ing websites, which typically feature vast amounts of near-
duplicate content. The problem is exacerbated in the case
of video due to its considerably larger volume (compared to
text and images), which make it a great challenge for every
web-based video platform as well as for systems that ana-
lyze and index large amounts of web video content. As a re-
sult, efficient retrieval of near-duplicate videos is nowadays
an indispensable component in numerous applications in-
cluding video search, management, recommendation, copy
detection and copyright protection.

The definition of near-duplicate videos (NDVs) is a con-
troversial topic in the multimedia research community, with
several definitions proposed that differ with respect to the
required level of similarity between NDVs [17]. In this
work, we adopt the definition from Wu et al. [31], where
NDVs are defined as videos that are close to duplicate of
each other, but different in terms of photometric variations
(color, lighting changes), editing operations (caption, logo
and border insertion), encoding parameters, file format, dif-
ferent lengths, and other modifications. A number of NDV
examples are illustrated in Figure 1.

Considerable effort has been invested by the research
community on the problem of NDVR. However, many state-
of-the-art methods adopt a dataset-bound approach and use
the same dataset for both development and evaluation. This
leads to specialized solutions that typically exhibit poor per-
formance when used (without tuning) on different video
corpora. For instance, some methods learn codebooks
[24, 1, 4, 14] or hashing functions [25, 26, 7] based on sam-
ple frames from the evaluation dataset, and as a result their
reported retrieval performance is often exaggerated.

Motivated by the excellent performance of deep learning
in a wide variety of multimedia problems, we are proposing
a video-level NDVR approach that incorporates deep learn-
ing in two steps. First, we use CNN features from inter-
mediate convolution layers based on a well-known scheme
called Maximum Activation of Convolutions [22, 34, 21],
which was recently used for NDVR and led to improved
results [14]. Second, we leverage a Deep Metric Learn-
ing (DML) framework based on a triplet-wise scheme,
which has been shown to be effective in a variety of cases
[2, 30, 29]. To our knowledge, it is the first time that deep
metric learning is exploited for NDVR. In particular, we
train a Deep Neural Network (DNN) to learn an embed-
ding function that maps videos to a feature space where
NDVs have smaller distances between each other compared
to other videos. Moreover, two different fusion variations
are proposed for the generation of video representation. The
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Figure 1. Examples of queries and near-duplicate videos from CC WEB VIDEO dataset.

generated video representation is compact in order to facil-
itate the development of scalable NDVR systems.

We also propose a triplet generation method for training
the DML framework with video samples from the VCDB
[11] dataset. The proposed approach is evaluated on the
widely used CC WEB VIDEO dataset [31], with CNN fea-
tures from two popular architectures [16, 27]. To compare
with the state of the art, we are also evaluating our approach
using training data from the target video corpus, simulating
the evaluation setting of competing approaches. Our system
outperforms these approaches, with more than 0.007 mAP
in all experimental setups.

2. Related Work
A thorough study on the NDVR problem and several re-

cent approaches is provided by Liu et al. [17]. According to
it, existing NDVR methods are classified based on the gran-
ularity of the matching between NDVs into video-, frame-
and hybrid-level matching.

Video-level matching: These approaches aim at solving
the NDVR problem at massive scale. Videos are usually
represented with a global signature such as an aggregate
feature vector [31, 18, 9] or a hash code [25, 7, 26] and the
video matching is based on the computation of the pairwise
similarity between the corresponding video representations.

Frame-level matching: NDVs are determined in this
case by comparing between individual frames or frame
sequences of the candidate videos. Existing approaches
[5, 1, 14] calculate frame-by-frame similarity based on Bag-
of-Words (BoW) schemes or employ sequence alignment
algorithms. Other works have explored spatio-temporal rep-

resentations [24, 33] for improving retrieval performance
and accelerating the similarity computation.

Hybrid-level matching: Such approaches attempt to
combine the advantages of video- and frame-level meth-
ods. Typical such approaches are, for instance, presented in
[31, 4], both of which first employ a filter-and-refine scheme
to cluster and filter out near-duplicate videos, and then use
frame-to-frame similarity on the reduced set of videos.

