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Low Delay Random Linear Coding and
Scheduling Over Multiple Interfaces

Andres Garcia-Saavedra, Mohammad Karzand, and Douglas J. Leith, Senior Member, IEEE

Abstract— High-performance real-time applications, expected to be of importance in the upcoming 5G era, such as virtual and
augmented reality or tele-presence, have stringent requirements on throughput and per-packet in-order delivery delay. Use of multipath
transport is gaining momentum for supporting these applications. However, building an efficient, low latency multipath transfer
mechanism remains highly challenging. The primary reason for this is that the delivery delay along each path is typically uncertain and
time-varying. When the transmitter ignores the stochastic nature of the path delays, then packets sent along different paths frequently
arrive out of order and need to be buffered at the receiver to allow in-order delivery to the application. In this paper we propose S-EDPF
(Stochastic Earliest Delivery Path First), a generalization of EDPF which takes into account uncertainty and time-variation in path
delays yet has low-complexity suited to practical implementation. Moreover, we integrate a novel low-delay Forward Error Correction
(FEC) scheme into S-EDPF in a principled manner by deriving the optimal schedule for coded packets across multiple paths. Finally,
we demonstrate, both analytically and empirically, that S-EDPF is effective at mitigating the delay impact of reordering and loss in
multipath transport protocols, offering substantial performance gains over the state of the art.

Index Terms—Low-delay communications, stochastic scheduling, network coding, multipath transport, Tactile Internet.
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1 INTRODUCTION

Some of the most interesting (and challenging) services
envisioned for the next generation of mobile networks
generate real-time streams of data packets [1]. Virtual and
augmented reality require continuous low latency feedback
to enable high-precision perception of objects and timely
updates in response to user movements and changes in the
surrounding environment. Tele-presence needs continuous
real-time and accurate multi-sensory feedback. In summary:
very low-delay, high-rate reliable streaming of information
is expected to be key to enabling the next generation of
applications of the Tactile Internet [2].

To illustrate the network footprint of the types of ap-
plication we are interested in, we carry out the following
simple experiment. The setup consists of a server running
openface [3], a state of the art face recognition software, as
a service and a laptop running a browser as the client. The
browser sends images over a websocket to the server for
pattern recognition processing and the server sends back a
bounding box plus a tag for each face in the image. This
setup mimics a simple augmented reality application if we
imagine running an app which uses the video camera on
a phone. The app, with the help of the server which does
the actual pattern recognition legwork, adds an overlay in
real-time which tags all of the people in the field of view
with their names. In our tests the bandwidth of the link
connecting laptop and server is large enough so that it
is not a bottleneck. We plot in Fig. 1 an example of the
packet rates measured over a 100-secs experiment. This data
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Fig. 1. Network footprint of openface in an augmented reality setup.

illustrates how the service requires high packet rates during
the period in which the application is running. The transport
protocol used in this experiment, TCP, guarantees in-order
delivery and no losses at the cost of delay by employing a
buffer at the receiver and Automatic Repeat reQuest (ARQ).
Smooth rendering of the overlay requires that packets are
transmitted to/from the openface server with less than
around 150 msecs per-packet in-order delivery delay [4].

Transporting data between a source and destination in
parallel along multiple paths is well-recognised as a poten-
tial means to increase throughput [5]–[7], improve resilience
(if one path breaks, the connection can gracefully failover
to the remaining paths) [8], and lower delay (by creating
a “race” between different paths). Hence, there is much
interest in its use for next generation services [2]. However,
building an efficient, low latency multipath transfer mech-
anism remains highly challenging. The primary reason for
this is that the delivery delay along each path is typically
uncertain and time-varying [9]–[11] due to queueing, link
layer retransmission, the action of congestion control, etc.
When the transmitter ignores the stochastic nature of the
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path delays when deciding which packets to send down
which path, e.g. by making scheduling decisions based
on only the average path delay, then packets sent along
different paths frequently arrive out of order and need
to be buffered at the receiver to allow in-order delivery
to the application [12]. This so called head-of-line blocking
(HOL) can cause substantial delay in packet delivery1. A
second source of HOL, in addition to reordering, is packet
loss due to queue overflow, wireless link losses, etc. When
ARQ is used to recover from packet loss, as is often the
case, retransmission incurs at least one round-trip time of
additional delay (more if the retransmitted packet is itself
lost). This delay is incurred not only by the packet that is
lost but also by subsequent packets that remain buffered at
the receiver until the lost packet is finally received.

In this paper we study achieving low latency multipath
operation in the face of uncertain and time-varying path
delays and packet loss. Our main contributions can be
summarized as follows:
• We propose S-EDPF (Stochastic Earliest Delivery Path

First), a generalization of EDPF which takes into account
uncertainty and time-variation in path delays. To our
knowledge, this is one of the first multipath schedulers
that takes these into account (existing multipath sched-
ulers mostly use EDPF, or a computationally cheap ap-
proximation to EDPF, with a measurement of average
path delay and ignore time-variations). The major chal-
lenge is to contain the computational complexity since the
stochastic problem may be intractably complex to solve
in real time at high data-rates. In §2 we address this
challenge and present a low-complexity scheduler suited
to practical implementation.

• We extend our preliminary work in [42] on low delay code
constructions for single path connections to the multipath
setting and integrate it within S-EDPF in a principled
manner by deriving the optimal schedule for coded pack-
ets across multiple paths. This is one of the first ana-
lytic results for scheduling of Forward Error Correction
(FEC) packets in multipath. We demonstrate that coding
is effective at mitigating the delay impact of reordering
in multipath transport protocols due to variable path
latencies—to our knowledge, first studied in this paper—
and also the delay cost due to packet losses.

• We present a prototype implementation and perform a
thorough performance evaluation of S-EDPF. This in-
cludes an analytical evaluation, simulations, and an ex-
tensive experimental campaign that includes controlled,
semi-controlled, and “wild” scenarios. For benchmarking,
we compare against a number of approaches which are
representative of the main categories of multipath sched-
uler present in the related literature: EDPF (optimal for
paths with constant delay and no losses) combined with
ARQ (optimal for low-latency links with losses, used in
most of the literature) and with block FEC codes (which
maximize throughput performance over lossy links when
the block size is sufficiently large).

1. Reordering is a major contributor to the latency performance of
multipath transports, e.g. [13] measured the performance of Multipath
TCP (MPTCP) with real US mobile operators and found that roughly
20% of packets suffer an additional delay larger than 150 ms caused only
by reordering and the resulting buffering at the receiver.

1.1 Related Work

Two extreme cases are well understood. Namely, when
the delay on each path is known and constant and paths
are loss-free, then Earliest Delivery Path First (EDPF) [14]
ensures in-order packet arrivals and is optimal in the sense
that it minimises in-order delivery delay and maximises
throughput. When the delay on each path is very low (so
only one packet at a time is ever in flight) and the paths are
lossy, then ARQ is optimal in the sense that it minimises in-
order delivery delay and maximises throughput. Multipath
transport over the Internet does not fall into either case
since path delays are uncertain and time-varying, relatively
large (over a 25Mbps link with 50ms RTT there may be
>100 packets in flight) and paths are often lossy. A third
case is also well understood, namely when paths are lossy
then use of block code FEC (which includes rateless codes)
maximises throughput provided the block size is sufficiently
large, but this comes at the cost of high delay since delay
scales with the block size. Note that, despite their poor fit
with the characteristics of multipath over the Internet, EDPF
(or approximations thereof), ARQ and/or block code FEC
are used in almost all previous work on this topic.

Perhaps the most well-known example of a multipath
transport protocol that guarantees in-order delivery is Mul-
tipath TCP (MPTCP) [15]. The Linux implementation of
MPTCP supports two schedulers [9]: a round-robin scheduler
that iterates over each path regardless of their properties,
and the lowest RTT First (lowRTT) scheduler, a practical
approximation to EDPF that gives priority to paths with
lower round-trip times. CMT-SCTP [16] is another rele-
vant protocol which has some similarities with MPTCP. It
implements a selective ARQ scheme similar to SACK TCP,
flow control and congestion control based on a congestion
window (cwnd). A key difference with MPTCP is that
SCTP’s congestion window indicates how much data can be
sent, rather than which data to send. In this way, when cwnd
space is available in two or more paths, data can be assigned
arbitrarily to each of these paths. Actual implementations
of SCTP today use simple round robin or “First Come,
First Served” scheduling algorithms [8], [17]. In [18] an
improved scheduler is proposed which is similar to the
lowRTT scheduler in MPTCP. In summary, both MPTCP and
SCTP are frameworks where any scheduling algorithm can
be integrated; this includes all of the algorithms we review
next and also the scheduler that we propose in our paper.

