
When Machine Learning Meets Raft:

How to Elect a Leader over a Network

Kostas Choumas and Thanasis Korakis

Dept. of ECE, University of Thessaly, Volos, Greece

Email: kohoumas, korakis@uth.gr

Abstract—Numerous well-known applications use the Raft
consensus algorithm to maintain consistent replicas of their data
on distributed nodes. Raft is based on a dynamically elected
leader who is one of the distributed nodes, and its operations
are unfortunately suspended during the election of the leader.
Elections can be triggered by the failure of the current leader, in
which case they are unavoidable, or by a network disconnect
between the leader and another node, in which case a new
inefficient leader will likely replace the previous one at the
expense of additional system downtime. In this paper, Raft
messages are monitored at every node, and Machine Learning is
used to classify the aforementioned causes of each election. This
data is used to increase the system’s availability by decreasing
the total number of elections that could be conducted in a given
time unit. Three supervised classifiers were trained with messages
generated in a real Raft-operated distributed system that was
deployed on a testbed and where multiple events triggering
elections were applied. All classifiers are nearly 97% accurate at
classifying the causes of these elections, approaching even 100%
in some cases. Index Terms—Machine Learning, Raft, testbed
experimentation.

I. INTRODUCTION

Clusters of multiple distributed nodes are utilized by nu-

merous applications to execute their mission-critical opera-

tions, resulting in their increased fault tolerance. These nodes

function as state machines that maintain identical copies

of the same data and continue to support the application

operations even if some nodes have failed. The majority of

these applications (including OpenDaylight, ONOS, Kuber-

netes, OpenStack, Docker, and Hyperledger-Fabric, just to

name a few) use the Raft consensus algorithm [1], [2] for

maintaining consistent replicas of the same data across the

nodes. The data replication, according to Raft, is carried out

by a single leader that is dynamically elected from among the

nodes. Regardless of which node introduces a data change, this

change is ultimately forwarded to the leader for replication.

As a result, the application is not available during the election

process, since there is no leader. Consequently, the application

availability declines as the number of elections per time unit

increases.

The spatial placement of the distributed nodes is an ad-

ditional reason for triggering elections and decreasing appli-

cation availability. It increases the application resilience to

natural disasters and power outages, but also introduces link

failures, which are distinct from the node failures that Raft

is designed to handle. According to the Raft design, election

is activated when at least one node realizes it is no longer

connected to the leader, assuming that the leader is failed, and

Fig. 1. ML classification as either node or link failures.

it is likely that this node will succeed the leader. In the event

of disconnection due to link failure, and assuming that the link

is unstable and goes up and down numerous times, the same

number of elections are triggered to transfer the leadership

between the two nodes. If a third node, connected to all other

nodes, had been chosen as the new leader, these elections could

have been avoided.

Our contribution: Machine Learning (ML) is used in this

paper to classify the failures triggering elections as either link

or node failures. As depicted in Figure 1, at each node, a model

generated by a ML classifier reads the Raft messages to predict

the failure type. Once a new leader has been elected, each

node is aware that a failure triggered the leadership transition

and uses its ML model for the classification of this failure.

This is useful because a set of actions should be carried out,

such as transferring the leadership to another node, if the same

link has repeatedly failed and triggered numerous elections.

The effectiveness of three ML classifiers in categorizing the

aforementioned failures is assessed and presented below.

The rest of the paper is organized as follows: Section II

presents related work to Raft optimizations that primarily take

use of leadership transition, whereas Section III provides an

overview of the Raft algorithm. Section IV describes how ML

can be used to enhance Raft, whereas Section V provides the

results of testbed experiments to evaluate the ML assistance

in Raft. Finally, Section VI concludes the paper and discusses

implications for future research.

II. RELATED WORK

In [3] and [4], heuristics for the placement of a distributed

cluster of Software Defined Networking (SDN) controllers

using Raft for synchronization are presented. Regardless of



which controller is the master, which is also the Raft leader,

the presented solutions reduce the overall control overhead.