Moreover, the NDVR problem is related to the well-
known TRECVID copy detection task [15]. The main dif-
ference in the TRECVID copy detection task is that video
copies are artificially generated by applying standard trans-
formations to a corpus of videos, whereas in case of NDVR
duplicates correspond to actual user submitted videos.

Another field of related work is metric learning, on
which a detailed survey is provided by Yang and Jin [32].
Metric learning is conducted using pairwise [6, 35, 19, 21]
or triplet-wise constraints [2, 30, 29, 23, 3]. Its main pur-
pose is to learn an optimal projection for mapping input fea-
tures to another feature space. In the case of NDVR, we aim
at an embedding function that maps NDVs closer to each
other than to the rest of videos.

Pairwise methods usually employ contrastive loss that
tries to minimize the distance between pairs of exam-
ples with same-class label, while penalizing examples with
different-class labels that are closer than a margin γ [6, 21].
Triplet-wise embedding is trained on triplets of data with an
anchor point, a positive that belongs to the same class, and a
negative that belongs to a different class [29, 23, 3]. Triplet-
wise methods use a loss over triplets to push the anchor and
positive close, and penalize triplets where the distance be-



tween anchor and negative is less than the one between an-
chor and positive plus a margin γ. Deep metric learning has
been successfully applied to a variety of problems including
image retrieval [30, 29, 21], face recognition/retrieval [23],
person re-identification [3, 20], etc.

3. Approach Overview
The proposed NDVR approach leverages features pro-

duced by the intermediate convolution layers of deep CNN
architectures (section 3.1) to generate compact global video
representations. Additionally, to accurately compute the
similarity between two candidate videos, a DNN is trained
to approximate an embedding function for the distance cal-
culation (section 3.2). The model is built on batches of gen-
erated triplets from a development dataset (section 3.3).

3.1. Feature Extraction

We adopt a compact representation to extract frame
descriptors that is derived from activations of convolu-
tion layers of a pre-trained CNN. This image representa-
tion is called Maximum Activation of Convolutions (MAC)
[22, 34, 21, 14]. To this end, a pre-trained CNN network
is employed, with a total number of L convolution layers,
denoted as L1,L2, ...,LL. Forward propagating an image
through the network generates a total of L feature maps,
denoted asMl ∈ Rnl

d×n
l
d×c

l

(l = 1, ..., L), where nld × nld
is the dimension of every channel for convolution layer Ll
(which depends on the size of the input image) and cl is
the total number of channels. To extract a single descriptor
from every layer, we apply max pooling on every channel
of feature mapMl to extract a single value. The extraction
process is formulated in Equation 1.

vl(i) = max Ml(·, ·, i), i = {1, 2, ..., cl} (1)

where layer vector vl is a cl-dimensional vector that is de-
rived from max pooling on every channel of feature map
Ml. After extraction, all layer vectors are concatenated to a
single descriptor. Finally, the frame descriptors are normal-
ized by applying zero-mean and `2-normalization.

We experiment with two deep network architectures:
AlexNet [16] and GoogleNet [27]. For the former, all con-
volution layers are used for the extraction of the frame de-
scriptors, whereas, for the latter, all inception layers. The
generated vectors have 1,376 and 5,488 dimensions respec-
tively. Both architectures receive images of size 224× 224
as input (input frames are resized to these dimensions).

To generate global video descriptors, uniform sampling
is initially applied to select n frames per second for every
video (in our setup we use n = 1) and extract the respective
features for each of them. Global video descriptors are then
derived by averaging and normalizing (zero-mean and `2-
normalization) these frame descriptors. Keep in mind that

feature extraction is not part of the training (deep metric
learning) process, i.e. the training of the network is not end-
to-end, because the weights of the pre-trained network that
is used for feature extraction are not updated.

3.2. Metric Learning

3.2.1 Problem setting

We address the problem of learning a pairwise similar-
ity function for NDVR from the relative information of
pair/triplet-wise video relations. For a given query video
and a set of candidate videos, the goal is to compute the sim-
ilarity between the query and every candidate video and use
it for ranking the entire set of candidates in the hope that the
NDVs are retrieved at the top ranks. To formulate this pro-
cess, we define the similarity between two arbitrary videos
q and p as the squared Euclidean distance in the video em-
bedding space (Equation 2).