EDPF has served as the baseline for much work over the
years. As explained above, EDPF (and variants, e.g. [18]–
[21]) has the fundamental disadvantage of not considering
the stochastic time-varying nature of path delays. Moreover,
the seminal work of [14] (and most others) does not consider
losses. Other work (e.g. [21]), does consider loss, but com-
bines EDPF with use of ARQ for loss recovery. See [12] for
a survey of other schedulers with similar limitations.

Regarding loss recovery, a wealth of approaches based
on ARQ (e.g. used in MPTCP and CMT-SCTP) and FEC
have been proposed in the past. Network coding has been
proposed for mesh and multicast networks, notable exam-
ples being CORE [22] (a fixed-rate code), SlideOR [23] and
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CoMP [24] (non-systematic2 random linear codes). Network
coding, using a non-systematic random linear code, was
first introduced in TCP by Sundararajan et alia [5]. Mael-
strom [25] and LT-TCP [26] are also worth highlighting but
they use simple LT codes and are blind to spare capacity. In
the context of multipath, a fixed-rate block code is employed
in MPLOT [27], a rateless LT code in HMTP [28] and
PluriBus [11], a rateless Raptor code in FMTCP [6], a Reed-
Solomon code in [29], and a systematic random linear code
in SC-MPTCP [30]. All this work using FEC is well suited to
maximising goodput (provided the block size is sufficiently
large) but, as we will show later, they all pay a high price in
per-packet in-order delivery delay because they are based on block
codes and delay scales with the block size. Perhaps the closest
work to ours in its focus on low latency is ReMP TCP [31]
which, like us, can trade off bandwidth for delay gains.
However ReMP TCP uses a primitive repetition code and,
as in all of the above literature, does not take into account
uncertainty and time-variation in the path delays.

There exists an extensive literature related specifically
to video applications, including live video streaming. For
example, [32] drops selected video frames when bandwidth
is constrained. MSPlayer [33] adjusts the size of video
chunks depending on the bandwidth available on the paths
with the aim that chunk transfers scheduled across differ-
ent paths complete at roughly the same time. The work
reported in [34] uses a similar scheme though considering
energy consumption. Both these approaches implement a
bandwidth predictor (as do many others, e.g. [35]) to try
to match the video chunk size to the available bandwidth.
These differ fundamentally from our work because they
focus on loss-tolerant video coding techniques, i.e. operate
at the application layer rather than the transport layer.

1.2 The Cost Of Ignoring Stochasticity of Path Delay
We argue that to achieve low-delay high-rate support for
real-time applications (e.g. see Fig. 1) over unreliable—
lossy and variable—wireless links, spare network capacity
should be used to transmit redundant packets (coded data)
to achieve better protection against losses and fluctuations
in path delay. Use of multipath protocols is a key enabler
for this approach since it creates the necessary capacity.
Importantly, however, for this strategy to work we must
avoid creating new latency issues, such as excessive head
of line blocking, caused by the use of multipath.

With this in mind, we note that ignoring the stochastic
time-varying nature of path delays can greatly increase
latency when multiple paths are used. Let us present some
simple examples to illustrate this. We begin by considering
a scenario where we have to send two packets and we can
use up to two paths to do this (possibly, but not necessarily,
in parallel). Assume now that the transmission delay of
each path (time taken between a packet reaching the head
of the sender output queue and the last bit is actually
put into the wire/air) is an independent and identically
distributed (i.i.d.) Gaussian random variable with param-
eters (µ1, σ1) and (µ2, σ2) (neglecting propagation delays

2. Systematic codes include the input data bits in the output stream
unmodified, followed by error-correcting coded information. Con-
versely, non-systematic codes do not include unmodified bytes into the
output stream.
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Fig. 2. Example illustrating the sub-optimality of EDPF when path delays
are uncertain and time-varying. Two paths. Both transmission delay ti
and propagation delay θi on path i follow a normal distribution with
parameters ti ∼ N(µti , σti ) and θi ∼ N(µθi , σθi ), respectively. On
path 1, t1 ∼ N(1.2, 0) ms and θ1 ∼ N(40, 0) ms. We vary the delay
parameters on path 2. The shading indicates the delay penalty of using
EDPF rather than the optimal choice found by exhaustive search.

for the moment—time it takes for one bit to fly from source
to destination across the Internet). As mentioned earlier,
EDPF (an optimal scheduler when the path delay is constant
and there are no losses [18]–[21]) bases its decisions on the
average arrival time of each packet. It hence schedules the
first packet on the path with the lower mean (without loss of
generality, assume this is µ1), and the second packet on the
other path when µ2 < 2µ1 or on the same path otherwise
(in this case parallelizing would not bring any gain). Now
consider the case where µ2 < 2µ1. In this case, the actual
in-order delivery delay (after buffering caused by possible
reordering) of the second packet is a random variable which
is the maximum of two Gaussian random variables and its
mean is: µ1Φ(µ1−µ2

Θ ) + µ2Φ(µ2−µ1

Θ ) + Θφ(µ1−µ2

Θ ), where
Φ(·) and φ(·) are, respectively, the probability density func-
tion (pdf) and the cumulative distribution function (cdf) of
the standard normal distribution and Θ =

√
σ2

1 + σ2
2 [36].

This value is larger than either µ1 or µ2 but, depending on
σ1 and σ2, it might be larger than 2µ1, which means that
the optimal decision, contrary to what EDPF suggests, may
be to send both packets on path 1. This example illustrates
that, depending on the relative variances of the delays on the
different paths, the optimal decision which minimises per-
packet delay can differ significantly from that taken when
only considering the average path delays.

In order to further illustrate this point for a wider
range of scenarios, we now consider a situation where
both the transmission delay ti and the propagation delay
θi on path i follow normal distributions, ti ∼ N(µti , σti)
and θi ∼ N(µθi , σθi), respectively. In Fig. 2, we fix the
parameters in path 1 to t1 ∼ N(1.2ms, 0ms) (transmitting
a 1500-byte packet on a 10-Mb/s link takes 1.2ms) and
θ1 ∼ N(40ms, 0ms), and show the in-order delivery delay
achieved with EDPF relative to that with an optimal packet
schedule (found via exhaustive search) for a wide variety
delay parameters on path 23. Considering again the case
where only two packets are to be sent, it can be seen that

3. Random samples are left-censored at 1 ms (the lowest possible
delay).
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EDPF makes a good choice when the mean delay on the
second path is larger than that of the first path. The reason
is that in this case the optimal choice is to send both packets
back-to-back through path 1 because the extra delay of
the second path does not compensate the waiting time of
the second packet (1.2 ms in this example). In contrast,
when the delay of path 2 is lower than path 1’s, EDPF
chooses to send both packets through path 2. However, as
the figure illustrates, given the variability in that path, this
choice often leads to high in-order delivery delay. Fig. 2
also shows the corresponding data when sending 3 and
4 packets. We do not show data for larger numbers of
packets as the exhaustive search approach quickly becomes
too time-consuming, but it can be seen that as the number
of packets grows the use EDPF incurs a penalty in an
increasingly large number of configurations. Finally, we note
that though we have made simplifying assumptions in the
above analysis (Gaussian i.i.d. random variables), we make
similar observations in our experimental evaluation in §5.4.

From the above analysis, we conclude that a careful ex-
ploitation of stochastic information—other than averages—
can lead to a substantial reduction of out of order packet
arrivals. However, stochastic problems are generally much
harder to solve and hence particularly challenging for ap-
plications like the one shown in Fig. 1. In the next section,
we propose a low-complex stochastic scheduler to this aim.

2 MULTIPATH STOCHASTIC SCHEDULER

In this section we assume lossless channels and address
the problem of scheduling packets such that the impact
of out of order arrivals in the presence of random path
delays is minimised. We put a particular focus on achieving
a low complex solution suitable for high-rate applications
like the one shown in Fig. 1. The extension to lossy paths is
considered in §3.

2.1 Model Description

We have to schedule K = {1, 2, . . . } packets across P =
{1, . . . , P} paths with the goal of minimising per-packet in-
order delivery delay. Assume that on each path the time
at the sender is slotted, indexed by S = {1, 2, . . . }, such
that one packet can be transmitted in a slot. This abstraction
allows us to operate independently of any rate or congestion
control algorithm. Let tp,s denote the start time in seconds of
slot s on path p. We do not assume that the slots on different
paths are aligned or that slots have fixed duration, and so
the link rate of each path may change over time due to e.g.
the action of congestion control. The time at which a packet
sent in slot s on path p arrives at the destination is a random
variable ap,s, with ap,s ≥ tp,s to respect causality.