The modeling and numerical evaluation of Raft-operated dis-

tributed clusters of SDN controllers are also presented in

[5], utilizing Stochastic Activity Networks and estimating

the effect of various hardware and software failures on the

response time, irrespective of the network’s impact on the

election process. In contrast, in [6] and [7], the authors

concentrate on the Raft leader and investigate the network

effect on the leader election process, and consequently on the

Raft performance. [8] also considers the network effect on

the Raft operation, proposing the use of dedicated P4-based

network devices to offload a portion of the Raft operation to

the network. In [9], the underlying network connecting the

cluster of ONOS controllers is also considered for the master

controller election, which is determined by the Raft leader.

In [10], an appropriate configuration of the parameters

of the election process is proposed in an effort to compel

the replacement of an overloaded but still-living leader. The

authors argue that an overloaded leader sends messages with

a high time deviation; consequently, they recommend that

receivers campaign for the next leadership if they detect a

time difference between the leader’s messages. In [11], two

algorithms to minimize the number of elections without a

winner are proposed (due to the split vote, that will be further

explained later).

In [12], a leadership transfer algorithm is proposed to

prevent the network from splitting by replacing the current

leader if its links to the other nodes are mostly unreliable. A

leader selection algorithm is designed to select the next leader

based on a reputation model that evaluates the stability of all

network nodes. Similarly, in [13], the authors propose three

criteria and suggest exploiting federated learning to evaluate

them for selecting a better next leader that increases network

stability. Lastly, in [14], the election parameters are optimized

to minimize the probability that the majority of the cluster

cannot reach the leader due to packet loss on the network

links. All these works focus on manipulating the succession of

Raft’s leadership in different ways, thereby avoiding multiple

ineffective elections that reduce availability. In this work, we

employ ML to track the history of Raft messages and intervene

as necessary to prevent ineffective elections.

III. RAFT OVERVIEW

As introduced previously, a Raft-operated application uti-

lizes a cluster of nodes that are state machines. Their state

reflects the data of the application. They begin in the same

state and only change it after executing the same sequence of

deterministic commands in the same order. This sequence of

commands is named log and is replicated among the nodes.

Keeping the replicated log consistent among all nodes is

the contribution of the Raft consensus algorithm, which is

achieved with the assistance of a leader. The leader is elected

when cluster begins or the current leader fails. Between two

successive leader elections, there is at most one leader and

the other nodes are followers, whereas during the elections

there is no leader and some nodes become candidates when

they realise the absence of a leader. The periods between

the elections are identified by a consecutive integer number,

named term.

Each node begins as a follower and remains as such as

long as it continues to receive requests from the leader or

a candidate. The leader sends periodic heartbeat requests to

all followers for maintaining its leadership and collects their

heartbeat replies. The heartbeat timeout is the period between

heartbeats, which should be slightly longer than the average

time required for a node to send requests to all other nodes

in parallel and receive their responses. If a follower does not

receive heartbeat over a random time period called election

timeout, which should be an order of magnitude longer than

the heartbeat timeout, then the follower assumes there is no

viable leader and begins an election, increasing also its term

by one. This occurs for all nodes upon startup, since none of

them is leader.

The follower initiates an election by transitioning to candi-

date, voting for itself, and simultaneously issuing vote requests

to other nodes. Then, one of three outcomes occurs: (a) the

candidate becomes leader after receiving positive vote replies

from more than half of the cluster, (b) another candidate es-

tablishes itself as leader and this candidate receives a heartbeat

from the new leader and transitions back to follower, or (c)

there is no winner due to a split vote, as none of the candidates

collects the required number of positive votes. When a split

vote occurs, each candidate waits again for a random election

timeout to expire in order to increase its term, and then initiates

a new round of vote requests, starting a new election. The

packets sent by each node are labeled with its term, which

may differ from the terms of the other nodes. Noting that

an odd number of cluster nodes reduces the likelihood of a

split vote, it is recommended that a cluster has 3 or 5 nodes.

Clusters with more than 7 nodes are afflicted by high control

overhead.