D(fθ(q), fθ(p)) = ‖fθ(q)− fθ(p)‖22 (2)

where fθ(·) is the embedding function that maps a video to
a point in an Euclidean space, θ are the system parameters
and D(·, ·) is the squared Euclidean distance in this space.
Additionally, we define a pairwise indicator function I(·, ·),
which specifies whether a pair of videos are near-duplicate.

I(q, p) =

{
1 if q, p are NDVs
0 otherwise

(3)

Our objective is to learn an embedding function fθ(·)
that assigns smaller distances to NDV pairs compared to
non-NDV ones. Given a video with feature vector v, a
NDV with v+ and a dissimilar video with v−, the embed-
ding function fθ(·) should map video representations to a
common space Rd, where d is the dimension of the feature
embedding, in which the distance between query v and pos-
itive v+ is always smaller than the distance between query
v and negative v− (Equation 4).

D(fθ(v), fθ(v
+)) < D(fθ(v), fθ(v

−)),

∀v, v+, v− such that I(v, v+) = 1, I(v, v−) = 0
(4)

3.2.2 Triplet loss

To implement the learning process, we create a collection
of N training instances organized in the forms of triplets
T = {(vi, v+i , v

−
i ), i = 1, ..., N}, where vi, v+i , v

−
i are the

feature vectors of the query, positive (NDV), and negative
(dissimilar) videos. A triplet expresses a relative similarity
order among three videos, i.e., vi is more similar to v+i in
contrast to v−i . We define the following hinge loss function



(a) DML architecture (b) DNN

Figure 2. Illustration of (a) the DML architecture, and (b) the composition of the DNN.

for a given triplet called ‘triplet loss’ (Equation 5).

Lθ(vi, v
+
i , v

−
i ) =

max{0,D(fθ(vi), fθ(v
+
i ))− D(fθ(vi), fθ(v

−
i )) + γ}

(5)

where γ is a margin parameter to ensure a sufficiently
large difference between the positive-query distance and
negative-query distance. If the video distances are calcu-
lated correctly within margin γ, then this triplet will not be
penalised. Otherwise the loss is a convex approximation of
the loss that measures the degree of violation of the desired
distance between the video pairs specified by the triplet. To
this end, we use batch gradient descent to optimize the ob-
jective function described in Equation 6.

min
θ

m∑
i=1

Lθ(vi, v
+
i , v

−
i ) + λ ‖θ‖22 (6)

where λ is a regularization parameter to prevent overfitting
of the model, and m is the total size of a triplet mini-batch.
Minimising this loss will narrow the query-positive distance
while widening the query-negative distance, and thus lead
to a representation satisfying the desirable ranking order.
With an appropriate triplet generation strategy in place, the
model will eventually learn a video representation that im-
proves the effectiveness of the NDVR solution.

3.2.3 DML architecture

For training the DML model, a triplet-based network archi-
tecture is proposed (Figure 2(a)) that optimizes the triplet
loss function of Equation 5. The network is provided with
a set of triplets T created by the triplet generation pro-
cess of section 3.3. Each triplet contains a query, a posi-
tive and a negative video with vi, v+i and v−i feature vec-
tors, respectively, which are fed independently into three
siamese DNNs with identical architecture and parameters.
The DNNs compute the embeddings of v : fθ(v) ∈ Rd. The
architecture of the deployed DNNs is based on three dense

fully-connected layers and a normalization layer at the end
leading to vectors that lie on a d-dimensional unit length
hypersphere, i.e. ‖fθ(v)‖2 = 1 (Figure 2(b)). The size of
each hidden layer (number of neurons) and the d-dimension
of the output vector fθ(v) depends on the dimensionality
of input vectors, which is in turn dictated by the employed
CNN architecture. The video embeddings computed from
a batch of triplets are then given to a triplet loss layer to
calculate the accumulated cost based on Equation 5.

3.2.4 Video-level similarity computation

The learned embedding function fθ(·) is used for comput-
ing similarities between videos in a target video corpus.
Two variants are proposed for fusing similarity computation
across video frames: early and late fusion (Figure 3).