While packet reordering can occur within a single path
(e.g. due to sudden routing changes), it is relatively in-
frequent compared to the multipath case [37], and so for
design purposes we adopt the mild assumption4 that there
is no reordering of arrivals within the same path. Formally,
consider two slots with indices a and b on path p, then

4. Note that in §5.4 we evaluate performance in real-life environments
where there may be within-path re-ordering, which helps to validate
this design approach.

when a < b, ap,a < ap,b. It is important to stress that this
assumption applies only to packets sent on the same path.
Packets on different paths with different (random) delays
may still arrive out of order. The above implies that the
delays experienced by packets on the same path are corre-
lated and not i.i.d. To make this explicit, let random variable
∆p,s,s+1=ap,s+1−ap,s≥0, s = 1, 2, . . . and ∆p,0,1 := ap,1.
Then,

ap,s =
s∑
r=1

∆p,r−1,r (1)

where ap,1 can be computed as ap,1 = θp,1 + Lp,1/Bp,1,
where θp,1, Lp,1 and Bp,1 are the propagation delay experi-
enced, the size in bits of the scheduled packet, and the access
link bitrate on slot 1 and path p, respectively.

To facilitate scheduling, for design purposes we make
the regularity assumption that ∆p,s,s+1 is i.i.d. (∆p,s,s+1 ∼
∆p).5 We also assume that a packet is transmitted in every
slot. Although a lower in-order delivery delay might strictly
be possible e.g. by reverting to single path operation where
packets are sent only along the path with lowest delay, we
argue that the associated loss in throughput is generally too
great and that a better approach is to transmit redundant
coded information to trade off capacity granted by conges-
tion control (possibly spare capacity, but not necessarily)
for delay gains. As we show in §3, this approach has the
additional advantage of reducing delay even in the presence
of packet losses.

2.2 Minimum Delay Packet Scheduling

Let pk ∈ P denote the path on which packet k ∈ K is
transmitted, and let sk ∈ S denote the slot on path pk
in which packet k is transmitted. Packet k is thus sent
at time tpk,sk and the time at which packet k arrives is
random variable apk,sk . At the receiver we require in-order
delivery of packets arriving from multiple paths. To achieve
this, the receiver maintains a reassembly buffer where out
of order packets are held until they can be delivered to
the application in order. The delivery time of packet k is
therefore the random variable,

Yk = max{ap1,s1 , ap2,s2 , . . . , apk,sk} (2)

It will prove useful later to rewrite this expression equiva-
lently as follows. Let Kp,k := {q ∈ {1, . . . , k − 1}, pq = p}
denote the set of packets sent on path p with indices lower
than that of packet k and

Yp,k := max{ap,sq : q ∈ Kp,k} (3)

We then have that

Yk = max{Y1,k, . . . , YP,k, apk,sk} (4)

5. Although this assumption may be relaxed (e.g. by keeping track
of correlation and using this information to compute the expectation of
the maximum in (8)), this would entail significant extra computational
burden in the scheduler. Note that while we make this simplifying
assumption in the design of our scheduler, in §5 we evaluate the
scheduler performance in environments where the inter-arrival times
may not be i.i.d. and demonstrate significant performance gains, which
helps validate the design approach taken.
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Our aim is to schedule packet transmissions (i.e. to select
path-slot pairs (pk, sk), k = 1, 2, . . . ) so as to minimise the
mean per-packet in-order delivery delay

D := lim
N→∞

1

N

N∑
k=1

E[Yk]− tpk,sk . (5)

Remark: Since the path delays are stochastic and can
vary substantially a min-max approach (scheduling packets
with the aim of minimising the maximum in-order delivery
delay) with a hard maximum is generally not feasible:
there will usually be some probability of exceedence of
a given in-order delivery delay “maximum” and so some
jitter. A probabilistic approach might be adopted, whereby
we define the “maximum” as the delay which has some
target probability of exceedence, e.g. 5%, and then try to
minimise this “maximum”. However, we argue that this
type of approach is also not well suited to our purposes
since (i) the solutions typically increase the average cost
in order to improve the worst case and (ii) our context is
essentially a best effort one since we have no control over the
wireless link layer plus the augmented reality applications
that we target are themselves best effort. We therefore adopt
minimising the expected per-packet in-order delivery delay
D as a reasonable objective for practical purposes.

2.2.1 Low-complexity Scheduling

Finding the optimal schedule that minimises eq. (5) is a
complex combinatorial problem. Our goal is to design an
effective scheme that solves the problem with low computa-
tional complexity such that scheduling choices are taken in a
timely manner, i.e. faster than the lowest packet inter-arrival
time in the sender’s transport queue.

We first observe that if there is no reordering of packets
sent within the same path then we can remove all choices
where packets within the same path are not scheduled in
order since these will have higher in-order delivery delay.
This intuitive observation is formalised by Lemma 1 in the
appendix. It follows that the optimal choice is for packets to
be transmitted in ascending order on a path, in which case

Yp,k = max{ap,s, s = 1, 2, . . . , sp,k} (6)

where sp,k=max{sq : q∈Kp,k}. Observe now that Yp,k does
not depend on the indices of the packets in Kp,k but only
on the slots these fly with.

Assume now that the delay of each path has an upper
bound6 T̄p and so older slots {s : tp,s + T̄p ≤ tp,sp,k} do not
affect Yp,k. Then, it is sufficient to calculate the max over a
finite window of slots,

Yp,k = max{ap,s, s = sp,k, . . . , sp,k} (7)

with sp,k := sp,k − δp,k and δp,k = sp,k − max{s : tp,s +
T̄p ≤ tp,sp,k}. If we approximated the slot duration as being
a constant Tp, then δp,k = δp := dT̄p/Tpe. That is, δp,k is
constant and it is sufficient to calculate Yp,k over a fixed
window. This assumption lets us contain the computational

6. We can easily keep track of the distribution of RTTs with feedback
and thus compute a reasonable upper bound.

complexity of the scheduling algorithm and it is mild.7

Recalling random variables ∆p,sp,k,sp,k+j = ap,sp,k+j −
ap,sp,k , j = 0, 1, . . . , δp, we can rewrite Yp,k as

Yp,k = ap,sp,k+max{∆p,sp,k,sp,k+1, . . . ,∆p,sp,k,sp,k+δp}

and thus sequence

∆(sp,k) := {∆p,sp,k,sp,k+1, . . . ,∆p,sp,k,sp,k+δp}

is i.i.d. (∆(sp,k) ∼∆p). This leads to Theorem 1.

Theorem 1 (Invariance of Yp,k − ap,sp,k−δp ). The distribution
of Yp,k−ap,sp,k−δp is invariant on path p for packets k scheduled
in slots sp,k > δp = dT̄p/Tpe.

That is, we can let Zp describe the distribution of
Yp,k − ap,sp,k−δp ∼ Zp ∀k such that sp,k > δp = dT̄p/Tpe.
Theorem 1 helps us to greatly reduce the complexity of
our scheduler as we don’t have to recompute Zp for ev-
ery packet schedule. Moreover, note that the distribution
of ap,sp,k and Zp can usually be readily estimated in an
online fashion. For example, the realisation of ap,sp,k−δp
may already be known via ACK feedback from the receiver.
Otherwise, we can use past observations of packet delivery
times on path p to estimate the distribution of ap,sp,k−δp . We
can also use past observations to estimate the distribution of
∆p. To reduce the number of observations required to esti-
mate the distribution and to reduce computational/memory
cost, we can also use a parametric model and estimate the
parameters using past observations, e.g. when using a Gaus-
sian model we can find a reasonably accurate approximation
of Zp using the approach in [36]. We describe our actual
system design in §4.

2.2.2 Stochastic Earliest Delivery Path First
Using Theorem 1, we can rewrite eq. (5) as

D = lim
N→∞

1

N

N∑
k=1

E[max{Z1 + a1,s1,k−δ1 − tpk,sk , . . . ,
ZP + aP,sP,k−δP − tpk,sk , Dpk,sk}]

where Dp,s := ap,s − tp,s. Then, minimising

lim
N→∞

1

N

N∑
k=1

E[max{Z1 + a1,s1,k−δ1 , . . . , (8)

ZP + aP,sP,k−δP , apk,sk}]

minimises D. We thus propose a lightweight algorithm
to address the minimisation of (8) whereby packets are
scheduled in the first available slot of the path with lowest
expected delivery time, i.e.,

pk = arg min
q∈P

E[max{Z1 + a1,s1,k−δ1 , . . . ,

ZP + aP,sP,k−δP , aq,sk}], ∀k (9)

The algorithm described by (9) contrasts with EDPF which
merely schedules packets on the path that minimises the
expected arrival time, i.e. pk = arg minq∈P E[aq,sk ],∀k, and
thus it does not account for the expected reordering delay in the
buffer due to uncertainty in the path delays.