All commands introduced by the application, including

those received by the followers and redirected to the leader,

are appended to the log of the leader. Once new commands

have been appended, the leader replicates its log by sending

append requests in parallel to all followers and including the

log in these requests. When the leader receives append replies

from more than half of the cluster, the commands of the

replicated log are deemed committed and they are executed

by the leader. Then, the leader resends empty append requests

to the followers without any log, forcing them to execute the

already delivered and committed commands. If followers crash

or network packets are lost, the leader resends append requests

until all followers eventually execute the committed commands

and send their append replies.

IV. ML ASSISTED RAFT

As described in Section III, an election is triggered when

a follower becomes candidate and sends vote requests. This

occurs when the follower has not received a heartbeat request

from the current leader for the duration of its election timeout.
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Fig. 2. Possible series of Raft messages exchanged on a 3-node cluster in the event of node 2 (at left) or link 2−3 (at right) failure.

It is presumed that heartbeat requests have ceased since the

current leader has failed. However, the heartbeat requests could

be missed if the link between the leader and a follower fails.

In the event of link failure as opposed to node failure, the

leadership is likely transferred to the follower using this link.

If this link moves up and down again, the same phenomenon

will occur, with the leadership shifting from one end of the link

to the other [15]. Due to an unstable link that repeatedly moves

up and down, multiple successional leadership transitions

could occur, which could be avoided by assigning leadership

to a third node. In addition, the third node would be able to

connect to all nodes, whereas the two nodes at the ends of the

failed link are unable to connect to each other.

This is the reasoning for utilizing ML to decrease the

number of Raft elections and increase the availability of a

Raft-operated application. The ML classification of the trigger

of a leadership transition as either node or link failure, can

be extremely helpful in this regard. In general, once a node

receives heartbeat request of a new term, it is aware that a new

leader has been elected, but it does not know why. According

to our design, each node is able to independently monitor its

exchanged messages and uses the most recent ones before

the heartbeat request to determine the cause of the leadership

transition. Figure 2 illustrates the distinctions between two

possible series of Raft messages exchanged on a 3-node cluster

in the event of a node or link failure.

Before and after the failure, the leaders in this example are

node 2 and node 3. When node 1 receives the first heartbeat

request of term 100 from node 3, it is simple for it to determine

that a failure has occurred and that node 3 is the new leader.

Combining this information with the previously received heart-

beat requests of term 99 from node 2, it concludes that the

leadership transition is from node 2 to node 3, but does not

know the cause of this change. As depicted, the leadership

change could be triggered by the failure of node 2 or link 2−3

(left or right part of Figure 2, respectively). Under the node

failure scenario, node 1 only receives heartbeat requests from

node 3, whereas under the link failure scenario, node 1 receives

heartbeat requests from all other nodes; however, the random

series of messages may be considerably altered, necessitating

ML for enabling node 1 to classify the failure.

In Section V, it is presented how various ML classifiers are

used to create models that classify failures, trained offline with

series of Raft messages collected by one node, e.g. node 1.

Prior to each heartbeat request for a new term, a series of

Raft messages has been exchanged and it is used as training

sample. The inference of the produced models enables node 1

to predict the type of the failure that caused the last leadership

transition, in order to campaign or not for the next leadership,

as the current leader may be unstable in the event of multiple

link failures. Similar to node 1, the same procedure is repeated

on all other cluster nodes.

In particular, the Decision Tree (DT), Support Vector Ma-

chines (SVM) and K-Nearest Neighbours (KNN) ML classi-

fiers are evaluated. The DT classifiers generate tree structures

that, beginning at the root of the tree, examine each tree

node to determine if one of the sample values is less than

a predetermined threshold. This process is repeated until they

reach a leaf that is always mapped to a node or link failure.

The SVM classifier defines a hyperplane that divides the

samples into two spaces, one for each failure, with the utmost

distance from the nearest sample on both of its sides. The

KNN classifier relies on the majority vote of the k nearest

neighbors of each sample.