Early fusion: Frame descriptors are averaged and nor-
malized into a global video descriptor, before they are for-
ward propagated to the network. The global video signature
is the output of the embedding function fθ(·).

Late fusion: Every extracted frame descriptor of an in-
put video is fed forward to the network, and the set of their
embedding transformations is averaged and normalized.

There are several pros and cons for each scheme. The
former is computationally lighter and more intuitive; how-
ever, it is slightly less effective. Late fusion leads to better
performance and is amenable to possible extensions of the
base approach (i.e. frame-level approaches). Nonetheless, it
is slower since the features extracted from all selected video
frames are fed to the DNN.

Finally, the similarity between two videos derives from
the distance of their representations. For a given query q
and a set ofM candidate videos {pi}Mi=1 ∈ P , the similarity
within each candidate pair is determined by Equation 7.

S(q, p) = 1− D(fθ(q), fθ(p))

max
pi∈P

(D(fθ(q), fθ(pi)))
(7)

where S(·, ·) is the similarity between two videos and
max(·) is the maximum function.



(a) Early fusion

(b) Late fusion

Figure 3. Illustration of early and late fusion schemes.

3.3. Triplet Generation

A critical component of the proposed approach is the
generation of the video triplets. It is important to provide
a considerable amount of videos for constructing a repre-
sentative triplet training set. However, the total number of
triplets that can be generated equals to the total number of
3-combinations over the size N of the video corpus, i.e.(
N
3

)
= N ·(N−1)·(N−2)

6 . We have empirically determined
that only a tiny portion of videos in a video corpus could be
considered as near-duplicates for a given video query. Thus,
it would be inefficient to randomly select video triplets from
this vast set (for instance, for N = 1000, the total number
of triplets would exceed 160M). Instead, a sampling strat-
egy is employed as a key element of the triplet generation
process, which is focused on selecting hard candidates to
create triplets.

The proposed sampling strategy is applied on a devel-
opment dataset. Such a dataset needs to contain two sets of
videos: P , a set of near duplicate video pairs that are used as
query-positive pairs, and N , a set of dissimilar videos that
are used as negatives. We aim at generating hard triplets,
i.e. negative videos (hard negatives) with distance to the
query that is smaller than the distance between the query
and positive videos (hard positives). The aforementioned
condition is expressed in Equation 8.

T = {(q, p, n)|(q, p) ∈ P, n ∈ N ,D(q, p) > D(q, n)}
(8)

where T is the resulting set of triplets. The global video
features are first extracted following the process of section

(a) Before training (b) After training

Figure 4. Examples of video representations in feature space be-
fore and after training. Colours: (white) query video (blue) NDV
(red) distractor videos.

3.1. Then, the distance between every query in P and every
dissimilar video in N is calculated. If the query-positive
distance is greater than a query-negative distance, then a
hard triplet is formed composed by the three videos. The
distance is calculated based on the Euclidean distance of
the initial global video descriptors.

Figure 4 visualizes the training and triplet generation
process. Figure 4(a) depicts the videos in feature space be-
fore training. The white and blue colour circles represent
the query and near-duplicate videos, respectively, whereas
the dissimilar videos are painted in red colour. In particular,
va is the query and vb is a NDV. However, before training, it
is clear that their distance Dab is greater than distances Dac
and Dad; therefore, vc and vd (deep red) are hard negatives
and two triplets will be created {va, vb, vc} and {va, vb,
vd}. The video ve (light red) does not generate any triplet
because its distance from the two NDVs is greater than the
distance between them. After training, the distance between
the query and the NDV must be smaller than their distance
to any other dissimilar video, as illustrated in Figure 4(b).

4. Evaluation
4.1. Experimental setup

Development dataset: We leverage the VCDB dataset [11]
to generate triplets for training our DML-based system.
This dataset is composed of videos derived from popu-
lar video platforms (YouTube and Metacafe) and has been
compiled and annotated as a benchmark for the partial copy
detection problem, which is highly related to the NDVR
problem. VCDB contains two subsets, the core Cc and the
distractor subset Cd. Subset Cc contains discrete sets of
videos composed by 528 query videos and over 9,000 pairs
of partial copies. Each video set has been annotated and
the video chunks of the video copies have been extracted.
Subset Cd is a corpus of approximately 100,000 distractor
videos that is used to make the video copy detection prob-
lem more challenging.