Observe that (9) requires taking the max over a set of
random variables and then its expectation. This is generally

7. Using a Chernoff bound it can be shown that the probability that
Yp,k depends on events occurring prior to the fixed window is small
for an appropriate choice of window size.
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Fig. 3. Simulation results with two paths, equal mean delay (50 ms) and
rate (10 Mb/s). No variance on one path; high delay variance on the
other. Delay performance of openface traces used in Fig. 1.

complex but if we use a Gaussian model we can use the
low-complex algorithm proposed in [36]. Alternatively, if we
model delay as being discrete valued and we have estimates
of the probability of each value, then the expectation of the
max in (9) can be calculated directly provided the number
of values considered is not too large.

The intuition behind the algorithm described by (9)
is the following. Yk−1 = max{Z1 + a1,s1,k−δ1 , . . . , ZP +
aP,sP,k−δP } essentially models the distribution of the time
packet k − 1 is delivered (after reordering). As we explain
above, this can be nicely kept track of with low complexity
by estimating the distribution of Zp at reasonable time-
scales, e.g. only after observing drastic network changes
(see Th. 1). The arrival time (before reordering) of the
first packet within the chosen window of slots of each
path (a1,s1,k−δ1 , · · · , aP,sP,k−δP ) can be easily learnt from
feedback. Since k will be delivered at the application at
time Yk = max{Yk−1, aq,sk} if path q is used, (9) assigns
packet k to the path q with shortest expected delivery delay
taking into account the expected penalty (time spent in
the receiver reordering buffer) caused by delay variability
with low complexity. This is similar to a two-stage stochastic
program where a scheduling choice must be taken before
instantaneous delays are known (first stage) and a recourse
action, reordering, is used to compensate for unfortunate
choices when packets arrive (second stage) [38].

Let us illustrate the quantitative and qualitative gains
of path selection according to (9) via simulations. Fig. 3
presents simulation results using the openface traces pre-
sented in §1 for a setup with two paths having equal
average propagation delay (50 ms), fixed rate (10 Mb/s)
and no loss. In this example, the delay of one of the paths
is random and follows a normal distribution with 100 ms
standard deviation whereas the other link has a constant
delay (no variance). It can be seen that scheduling packets
based on averages only (EDPF) often results in high in-order
delivery delays at the receiver because of frequent head-of-
line blocking (see also the inset in Fig. 3, where we show
detail of the delay of 500 consecutive packets). In particular
the mean delay is 201 ms and its std. deviation (a measure
of jitter) is 80 ms. In contrast, with the S-EDPF scheduler
(full details in §4) the delay is substantially lower, having a

Fig. 4. Block (top) and streaming (bottom) code with rate τ−1
τ

= 3/4.
(a→ b) indicates range of data packet indices ck encodes. Packets are
received from 3 paths with erasure probability ε1, ε2, and ε3.

mean of 61 ms and std. deviation 33 ms. It can also be seen
that use of FEC to add redundancy, labelled S-EDPF-4 in the
figure and explained in detail in the next section, tends to
further mitigate the impact of out of order arrivals.

3 LOW DELAY STREAMING CODE

In the event of a loss, which may be frequent in paths
containing wireless links or congested queues, the usual
recovery method, ARQ, incurs extra delay because of the
round-trip time that it takes for the repeat request to be
delivered to the sender and the packet to be retransmitted
to the receiver. Our approach is to precode enough infor-
mation in redundant packets so that with high probability
loss recovery can take place without the need to wait for
retransmissions.

As already noted, block codes (used e.g. in [6], [11],
[22]–[24], [26]–[30]) introduce a new source of head-of-line
blocking. This is unimportant when the aim is to maximise
throughput, but is problematic when the aim is to min-
imise per-packet in-order delivery delay. Namely, consider
a rate k/n systematic block code where k data packets are
transmitted followed by n− k coded packets. Suppose that
the i’th information packet is lost. Then recovery cannot be
attempted until a coded packet is received, e.g. when the
first packet is lost then the receiver must wait at least k slots
until the first coded packet is received. From the per-packet
delay perspective, it is generally better to interleave coded
packets within the data stream such that the decoder can
release data from the buffer to the receiver application more
quickly. Using this type of approach, for a given coding
rate we can always achieve lower mean per-packet in-order
delivery delay than when using a block code, see [39]. More-
over, since a non-systematic code will always have higher
mean in-order delivery delay than a systematic code, we
consider only systematic codes. We thus adapt the single-
path streaming code from [39] to the multipath setting,
analyse its delay performance and, importantly, establish
the optimal schedule (path and slot) of coded packets. To
our knowledge, this is one of the first analytic results for
scheduling of FEC packets in a multipath setting.

The code construction works as follows. We divide time
into slots S = {1, 2, . . . } each corresponding to the trans-
mission of one packet. S-EDPF generates a coded packet ck
and schedules it every τ slots (which we refer to as the
coding interval). A coded packet ck is a random linear com-
bination of information packets 1 to Nτk, where Nτ= τ−1
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Fig. 5. Mean per-packet in-order delivery delay of our streaming code
and block codes for different coding rates. A single link with 25Mb/s rate,
RTT of 60ms, and loss rate of 10%. Reproduced from [39].

is the number of uncoded packets ui sent between ck and
ck−1 across all paths, i.e.,

ck = fτ (u1, u2, . . . , uNτ ·k) :=
Nτ ·k∑
j=1

wkj · uj (10)

with coefficients wkj , selected identically and indepen-
dently, uniformly at random from a finite field of size
Q. At the receiver, upon reception of ck, a matrix Gk is
constructed with rows formed from the coefficients of the
received packets (normal uncoded packets adding a row
with a 1 in the corresponding diagonal, all other entries
being 0). Decoding can then be carried out on-the-fly using
Gaussian elimination (i.e. maximum likelihood decoding).
In our analysis we will make the standing assumption that
the field size Q is sufficiently large that with probability
one each coded packet helps the receiver recover from one
information packet erasure. That is, each coded packet row
added to generator matrix Gk increases the rank of Gk by
one. Note however that we evaluate non-ideal decoding
(with a non-zero decoding failure probability) in §5. Also,
we can (and do) adjust the starting index for j in (10)
so that it tracks the unacknowledged information packet
with oldest/smallest index and in this way manage the
encoding/decoding complexity.

This streaming technique aims to quickly unblock the
receiver’s buffer after loss so to reduce in-order delivery
delay. In contrast, block codes only allow loss recovery after
receiving a full block of packets which, as already noted,
causes a type of HOL (see Fig. 4). Other approaches, such as
PluriBus [11], only send coded packets when transmission
queues are idle, and therefore suffer from a similar issue.
For comparison purposes, we show in Fig. 5 the delay
performance of our streaming code and conventional sys-
tematic random linear block codes for different coding rates
and block sizes. As expected, based on [39], the in-order
delivery delay performance of the block code constructions
is a function of the coding rate and block size. On the other
hand, the streaming code achieves better performance over
the entire range of coding rates, i.e. for the same throughput,
the delay of the streaming code is always smaller. Similar
trends can be observed for other packet loss rates.

3.1 Buffering Delay Analysis
In this section we characterise the in-order delivery delay
performance of the low-delay code construction in a mul-
tipath setting. Remarkably, we are able to obtain accurate
closed-form expressions for the in-order delivery delay and
it is these which enable us to derive an optimal scheduling
approach for the coded packets.

Our setup is that received data packets are delivered to
the application in order as they arrive (without buffering
delay), until there is a loss. When there is a loss, a “decoding
process” starts: packets are buffered until the decoder has
enough coded packets to reconstruct the missing pack-
ets, at which point in-order delivery resumes. We index
each “in-order delivery”/“decoding process” period with
j = 1, 2, . . . , and let the random variable Sj count the coded
packets required in j to resume an in-order delivery state
(Sj = 0 if stage j is already in the in-order delivery state).
This is illustrated in Fig. 4 (bottom figure) for τ = 4. This
sequence of periods forms a renewal process with Sj ∼ S.
The next theorem characterises the distribution of S.