V. IMPLEMENTATION & TESTBED EXPERIMENTATION

The presented experimentation relies on the NITOS [16]

testbed and the open-source implementations of the Raft

protocol and ML classifiers, etcd [17] (version 3.3.0-rc.0) and

scikit-learn [18] (version 0.24.1) respectively. The messages

are monitored using pyshark and a custom script that extracts

Raft messages from TCP segments. Time is designated and

the duration of each slot is 100 milliseconds. The heartbeat
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Fig. 3. Supervised training of ML classifiers.

timeout is 1 slot (100 milliseconds), while the election timeout

is chosen at random between 10 and 19 slots (1 second and 1.9
seconds). In addition to the Raft messages, which consist of

the heartbeat, vote, and append requests/replies, link-heartbeat

messages are periodically exchanged every 5/3 seconds. There

are two TCP connections named message stream and msgApp

stream between each pair of nodes. Almost all messages,

including heartbeat and vote requests/responses, empty append

requests, and all append replies, use the message stream.

In contrast, the msgApp stream is utilized solely for non-

empty append requests that include the log. Link-heartbeats

are transmitted across both streams.

During the experimentation, an etcd cluster is deployed at

NITOS, and each node is connected to the other nodes via

links that are independent of one another. At the conclusion

of each round, either the leader or a randomly chosen link

adjacent to the leader is failed for 5 seconds. The probabilities

of selecting each failure are equal. Then, the node or the link

recovers, and the procedure is repeated 5 seconds later. This

procedure is repeated 5000 times, creating the same number of

samples and matching them with the failures that caused them.

Since failures are sporadic, we presume that multiple failures

cannot occur at the same moment. Each sample consists of

the M most recent messages exchanged by node 1, across all

its TCP streams prior to the first heartbeat request of a new

term (including this heartbeat).

The sample is a M-tuple of preprocessed messages, during

which only the timestamp, type, receiver and sender of the

original message are retained and edited appropriately. The

timestamp of each message is replaced with its relative time,

which is the absolute difference from the timestamp of the

most recent message in the tuple. For instance, if timestamp

is 10000 microseconds and the timestamp of the most re-

cent message is 10002 microseconds, then relative time is

2 microseconds. In addition, the type, receiver and sender

of each message are replaced by a group identifier. There

are 6 type groups: one for link-heartbeats, one for heartbeat

requests, one for heartbeat replies, one for both empty and non-

empty append and vote requests, one for append and positive

vote replies, and one for negative vote replies. It has been

arranged so that messages of the same type group occupy

nearly identical positions in the tuple. For example, the append

or vote reply of a node typically precedes the heartbeat request

of the new leader; therefore, these two message types are

grouped together. Each type group is further divided into 6

subgroups based on the message receiver and sender: three for

messages received by node 1 and sent by either the previous

leader (PL), the new leader (NL) or another follower (F), and

three for messages sent from node 1 to either PL, NL or F. In

total, there are 62
= 36 message groups.

Unlike the relative times, the groups are not ordered, so

they are not included in the tuple as integers. Each message in

the tuple consists of its relative time and 36 additional bits, of

which only one is set to one to identify its group. This method

permits the Euclidean distance to reflect the actual similarity

between two samples. In addition to the M messages with their

M non-negative real values for their relative times and their

36M boolean values for their groups, each tuple also contains

the following:

• the average and variance of all message relative times,

• the 36 frequencies of all message groups in the tuple,

• the 2×36 = 72 positions in the tuple, from 1st to Mth, of

the newest and oldest messages in each group (messages

with a lower position are newer and more recent to the

heartbeat with new term),

• the 3 frequencies of all packets sent or received by PL,

NL, or F respectively,

• the 2× 3 = 6 positions in the tuple of the newest and

oldest messages sent or received by PL, NL, or F respec-

tively,

• the frequency of all heartbeat requests in the tuple.

As follows, each sample contains M+120 non-negative real

values and 36M boolean values. Figure 3 depicts the structure

of the samples and how they are fed to the ML classifiers

for supervised training, along with their failure types. Training

uses 90% of samples and the rest samples are used for testing.

The frequencies of all leadership transitions between each pair

of nodes, due to node or link failures, are nearly equal. Below

is an evaluation of the three aforementioned classifiers for

two cluster sizes, always beginning with the performance of

the DT classifier, which is also accompanied by a graphical

explanation of its results.

A. 3-node cluster

The initial deployment consists of 3 etcd nodes connected

by 3 links with equal propagation delay.