For the triplet generation, we retrieve all video pairs that
have been annotated as partial copies. We define an over-
lap criterion that determines whether a pair is going to be
used for the triplet generation: if the duration of the overlap
content is greater than a certain threshold t compared to the
total duration of each video, then the pair is retained; other-
wise, it is discarded. Each video of a given pair can be used
once as query and once as positive video. Therefore, the set
of query-positive pairs P is generated based on Equation 9.

P = {(q, p) ∪ (p, q)|q, p ∈ Cc, o(q, p) > t} (9)

where o(·, ·) determines the video overlap. We found empir-
ically that the selection of the threshold t has considerable
impact on the quality of the resulting DML model. Sub-
set Cd is used as the set N of negatives. To generate hard
triplets, the negative videos are selected from Cd based on
Equation 8.
Evaluation dataset: Experiments were performed on the
CC WEB VIDEO dataset [31]. The collection consists of
a set of videos retrieved by submitting 24 frequent text
queries to popular video sharing websites, i.e. YouTube,
Google Video, and Yahoo! Video. The dataset contains a
total of 13,129 videos with 397,965 keyframes. In addi-
tion to the provided keyframes, we extracted one frame per
second for every video in the dataset resulting in a total of
approximately 2M video frames. Some of the approaches
of section 4.2 rely on the dataset keyframes, while others
on the extracted frames.
Evaluation metrics: To measure detection accuracy, we
employ the interpolated precision-recall (PR) curve. We
further use mean average precision (mAP) as defined in
[31] and in Equation 10, where n is the number of rele-
vant videos to the query video, and ri is the rank of the i-th
retrieved relevant video.

AP =
1

n

n∑
i=0

i

ri
(10)

Implementation details: For feature extraction, we use the
Caffe framework [10], which provides pre-trained models
on ImageNet for both employed CNN networks1. The im-
plementation of the deep model is based on Theano [28].
For the three hidden layers [fc 0, fc 1, fc 2], we use
[800, 400, 250] and [2500, 1000, 500] neurons for AlexNet
and GoogleNet respectively. Thus, the dimensionality of
the output embeddings is 250 and 500 dimensions for the
two architectures respectively. Adam optimization [13] is
employed with learning rate l = 10−5 and mini-batches of
size m = 1000 triplets. For the triplet generation, we set
t = 0.8, which generates approximately 2k pairs in P and
7M and 5M triplets in T , for AlexNet and GoogleNet, re-
spectively. Other parameters are set to γ = 1 and λ = 10−5.

1https://github.com/BVLC/caffe/wiki/Model-Zoo

4.2. Competing approaches

The proposed approach is compared against six ap-
proaches from the literature. Four of those were developed
having access to the evaluation set. The remaining two do
not require a development dataset. The first four approaches
include the following:

Auto Color Correlograms (ACC): Cai et al. [1] use uni-
form sampling to extract one frame per second for the input
video. The auto-color correlograms [8] of each frame are
computed and aggregated based on a visual codebook gen-
erated from a training set of video frames. The retrieval of
near-duplicate videos is performed using tf-idf weighted co-
sine similarity over the visual word histograms of a query
and a dataset video.

Pattern-based approach (PPT): Chou et al. [4] build a
pattern-based indexing tree (PI-tree) based on a sequence
of symbols encoded from keyframes, which facilitates the
efficient retrieval of candidate videos. They use m-pattern-
based dynamic programming (mPDP) and time-shift m-
pattern similarity (TPS) to determine video similarity.

Layer-wise Convolutional Neural Networks (CNN-L):
Kordopatis-Zilos et al. [14] extract the frame descrip-
tors based on the same process as in Section 3.1 using
GoogleNet. A video-level histogram representation derives
from the aggregation of the layer vectors to visual words.
The similarity between two videos is computed as the tf-idf
weighted cosine similarity over the video-level histograms.

Stochastic Multi-view Hashing (SMVH): Hao et al. [7]
combine multiple keyframe features to learn a group of
mapping functions that project video keyframes into the
Hamming space. The combination of keyframe hash codes
generates a video signature that constitutes the final video
representation. A composite Kullback-Leibler (KL) diver-
gence measure is used to compute similarity scores.