Theorem 2 (S process). Suppose we transmit information
packets across P = {1, . . . , P} independent paths with erasure
probability {ε1, . . . , εP } and fixed delays8. Suppose we have Nτ,p
slots in path p in each interval where we transport information
packets such that they arrive in order, except the last slot in
pc ∈ P (with erasure probability εpc ) where we transport a coded
packet; then

∑
p∈P Nτ,p = τ . Assume that each coded packet can

help us to recover from one erasure, irrespective of the path where
the erasure has occurred. Then, if we let ε̄ =

∑
p∈P Nτ,pεp∑
p∈P Nτ,p

, we
have:

1. For all εp and Nτ,p s.t. τ ε̄<1, the mean of the S probability
distribution exists and is finite.
2. The distribution of S is characterised by:

P (S=0) = (1−εpc)Nτ,pc−1
∏
i 6=pc

(1−εi)Nτ,i (11)

P (S=1) = (Nτ,pc−1)εpc(1−εpc)Nτ,pc−1
∏
j 6=pc

(1−εj)Nτ,j+

+
∑
i 6=pc

Nτ,iεi(1− εi)Nτ,i−1
∏
j 6=i

(1− εj)Nτ,j (12)

P (S=k)≈ τ − 1

k
ε̄k(1−ε̄)k(τ−1)

(
(k − 1)τ

k − 1

)
, ∀k>1 (13)

3. The first and second moments of S can be approximated by the
following closed-form expressions:

E[S]≈P (S=1)+
τ(τ − 1)ε̄2(1−ε̄)τ−1

1−τ ε̄

E[S2]≈P (S=1)+(1−ε̄+(1−τ ε̄)2)
τ(τ − 1)ε̄2(1−ε̄)τ−1

(1−τ ε̄)3

Proof. See appendix.

Observe that Theorem 2 requires τ ε̄ < 1 for E[S] (and so
in-order delivery delay) to be finite, i.e.

∑
p∈P Nτ,pεp < 1.

8. Fig. 3 shows simulation results in the presence of variable path
delays and we further assess performance in the presence of random
delays experimentally in §5. However, we leave the mathematical
analysis with variable path delays for future work.
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Fig. 6. E[S] and E[S2] for different coding intervals τ and packet loss
probabilities. Exact values vs. approximated values from Theorem 2.

The aggregate rate R at which coded packets are sent across
all paths is 1/τ , and for ε̄τ < 1 we require R > ε̄, where ε̄ is
the aggregate loss rate across the paths, as expected.

In this theorem we approximate the tail of the distri-
bution of S (see (13)). In more detail, we approximate a
poisson-binomial distribution with a binomial distribution
(see the proof of Theorem 2.2) which is more tractable.
This provides a good approximation of the complete dis-
tribution of S because we only apply it to its tail (i.e. in
P (S = k), ∀k > 1), which does not contribute much to the
whole distribution, i.e.,

∑∞
k=2 P (S = k)�

∑1
k=0 P (S = k),

in most of the cases of interest.
To illustrate the accuracy of this approximation, we set

up two paths of equal rate and packet loss rates ε1 and
ε2, respectively, and compute the 1st and 2nd moments
for different coding intervals with (i) the expressions in
Theorem 2, and (ii) the exact solution using [40] to compute
the poisson binomial. The coded packets are sent on the
path with lowest loss rate9. Fig. 6 shows E[S] and E[S2]
as a function of ε1 and it can be seen that the expressions
in Theorem 2 are particularly accurate for large coding
intervals and small |ε1−ε2|, but are also good in the extreme
cases, e.g. with highly heterogeneous links, the reason being
that we only approximate the tail of the distribution of S.

We now can use Theorem 2 to characterise the in-order
delivery delay when scheduling coded packets across mul-
tiple paths. Let us define a frame as the transmission of τ − 1
information packets plus a coded packet. The scheduler in
each frame assigns Nτ,p packets to each path p such that
τ − 1 =

∑
p∈P Nτ,p. The relationship between the S process

and the buffering delay due to losses is as follows.

Theorem 3 (Buffering delay). At the receiver, the asymptotic
mean buffering delay per transmitted packet is upper bounded by

E[S2]

2τ(E[S] + P (S = 0))

∑
p∈P

max {Nτ,p(Nτ,p − 1), 1}∆p

Proof. See appendix.

To illustrate the above, consider a scenario with 2
paths of equal bit rate and packet loss rate ε1 and ε2 =

9. As we will see later on, this is actually the optimum choice.
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Fig. 7. Buffering delay. Simulation results vs. theoretical upper bound
(Theorem 3) for two paths with a range of path loss rates ε1, ε2.

{0, 0.2ε1, 0.4ε1, 0.6ε1, 0.8ε1, ε1}, respectively. First, we com-
pute the bound on packet buffering delay given by The-
orem 3 for different coding intervals; second, we simulate
these scenarios with an event-driven simulator and mea-
sure the mean buffering delay; and finally we compare
both results in Fig. 7. From the figure10, we conclude that
Theorem 3 predicts buffering delay rather accurately, which
also helps to further validate the approximations used in
Theorem 2. Observe also from Fig. 7 that the buffering delay
decreases rapidly with decreasing τ i.e. as we send more
coded packets. This behaviour can also be seen in Fig. 6,
where the mean time E[S] between in-order packet delivery
events decreases as τ decreases.

3.2 Path selection for coded packets

The next result tells us how best to exploit multiple paths
when transmitting coded packets constructed using our
low-delay coding scheme.

Theorem 4 (Path choice for coded packets). Under the condi-
tions of Th. 2, the buffering delay is minimised when coded packets
are sent in the path with highest erasure probability.

Proof. See appendix.

The importance of Theorem 4 is not only that it tells us
how to optimally schedule coded packets in a multipath
setting, and that this optimal schedule is simple to imple-
ment, but also that it says we can exploit lower-quality links
to improve delay performance. This contrasts with previous
approaches where multipath transport need not provide any
gain in performance (even a loss in some cases) over its
single-path counterpart when paths have different packet
loss patterns and path delay [13].

3.3 FEC-aware Packet Selector Algorithm

Based on our analysis above, we propose in Algorithm 1
a simple, yet very effective, low-delay FEC-aware schedul-
ing algorithm. The algorithm builds a coded packet using
eq. (10) every time τ information packets are scheduled.
Parameter τ determines the trade-off between throughput

10. Note that some points are not depicted in Fig. 7 because delay
goes to infinity when τ ε̄ > 1.
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Algorithm 1 S-EDPF streaming FEC
1: function S-EDPF GET PACKET(p, τ )
2: if backoff_ctr== 0 then . Queue coded pkt
3: c_k← generate_codedpkt() . Eq. (10)
4: enqueue_pkt(coding_q, c_k)
5: backoff_ctr← τ . Reset backoff counter
6: k←NULL
7: if lossy_path==p & size(coding_q)> 0 then
8: k← dequeue_pkt(coding_q)
9: if k==NULL then

10: k← dequeue_pkt(data_q)
11: if k==NULL & size (unacked)> 0 then
12: k← generate_codedpkt()
13: backoff_ctr← backoff_ctr−1
14: return k

and delay (the capacity used for redundancy being pro-
portional to 1/τ , delay given by Theorem 3) that depends
on the application constraints and network capacity. These
coded packets are enqueued in coding_q until they can
be assigned to the lossiest path.11 To maximise resiliency,
an additional coded packet is scheduled (regardless of the
path) whenever there is no data ready to send yet there is
unacknowledged data awaiting feedback of reception.12

4 S-EDPF SYSTEM

4.1 Overall S-EDPF algorithm

Pseudocode for the main logic of the overall S-EDPF system
is given in Algorithm 2. A scheduling job is triggered every
time there is an empty transmission queue (p->sched_q
for path p). This scheduling job, which is repeated until all
transmission queues have at least one packet, consists of
three tasks that are performed sequentially, namely (i) S-
EDPF selects a path p using (9), (ii) S-EDPF selects a packet
k using Algorithm 1, (iii) S-EDPF schedules packet k in path
p. This algorithm ensures a packet is always available to
be sent in all transmission queues unless all data sent has
been acknowledged. A rate/congestion control algorithm
then takes care of granting transmission opportunities to
each of these queues (i.e. we do not rely on any specific rate
control scheme). A timer (Ztimer) triggers re-computation
of ~Z = {Z1, · · · , ZP }. Note that ~Z is recomputed only when
the distribution of rates and delays changes. To do so, we

11. Note that, if this path’s bitrate is overly low, coding_q could
saturate. In this case, packets from coding_q can be dequeued to
the next lossiest path. This is not shown in Algorithm 1 due to space
constraints.

12. We explain our feedback mechanism in detail in §4.

Algorithm 2 S-EDPF scheduling algorithm
1: function S-EDPF
2: if Ztimer then
3: for p ∈ P do
4: Z[p]←compute_max(~a)− ap,sp,k−δp
5: /*Loop until there are no empty queues*/
6: while empty_qs() 6= ∅ do
7: /*1. Get best path as shown in §2 (eq. 9)*/
8: p← s-edpf_get_path(~Z)
9: /*2. Get a pkt to schedule as shown in §3*/

10: k← s-edpf_get_packet(p)
11: /*3. Do actual schedule*/
12: enqueue_pkt(p->sched_q, k)

need to compute Zp = max(ap,k−δp , · · · , ap,k) − ap,sp,k−δp
and use the approach discussed in §2.