1) DT: It is constructed using the CART algorithm. In

order to prevent overfitting, the criterion for further dividing

a tree node is to minimize its Gini impurity by more than

0.01, whereas the Gini impurity of each node measures the

probability that a random sample will be misclassified. The

sample size M has been gradually increased from 4 to 20,

resulting to various models that effectively classify from 75%

to 95% of the testing samples, as it is depicted in Figure 4.

Figure 6 depicts the resulting DT model for M = 20, which

effectively classifies 95% of the testing samples. All possible

cases of this model are the following:
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Fig. 4. Success rates of various ML classifiers for various sample sizes M.

Case A. If the relative times of the older messages in the

sample are not too high, then it is a link failure, since

node failure duration takes longer than link failure

duration, as one may anticipate.

Case B. Else, it is a node failure if node 1 requested a vote

from F and many other messages followed until the

heartbeat request from NL. The high position of this

vote request is most likely the result of a split vote,

which does not occur in the event of link failure.

Case C. Alternatively, if the variance of relative times is

adequately small, it is a link failure for the same

reason as Case A.

Case D. Otherwise, a link failure occurs if the oldest heartbeat

request with previous term to F has high position.

Case E. Otherwise, it is a node failure.

Additionally, it should be noted that nearly all (99%)

incorrectly classified testing samples refer to link or node

failures that transfer leadership to node 1. This indicates that

the DT model of node 1 is nearly 100% effective at classifying

failures in which node 1 is not involved as NL. In turn, this

means that in the event of a leadership transition due to a link

failure that requires actions to move the leadership from NL,

the other nodes will be able to recognize the link failure and

campaign for replacing this NL.

2) SVM: It uses the linear “kernel” (inner product) as a

distance measure, in order to divide the samples into two

spaces using a hyperplane that features the utmost distances

from the nearest samples of both failures. Figure 4 depicts the

success rates of SVM for a variety of sample sizes, clearly

reaching 96% for M = 20 and above. The CPU time required

for training the SVM model is approximately 1.6 times that

of the DT model.

3) KNN: It uses the votes of k = 6 neighbors to categorize

each sample, and the Euclidean metric is used to calculate

the distances between the samples. Figure 4 depicts that

KNN reaches again 96% for M = 20 and above, but the

corresponding CPU time is now 3.6 times that of the DT

model.
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Fig. 5. Success rates of various ML classifiers for various sample sizes M.

B. 5-node cluster

The classifiers are also assessed in the scenario of a 5-node

cluster, connected by 10 links with equal propagation delay.

The same parameters are used in all classifiers with the 3-node

cluster. The only difference is the sample size, which has to

be nearly M = 40 for classifiers to achieve their maximum

success rates, as it is depicted in Figure 5.

1) DT: Its success rate is 97% for sample size M = 40 and

above. Figure 7 depicts the DT model for M = 40. The cases

of this model are the following:

Case A. If the variance of relative times is small enough, then

it is a link failure, as the duration of a node failure

is lengthier than that of a link failure.

Case B. Else, if the frequency of all heartbeat requests is high,

then it is a node failure.

Case C. Otherwise, if there are no vote/append requests from

F, then it is a link failure.

Case D. Otherwise, it is a node failure.

As is the case with the 3-node cluster, the model predicts

failures where NL is not node 1 with an accuracy of nearly

100%.

2) SVM: Its success rate is 98% for sample size M = 40 and

above. The CPU time required for its training is approximately

4.8 times that of the DT model.

3) KNN: Its success rate is 98% for sample size M = 40 and

above. The CPU time required for its training is approximately

1.6 times that of the DT model.

VI. CONCLUSIONS & FUTURE WORK

This study presents the use of ML classifiers to enhance

the operation of Raft, thereby increasing its availability and

leadership stability. SVM seems slightly more effective than

DT and KNN, with success rates of 96% and 98% for 3-

node and 5-node clusters, respectively. However, it appears

to require more CPU time, while DT is much faster at

the expense of only 1%, and KNN falls somewhere in the

middle of both dimensions. Moreover, all failures that are not

successfully classified by some nodes are correctly classified

by other nodes that use this information to enhance Raft. In
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the future, additional classifiers and unsupervised learning will

be evaluated, even in the case of larger clusters.
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