The remaining two approaches are based on the work of
Wu et al. [31]:

Color Histograms (CH): This is a global video represen-
tation based on the color histograms of keyframes. The
color histogram is a concatenation of 18 bins for Hue, 3
bins for Saturation, and 3 bins for Value, resulting in a 24-
dimensional vector representation for every keyframe. The
global video signature is the normalized color histogram
over all keyframes in the video.

Local Structure (LS): Global signatures and local features
are combined using a hierarchical approach. Color sig-
natures are employed to detect near-duplicate videos with
high confidence and to filter out very dissimilar videos. For
the reduced set of candidate videos, a local feature based
method was developed, which compares the keyframes in a
sliding window using their local features (PCA-SIFT [12]).

https://github.com/BVLC/caffe/wiki/Model-Zoo
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Figure 5. Precision-Recall curve of the proposed approach based
on the two CNN architectures and for the three system setups.

5. Experiments
5.1. Experimental results

In this section, we study the performance of the pro-
posed approach in the CC WEB VIDEO dataset in relation
to the underlying CNN architecture and the different fusion
schemes. AlexNet and GoogleNet, two popular CNN archi-
tectures, are benchmarked. For each of them, three configu-
rations are tested: i) baseline: fuse all frame descriptors to
a single vector and use it for retrieval without any transfor-
mation, ii) early fusion: fuse all frame descriptors to a sin-
gle vector and then apply the learned embedding function
to generate the video descriptor for retrieval, iii) late fu-
sion: apply the learned embedding function to every frame
descriptor and fuse the embeddings to derive video repre-
sentations for retrieval.

Figure 5 and Table 1 illustrate the PR curves and the
mAP, respectively, of the two CNN architectures with the
three system setups. Late fusion runs outperform both
baseline and early fusion ones for both CNN architectures.
GoogleNet achieves better results for all three settings with
considerable margin, with precision more than 97% up to
80% recall and mAP scores of 0.968 and 0.969 for early
and late fusion respectively. Both fusion schemes clearly
improve the performance of the baseline approach for both
architectures. Both schemes achieve very similar results,
which indicates that the choice of the employed fusion
scheme is not crucial for the performance of the method.

Architecture baseline early fusion late fusion
AlexNet 0.948 0.964 0.964
GoogleNet 0.952 0.968 0.969

Table 1. mAP of both CNN architectures based on the baseline and
two DML fusion schemes.

5.2. Comparison of different features

To delve deeper into performance, we study the per-
formance of the DML framework with early fusion built
on features extracted based on three different methods.
The benchmarked methods are: i) proposed: apply max-
pooling to all convolution layers and concatenate the vec-
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Figure 6. Precision-Recall curve of the proposed approach and
state-of-the-art approaches, separated by the development dataset.

tors, ii) last conv: apply max-pooling to the activations of
the last convolution layer, iii) first fc: the activations of the
first fully-connected layer. We experiment with both CNN
architectures.

Table 2 depicts the mAP of the three feature extraction
methods for two CNN architectures. The proposed feature
extraction scheme outperforms the runs of the compared
feature extraction methods, for both architectures. In case
of AlexNet, the proposed method marginally outperforms
the first fc method. But, our approach reports clearly bet-
ter performance compared to the others when GoogleNet is
used. Hence, we may draw the conclusion that the feature
extraction using all convolution layers yields better results
for NDVR. Additionally, the triplet loss training scheme
clearly improves performance compared to the baseline of
section 5.1.

Architecture proposed last conv first fc
AlexNet 0.964 0.957 0.962
GoogleNet 0.968 0.960 0.961

Table 2. mAP of three feature extraction methods for the two CNN
architectures.

5.3. Comparison against NDVR state-of-the-art

For comparing the performance of our approach with
the six NDVR approaches from the literature, we select the
setup using GoogleNet features and late fusion denoted as
DMLvcdb, since it achieved the best results. For the sake
of comparison and completeness, we further provide the re-
sults of our model trained on a triplet set derived from both
VCDB (similar to DMLvcdb) and also videos sampled from
CC WEB VIDEO, denoted as DMLcc. The latter simulates
the situation where the DML-based approach had access to
a portion of the evaluation corpus, similar to the setting used
by the competing approaches.