4.2 Prototype Implementation

We used the framework of Coded TCP (CTCP) [41] to
implement S-EDPF. CTCP is composed of a pair of SOCKS5
proxies that route data from/to TCP applications into/from
(multiple) UDP standard sockets. This gives us the ability
to easily implement and evaluate congestion/rate control,
coding/decoding and scheduling algorithms in userspace.
This not only facilitates research and development but it
also maximises its deployability: S-EDPF/CTCP runs in
Linux, OS X, Android and *BSD without root privileges. A
schematic overview of our prototype is shown in Fig. 8.

The encoder/decoder is implemented using finite field
arithmetic in GF (256) which lets us encode and decode
information efficiently, using XORs for addition/subtraction
and quick table lookups using SIMD programming for mul-
tiplication, without compromising performance. We use 2
bytes of each header to transport the seed used to generate
the random coefficients (these are needed for decoding at
the receiver), and 2 bytes to indicate to the decoder which
packets are encoded together. Note that this overhead is
the same as that for a random linear block code. Decoding
is based on on-the-fly Gaussian elimination, and decoded
packets are released to the receiver as soon as they can be
handed off in order.

Received packets trigger the transmission of cumula-
tive selective ACKs that, similarly to MPLOT [27], provide
the transmitter with information regarding delivery delays
(used by the packet scheduler), packet loss rate (used by
the coding scheme), which packets have been lost (used for
retransmitting packets when decoding fails), and congestion
information (used for rate control if needed).

Fig. 8. Prototype architecture.
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S-EDPF does not do any rate control. Its role is to select
which packet is sent down which path when a transmission
opportunity is granted. Unless otherwise stated, we use
CTCP’s default rate control algorithm, which is particularly
suitable for the sort of networks we target (lossy/variable)
and which is fair to other TCP flows (see [42]). Note how-
ever that S-EDPF is compatible with any rate controller.

To provide a baseline for evaluation, we also imple-
mented ARQ-based EDPF (optimal when path delays are
constant and there is no loss, used in most previous work)
and an ARQ-based LowRTT scheduler (used in MTCP).

5 PERFORMANCE EVALUATION

We next summarise our experimental evaluation. First, we
validate our prototype by comparing its performance with
EDPF/ARQ and the default Linux MPTCP implementa-
tion; secondly, we run a set of experiments in controlled
environments where a range of network conditions are
emulated; and finally, we run an experimental campaign
“in the wild”. The environmental conditions (delay, loss
patterns, bandwidth) used in our controlled experiments are
similar to those measured in [9]–[11]. For convenience, in
most of these tests we install a local proxy in a laptop13 with
Ethernet, WiFi and 3G/4G network interfaces, and a remote
proxy in a campus server that acts as a gateway to Internet.
We keep the local and remote proxies synchronized with
PTP (controlled environments) or NTP to measure delays. S-
EDPF/CTCP operates between the local and remote proxy.
Note that S-EDPF has no impact on other competing flows
(we rely on external rate control to guarantee fairness), and
thus we do not explore this in our evaluation. Finally, we
show results for τ = {4, 8, 16, 32} in most of our evaluations
to span a reasonable range of τ values14.

5.1 Complexity
We have profiled our prototype with (v/c)allgrind
and a Monsoon power meter which shows that the en-
coder/decoder is the most costly task (as expected because it
uses CPU-intensive operations). We installed our prototype
in an Android LG G5 smartphone and measured its power
consumption in a series of experiments. To simplify the
setup, we connect it to a local WiFi AP (only one path) with
fixed rate (54 Mb/s), fixed CPU frequency, and backlight
turned off. We stream backlogged TCP data to the AP for
30 s, while randomly dropping packets. We repeat each
experiment 5 times and collect the mean throughput and
power for S-EDPF and S-EDPF without FEC (only relying
on ARQ) and Linux TCP, see Fig. 9. With S-EDPF, we
send as many coded packets as needed to compensate for
losses. Note that, when there are no losses, the throughput
provided by both S-EDPF and TCP is the same, though at
an extra energy cost of 5% (barely 1% with the backlight
on). When there are losses (not due to congestion), CTCP’s
default congestion control achieves higher throughput than
the TCP congestion control and TCP therefore uses less
energy simply because its send rate is lower.

13. We have also tested it in Android and MAC OS X.
14. We observe diminishing sensitivity to changes in τ as τ gets larger

because the coding rate is τ−1
τ

and so the marginal change in coding
rate decreases as τ increases.
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Fig. 9. Energy usage of S-EDPFvs. legacy TCP.

5.2 Comparison with MPTCP
Fig. 11 shows a comparison between MPTCP, EDPF and
S-EDPF-τ (τ denotes the coding interval used). The upper
plot shows the mean goodput with error bars indicated. The
lower plot shows a box and whiskers plot of the distribution
of the measured delay: the bottom and top of the box
indicate the first and third quartiles, the band inside the
box is the median, and the ends of the whiskers represent
the lowest sample within 1.5 IQR of the lower quartile, and
the highest sample within 1.5 IQR of the upper quartile.
We will use this type of representation for most of our
experimental results hereafter. This experiment was carried
out in a home environment, streaming backlogged data for
30 s from a laptop attached to a 2.4-Ghz WiFi Access Point
and a Meteor 3G/4G dongle to our remote server using
mgen (See Fig. 10a). For “Default MPTCP”, we used the
Linux implementation of MPTCP v0.89 with OLIA [7] for
congestion control and LowRTT as scheduler. We repeat the
experiment 5 times for every scheme. The first observation
from Fig. 11 is that MPTCP shows the worst performance
in terms of both goodput and delay. This may be explained
by MPTCP’s use of a different congestion control scheme
(less friendly to wireless losses as shown in [42]), a packet
scheduler (LowRTT) that does not account for delay vari-
ability (neither does EDPF), and the lack of FEC for packet
loss control. The second observation is that S-EDPF both
increases goodput and decreases delay, providing the ability
to trade goodput for lower delay by adjusting the coding
rate (it can be seen in Fig. 11 that decreasing the coding
interval τ in S-EDPF-τ reduces delay at the cost of reduced
goodput, as expected from the analysis in §3.1).

(a) Setup 1. (b) Setup 2.

(c) Setup 3.

Fig. 10. Experimental setups.
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Fig. 11. Uploading over WiFi+LTE in a home scenario.

5.3 Controlled Environments
For these experiments, we use tc/netem to generate non-
correlated normally distributed delays in a controlled Eth-
ernet network between laptop and server (Fig. 10b), and
dummynet to emulate link bitrates and drop packets ran-
domly when required. To avoid effects associated with
congestion control, in this subsection we fix the packet rate
on each subflow to match the bandwidth-delay product of
each path (i.e. the highest rate without causing congestion).
Unless otherwise stated, we stream backlogged data using
mgen for 30 s from a laptop attached to two emulated
networks, and repeat each experiment 5 times per mech-
anism. In the sequel, we first evaluate one variable at a
time (randomness, then losses) and then we emulate live
streaming of video with a real-life service.

5.3.1 Random propagation delays
We set up two links, each of 10 Mb/s, connected to a router.
The router introduces 50 ms of fixed propagation delay in
link 2 and a random propagation delay with mean 50 ms
and variable standard deviation in link 1. We do not drop
any packets in these experiments. We compare MPTCP’s
LowRTT scheduling scheme, EDPF and S-EDPF-τ (i.e. S-
EDPF with coding interval τ ). Results are shown in Fig. 12.
The top plot shows the average goodput performance and
the bottom plot the measured buffering delay at the receiver
(i.e. not including the path propagation delay). Note that we
make full use of the aggregate capacity of the network, i.e.,
the receiver always receives 20Mb/s of raw traffic. It can be
seen that our FEC mechanism uses part of this capacity to
send redundant information; for instance, S-EDPF-4 trades
5 Mb/s to reduce delay by half (roughly) when the standard
deviation of link 1’s propagation delay is 100ms. Observe
that FEC helps delay even when there is no loss. The reason
is that, depending on the behaviour of the paths, coded
packets might arrive sooner than preceding data packets
and thus help the receiver to decode still-on-the-air packets
sooner than would be the case when without FEC. We have
also evaluated the performance for a range of path delays
and find that S-EDPF offers similar gains in performance
(not shown here due to space constraints). Note also that
when τ is larger, the coding rate τ−1

τ decays and so it does
the protection to reordering.
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Fig. 12. Buffering delay and goodput. Paths with random delay, no loss.

5.3.2 Lossy Paths
We now assess S-EPDF with lossy paths. To this end we
fix the propagation delay of two links to be 50 ms, the
rate to be 10 Mb/s and randomly drop 10% of packets in
link 1. In link 2, we do not drop packets in Fig. 13a, and
drop 10% of packets in Fig. 13b. Note that we only drop
data packets and not ACKs, to benchmark against ideal
ARQ. In the figures we evaluate S-EDPF for a range of
coding intervals and compare against an EDPF scheduler
that relies only upon retransmissions (ARQ) to recover
from losses (as does MPTCP). It can be seen that use of
FEC practically eliminates buffering delay with the most
aggressive configuration (S-EDPF-4) at the cost of 15% of
throughput. When τ is larger, the coding rate τ−1

τ decays
and so it does the protection to losses but the throughput
loss moderates. It is worth mentioning that higher RTTs
yield larger performance gains (not shown here for space
reasons) because ARQ only retransmits packets upon the
reception of feedback and this takes longer the higher the
propagation delay.

5.3.3 Real-time Streaming
In the following, we evaluate the performance of EDPF
and S-EDPF for a live streaming application. The setup
is shown in Fig. 10c. A vlc video player located in a
laptop streams a video from a Youtube server through
the Internet. A remote proxy acts as the Internet gateway
and relays Youtube data to the local proxy across two
independent paths where we control the packet loss and
delay. In order to emulate real-time (live) streaming, we
configure vlc with 200 ms of caching and decoded pictures
experiencing a delay greater than 150 ms are discarded.
This lets us test a live streaming application while hav-
ing repeatability in our experiments. We selected an HD
video (with resolution 1280x534), Star Wars VII teaser trailer
2 (https://www.youtube.com/watch?v=wCc2v7izk8w ac-
cessed on 01/05/2016) encoded with H264/MPEG-4 AVC,
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Fig. 13. Buffering delay and goodput over lossy links.

with duration of 1:49 mins, and a rate of 23.97 fps. We
configure the two controlled links with 10 Mb/s, 100 ms of
RTT, and a variable random packet loss rate (for both data
and ACKs) on one of the links; we do not drop any on the
other link. Fig. 14 shows the ratio of video frames that have
been discarded (e.g. due to excess buffering delays), over 5
runs, when using EDPF (using ARQ for loss recovery) and
S-EDPF-τ for different coding intervals τ . It can be seen that
S-EDPF achieves a dramatic improvement in the streaming
experience. In particular, when the access link experiences
losses the video delivered using EDPF stutters and skips sig-
nificant sections whereas using S-EDPF essentially no video
frames are skipped and playout is consistently smooth.

5.4 “Into The Wild”

Finally, we evaluate the performance of S-EDPF over pro-
duction networks. We use a laptop attached to a 3G/4G don-
gle and connect to a range of public WiFi hotspots around
Dublin, Ireland (Fig 10a). Our experimental campaign cov-
ers measurements in the campus of Trinity College Dublin,
a home environment surrounded by many apartments, a
public pub during busy hours, St. Stephen’s Green Mall in
Dublin on a Saturday evening, and Dublin airport at peak
hour. At each location, we stream backlogged data for 30 s
from our server and repeat the measurement 5 times for
each configuration. We remark that these scenarios generally
offered unreliable wireless links; we have observed delay
deviations of several milliseconds and bursts of packet
losses of a few hundred packets in many of our experiments.
Fig. 15 shows the measured goodput in the top plot, the
distribution of packet end-to-end delay in the lower plot.

First consider the “Airport” scenario. When using the
individual links (labeled “Cellular” and “WiFi”) we observe
very poor performance when using only ARQ (labelled
“EDPF (no coding)”). Adding low-delay FEC (labelled “S-
EDPF-4” etc) alone improves delay by an order of magni-
tude when using a single path (we observed similar gains
in our controlled environments). When bonding both links
together, the delay performance of EDPF worsens even
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Fig. 14. Live video streaming.

further because of the high level of packet reordering in-
duced across paths. S-EDPF, on the other hand, continues to
achieve much lower delay when both links are bonded due
to its superior scheduling decisions in the face of uncertainty
and time-variations in the path delays. In this case, with
S-EDPF-4 we can increase goodput by 50% with respect to
using the cellular link only and triple it with respect to using
WiFi link only at a negligible cost in delay .

If we consider the “Campus” and “Home” scenarios
now, observe that the goodput on the WiFi link is substan-
tially higher than on the cellular link. In this case we can
expect there to be little benefit from bonding both links, and
indeed we see this in the measurements. When bonding
these links and using S-EDPF the goodput and delay are
similar to those when using the WiFi link alone. Conversely,
in the “Pub” and “Mall” scenarios the WiFi link is poor and
the cellular link has higher goodput. When bonding these
links and using S-EDPF the goodput and delay are similar
to those when using the cellular link alone.

These results demonstrate that multipath S-EDPF capi-
talises on both paths when there is a benefit to be gained (as
in the ‘Airport” scenario) and otherwise provides goodput
and delay performance similar to that of the best single path
(as in the “Home” scenario). Importantly, observe that when
using EDPF the multipath delay performance is consistently
poorer than with S-EDPF, often by an order of magnitude.

6 SUMMARY & CONCLUSIONS

Building an efficient, low latency multipath transfer mech-
anism is highly challenging. The primary reason for this
is that the transmission delay along each path is typically
uncertain and time-varying. When the transmitter ignores
the stochastic nature of the path delays, then packets sent
along different paths frequently arrive out of order and need
to be buffered at the receiver to allow in-order delivery to
the application. In this paper we propose S-EDPF (Stochastic
Earliest Delivery Path First), a generalization of EDPF which
takes into account uncertainty and time-variation in path
delays yet has low-complexity suited to practical implemen-
tation. We integrate FEC into S-EDPF in a principled manner
by deriving the optimal schedule for coded packets across
multiple paths. We demonstrate that S-EDPF is effective at
mitigating the delay impact of reordering and loss in mul-
tipath transport protocols, offering substantial performance
gains over the state of the art.
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Fig. 15. Experiments into the wild.
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APPENDIX
PROOFS

Lemma 1. Supposing there is no reordering in packets sent
within the same path, it is sufficient to consider situations where
packets on the same path are sent in order to minimise delay.

Proof. Let αp,1, αp,2, . . . , αp,n denote realisations of random
variables ap,1, ap,2, . . . , ap,n i.e. the arrival times of packets
sent in slot n of path p. Suppose packets on the same path
are sent in ascending index order, i.e. for any k ∈ {1, s, . . . }
and q1, q2 ∈ Kp,k such that q1 < q2 then sp,q1 < sp,q2 .
Since we assume there is no reordering within a single path,
it follows that αp,q1 < αp,q2 . Let ψp,k := max{αp,sq :
q ∈ Kp,k} and ψk := max{ψ1,k, . . . , ψP,k, αpk,sk}. Then
we have ψp,k ≤ ψp,k+1, k ∈ {1, 2, . . . }, with equality
only when Kp,k+1 = Kp,k. To see this, note that when
Kp,k+1 = Kp,k equality is trivial, and when Kp,k+1 6= Kp,k

then q∗k+1 := max{q ∈ Kp,k+1} > q∗k := max{q ∈ Kp,k}
due to the ascending order and so αp,q∗k+1

> αp,q∗k and thus
ψp,k+1 > ψp,k. Hence, ψk < ψk+1, k ∈ {1, s, . . . } i.e. the in-
order delivery time is strictly increasing. Suppose now that
the slots of two packets q1 and q2 with q1 < q2 on path p are
swapped, so that the packets are now sent in non-ascending
order sq1 > sq2 . Let ψnonp,k := max{αp,sq : q ∈ Kp,k} and
ψnonk := max{ψnon1,k , . . . , ψ

non
P,k , αpk,sk}. Then ψnonp,k ≤ ψnonp,k+1

but now for at least one k ∈ {1, 2, . . . }, namely k = q2, there
will be equality when Kp,k+1 6= Kp,k and so ψnonk = ψnonk+1.
Further, for k ≥ q2 then ψnonk = ψk and also for k < q1.
Hence, ψnonk > ψk for k ∈ {q1, . . . , q2 − 1} and so the sum-
delay is increased relative to sending packets in ascending
order. We can proceed by induction to show that swapping
further packets cannot decrease the sum-delay below that
when packets are sent in ascending order (there are two
cases to consider, (i) when the further set of swapped
packets is disjoint from those already swapped, in which
case the above argument can be re-applied directly, and
(ii) when the further set of swapped packets intersects
with those already swapped, in which case we can recover
an ascending packet order). Since the above holds for any
realisation αp,1, . . . , αp,n, we are done.