Table 3 presents the mAP scores of the competing meth-
ods. The methods are grouped based on the dataset used
during development. Our approach outperforms all meth-
ods in each group with a clear margin. The same result
derived from the comparison of the PR curves is illustrated
in Figure 6, with the light blue line (proposed approach)



Method
mAP

Evaluation Dataset
ACC PPT SMVH CNN-L DMLcc
0.944 0.958 0.971 0.974 0.981

No/Other Dataset
CH LS DMLvcdb

0.892 0.954 0.969
Table 3. mAP comparison between two variants of the proposed approach against six state-of-the-art methods. The approaches are divided
based on the dataset used for development.
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Figure 7. Precision-Recall curve comparison of the proposed ap-
proach with two variants of [14] on two dataset setups.

lying upon all others up to 90% recall in both cases. It
is noteworthy that our approach trained on VCDB dataset
outperforms four out of six methods, with two approaches
achieving marginally better results, but both developed on
the evaluation dataset.

5.4. Performance in the presence of distractors

In our last experiment, we implemented the second best
performing approach CNN-L [14] based on information
derived from the VCDB dataset, i.e. we built the layer
codebooks from a set of video frames sampled from the
aforementioned dataset. We then tested two variations,
the CNN-Lcc that was developed on the CC WEB VIDEO
dataset (same as Section 5.3) and the CNN-Lvcdb devel-
oped on the VCDB dataset. For each of the 24 queries of
CC WEB VIDEO, only the videos contained in its subset
(the dataset is organized in 24 subsets, one per query) are
considered as candidate and used for the calculation of re-
trieval performance. To emulate a more challenging set-
ting, we created CC WEB VIDEO* in the following way:
for every query in CC WEB VIDEO, the set of candidate
videos is the entire dataset instead of only the query sub-
set (the videos from the other subsets are considered to be
dissimilar).

Figure 7 depicts the PR curves of the four runs and the
two setups. There is a clear difference between the per-
formance of the two variants of the CNN-L approach, for
both dataset setups. The proposed approach outperforms
the CNN-L approach for all runs and setup at any recall
point by a large margin. Similar conclusions can be drawn
from the mAP scores of Table 4. The performance of CNN-
L drops by more than 0.02 and 0.062 when it is trained on
VCDB, for each setup respectively. Again, there is a con-
siderable drop in performance in CC WEB VIDEO* setup

for both approaches, with the proposed being more resilient
to the setup change. As a result, the proposed approach has
been demonstrated to be highly competitive and possible to
transfer to different datasets with comparatively lower per-
formance loss.

Run CC WEB VIDEO CC WEB VIDEO*
CNN-Lvcdb 0.954 0.898
DMLvcdb 0.969 0.934
CNN-Lcc 0.974 0.960
DMLcc 0.981 0.970

Table 4. mAP comparison of the proposed approach with two vari-
ants of the approach [14] on two different dataset setups.

6. Conclusions and Future Work
We presented a new video-level representation for Near-

Duplicate Video Retrieval, which leverages the effective-
ness of features extracted from intermediate convolution
layers and Deep Metric Learning. We proposed a DML
architecture based on video triplets and a novel triplet gen-
eration scheme that generates a compact video-level repre-
sentation for the NDVR problem. The proposed approach
was tested on two CNN architectures and exhibited highly
competitive performance when developed on an indepen-
dent dataset from the evaluation set. Furthermore, it out-
performed all compared approaches from the literature by
a clear margin. Finally, the performance of the proposed
approach was compared with the best method from state-
of-the-art in terms of Precision-Recall and mAP and in two
different setups of CC WEB VIDEO dataset.

In the future, we plan to look into further improvements
to the proposed approach, e.g. by considering more effec-
tive fusions schemes (compared to early and late fusion) and
by training the DML architecture end-to-end (instead of us-
ing features from pre-trained CNN architectures). More-
over, we are going to conduct more comprehensive eval-
uations using more challenging datasets, and we will also
assess the applicability of the approach on the problem of
Partial Duplicate Video Retrieval (PDVR).
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