Lemma 2 (Lyapunov CLT). Suppose {X1, X2, · · · } is a se-
quence of independent random variables, each with finite expected
value µi and variance σ2

i . Let us define s2
n =

∑n
i=1 σ

2
i . If for some

δ > 0 , the Lyapunov’s condition limn→∞
1

s2+δn

∑n
i=1 E

[
|Xi −

µi|2+δ
]

= 0 is satisfied, then a sum of (Xiµi)/sn converges in
distribution to a standard normal random variable, as n goes to
infinity: 1

sn

∑n
i=1(Xi − µi)

d−→ N (0, 1).

Proof. See [43].

Proof of Theorem 2: S process.
1. We know that for the decoding process to go beyond k
we need at least k erasures in the first k frames. This means
that there are cases with more than k erasures in the first
k intervals that the decoding process stops before k but for
it to be greater than k we should have at least k erasures.

Let Ek denote the number of losses in k frames. We have
P (S > k|Ek ≤ k) = 0. Formally:

P (S > k) = P (Ek > k)P (S > k|Ek > k)+

+ P (Ek < k)P (S > k|Ek < k) =

= P (Ek > k)P (S > k|Ek > k) < P (Ek > k)

Ek is the sum of τ independent Bernoulli variables with
parameter εi, i depending on the path. By Lemma 2, we
know Lyapunov’s condition is satisfied and

1√∑
p∈P kNτ,pεp(1− εp)

(Ek −
∑
p∈P

kNτ,pεp)

converges in distribution to N (0, 1) for large values of
k. P (Ek > k) goes to zero only if k is larger than∑
p∈P kNτ,pεp. This means

∑
p∈P Nτ,pεp < 1.

2. It is trivial to compute P (S= 0) and P (S= 1) exactly.
Now, following the proof of Theorem 1.2 in [39], we can
compute P (S = k), k > 1 as:

P (S=k)=

min(k,τ)∑
r=2

P (L(~ε)=r)
r−1

k−1
P (L([~ε]×(k−1)=k−r)),∀k > 1

(14)

where ~ε = {εp1 , . . . , εpi , . . . , εpτ }, εpi is the erasure probabil-
ity in the path assigned to packet i, and [~ε]×(k−1) appends
the ~ε vector k − 1 times. However, the computation of
P (L(~ε) = r) requires a complex iterative algorithm [44],
which is not helpful for us. We thus approximate this part
of the S distribution with:

P (S = k) ≈ P (S1 = k) = (15)

=

min(k,τ)∑
r=2

P (B(ε̄, τ=r))
r−1

k−1
P (B(ε̄, τ(k−1) = k−r))

=
Nτ
k
ε̄k(1−ε̄)kNτ

(
(k − 1)τ

k − 1

)
,∀k > 1

where B is the binomial distribution with parameters ε̄ =∑
p∈P Nτ,pεp

τ and τ =
∑
p∈P

Nτ,p.

3. Let us define S1 as a random variable with the distri-
bution of S but with erasure probability ε̄ =

∑
p∈P Nτ,pεp

τ for
all paths. From [39], the first and second moments of S1 are

E[S1] =
(τ − 1)ε̄(1− ε̄)τ−1

1− τ ε̄
(16)

E[S2
1 ] = E[S] +

τ(τ − 1)ε̄2(1− ε̄)τ

(1− τ ε̄)3
(17)

Now, E[S] can be approximated as follows:

E[S] ≈ P (S = 1) +
∞∑
k=2

kP (S1 = k). (18)

Note that
∑∞
k=2 kP (S1 = k) = E[S1]− P (S1 = 1), Thus,

E[S] ≈ P (S = 1) + E[S1]− P (S1 = 1) =

= P (S=1) +
τ(τ−1)ε̄2(1−ε̄)τ−1

1−τ ε̄
, (19)

given that P (S1 = 1) = (τ − 1)ε̄(1 − ε̄)τ−1. E[S2] can be
approximated similarly.
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Proof of Theorem 3: In-order delivery delay. Let us assume that
a transmission of a stream of Nt packets is approximately
a multiple of τ at time t. Then we have that, at time
t, we have sent Nt

τ frames. Let us assume now that the
decoding process consists of decoding periods of length
{s1, . . . , sn, . . . }. Note that {S1, . . . , Sn} is a sequence of
positive i.i.d. random variables. Assume S+ = min{S, 1},
and define Jn as follows: Jn =

∑n
i=1 S

+
i , n > 0; then the

renewal interval [Jn, Jn+1] is a decoding period. Let (Xt)t≥0

count the τ -intervals that have occurred by time t, which is
given by Xt :=

∑∞
n=1 I{Jn≤t} = sup {n : Jn ≤ t } and is a

renewal process (I is the indicator function).
Let W1,W2, . . . be a sequence of i.i.d. random vari-

ables denoting the sum of in order delivery delay in
each decoding frame. We have two cases to consider.
Case (i): suppose the j’th period is an idle period. Then
Sj = 0 and the information packets are delivered in-
order with delay ∆p, where ∆p is the transmission time
of a packet sent in path p, here assumed as constant. Case
(ii): suppose the j’th period is a busy period and the
information packet erasure that initiated the busy period
started in the first slot ti(j) + 1. Then the first informa-
tion packet in each path p is delayed by Sj∆pNτ,p slots,
the second by Sj∆pNτ,p − 1 slots and so on. The sum-
delay over all of the information packets over all different
paths in the busy period is therefore

∑
p∈P(

∑Sj∆pNτ,p
k=1 k −∑Sj−1

k=0 k∆pNτ,p) <
∑
p∈P

S2
j∆pNτ,p(∆pNτ,p−1)

2 . The random
variable Yt =

∑Xt
i=1Wi is a renewal-reward process and its

expectation is the sum of in order delivery delay over the
time-span of t. Based on the renewal theorem for renewal-
reward processes [45], we have: limt→∞

1
tE[Yt] = E(W1)

E[S+
1 ]

.
Based on the construction of Wi, we have

E[W1] =
∞∑
i=1

E[W1|S+
1 = i] Pr(S+

1 = i) =

∞∑
i=0

E[W1|S1 = i] Pr(S1 = i)=E[S2]
∑
p∈P

∆pNτ,p(∆pNτ,p − 1)

2
.

(20)

We also have that E[S+
1 ] = E[S] + P (S = 0), and

that limt→∞
1
tE[Yt] ≤ E[S2]

E[S]+P (S=0)

∑
p∈P

∆pNτ,p(∆pNτ,p−1)
2 .

Since we assumed that Nt = tτ , we have:

lim
Nt→∞

1

Nt
E[Yt] ≤

∑
p∈P ∆pNτ,p(∆pNτ,p − 1)

2τ(E[S] + P (S = 0))
E[S2]

Proof of Theorem 4: Path choice for coded packets. Suppose we
have a system with P = {1, . . . , p} paths with erasure
probabilities ε1 ≥ ε2 ≥ · · · ≥ εp. Let us first evaluate two
independent S processes, S1 and S2, and schedule coded
packets on path 1 in the first case and on p2 (any other)
in the second case. Let pc = 1 and pc = p2 describe this.
We know from eq. (14) that the path selected for the coded
packets does not affect the decoding process when S > 1:

P (S1 = k) = P (S2 = k), ∀k > 1. (21)

When
∑
p∈P Nτ,pεp < 1 (i.e. when we operate below the

capacity limit), the above yields:

P (S1 = 0)+P (S1 = 1)=P (S2 = 0)+P (S2 = 1) (22)

given that
∑
k P (S = k) = 1.

Note that the decoding delay is equal to 0 slots with
probability P (S = 0) (it is the in-order delivery state),
and non-zero otherwise (packets are being buffered until
all losses are recovered). This means that, given equations
(21) and (22), the Si process that achieves lower delay is the one
that maximises P (S = 0). Let us then compare P (S1 = 0)
and P (S2 = 0):

P (S1 = 0)

P (S2 = 0)
=

(1− ε1)Nτ,1−1
∏
i6=1(1− εi)Nτ,i

(1− εp2)Nτ,p2−1
∏
i 6=p2(1− εi)Nτ,i

=

=
(1− εp2)

(1− ε1)
≥ 1 (23)

because 1 ≥ ε1 ≥ εp2 ≥ 0 . Thus P (S1 = 0) ≥ P (S2 =
0), i.e., scheduling coded packets on path 1 (the one with
highest loss probability) minimises the decoding delay, and
this is valid for any Si process different than S1.


