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Abstract—We consider a solar power supply for a LTE macro
base station (BS) based on a photovoltaic (PV) panel and a
battery, and we develop two discrete-time Markov chain (DTMC)
models for the analysis and the dimensioning of the system
elements (PV panel size and battery capacity). The DTMC models
account for the solar irradiance levels in pairs or triples of
consecutive days, and for the quantity of energy stored in the
battery. From the DTMC steady-state (or transient) solution it
is possible to derive performance metrics on which the system
dimensioning can be based. We apply our models to BS locations
in southern and northern Italy. Results show that the simpler
model contains sufficient details for an effective system design.

I. INTRODUCTION

The use of Renewable Energy Sources (RESs) to power
Base Stations (BSs) of Radio Access Networks (RANs) is
gaining increasing attention for a number of reasons. First,
RANs, and the wide gamut of services they provide, are
reaching countries where the power grid is either not available
in large areas or unreliable for long periods of time. This
means that BSs must be equipped with an autonomous power
source, which can exploit either RESs or a Diesel power
generator. The latter option is often much more expensive,
specially for remote locations, when fuel transport (and pos-
sibly also fuel theft) becomes an issue. Second, the process
of densification of RANs in urban areas implies the activation
of large numbers of small cells, whose BSs must obviously
be powered. Often, the connection of these BSs to the power
grid is impractical, because of the administrative difficulties
inherent in pulling cables across private and public properties.
This makes the RES choice extremely attractive in small cell
environments. Third, RESs seem to be the only viable option
for the reduction of the energy costs of Mobile Network
Operators (MNOs), since, after a decade of intense research
in energy-efficient networking, not much has happened, except
for the introduction of more energy-parsimonious equipment,
so that energy costs keep going up. The RES option might be
the way to bring those costs down, even in a period of very
strong traffic growth [1].

Research in the field of RES-powered BSs and RANs started
some years ago. The authors of [2], [3] provide a survey of
recent publications in the field. In our previous works [4], [5]
we tackled the design of the photovoltaic (PV) panel size and
of the number of batteries to power a BS in different geo-
graphical locations, using the (deterministic) metereological
data of the typical metereological year. In this paper we look
at a probabilistic metereological model that we construct from

public data of solar irradiation in the last twenty years, sep-
arately considering seasonal behaviors, in order to show that
winter data should be considered in the system dimensioning.
We actually consider two different Markovian models, one
based on solar irradiation data in pairs of consecutive days,
the other based on solar irradiation in triples of consecutive
days, with the objective of verifying whether the correlation in
the solar irradiation of consecutive days plays a significant role
in the BS RES power performance. Results show that the two
models are almost equivalent, so that the simpler one can be
preferred. Markovian models similar to the ones presented here
are proposed in [6], [7] for the computation of the BS outage
probability. In [6] the model includes the hourly production in
a day, while [7] distinguishes between weekend and working
days that correspond to different levels of load on the BS.

II. METEREOLOGICAL MODELS

The procedure for dimensioning solar powered BSs
equipped with a PV panel and a set of batteries starts with the
stochastic characterization of solar radiation in the considered
location.

For the characterization, we used the solar irradiance data
available in SoDa [8], and in particular the NASA SSE and
HelioClim databases, which provide the time series of daily
solar radiation from July 1st 1983 to June 30th 2005. We
take the daily mean irradiance, measured in W m−2, in the
horizontal plane over 20 years, from 1985 to 2004. The daily
irradiance values are then quantized on an integer number Q of
levels: hence, each value of daily mean irradiance corresponds
to an element of the set L of irradiance levels, with L =
{L1, L2, ..., LQ}.

From these data, we construct two discrete-time Markov
chain (DTMC) models that differ in the degree of correlation
among the irradiance of consecutive days. In the first model,
called 1-day memory model, the irradiance level in a day
depends only on the irradiance in the previous day. In the
2-days memory model, the irradiance level depends on the
irradiance of two consecutive previous days.

The state of the 1-day memory DTMC is the level of
daily mean irradiance in a single day, hence the state space
cardinality is Q. The DTMC transition probabilities pij can
be computed from traces collecting daily irradiance values in
a given location. Let the sequence I represent the sequence
of irradiance values; considering pairs of consecutive values,
the probability pij is given by the relative frequence of



occurrence of the pair (Li, Lj) over all pairs (Li, ·). The
matrix P (1) = {pij} is the transition probability matrix of
the DTMC.

The state of the 2-days memory model describes the levels
of daily mean irradiance in two consecutive days, hence the
number of states is Q2. The transition probabilities pijk are the
probabilities of moving from state (i, j) to state (j, k), with
i, j, k ∈ [1, Q]. In order to compute the elements pijk, we look
at triples of consecutive irradiance levels in the sequence I,
and count the recurrence of each possible triple (Li, Lj , Lk).
Note that from any state (i, j) it is possible to reach only states
(j, k), and, hence, the transition probability matrix P (2) is a
Q2 ×Q2 matrix where at most Q3 non-zero elements exist.

III. HARVESTED AND CONSUMED ENERGY ESTIMATION

The BS daily energy consumption C depends on the traffic
profile, and on the BS technology. We consider four alterntive
types of traffic profile, referring to measures performed on
an operational cellular network in business/residential areas,
during weekdays and weekends [4]. As regards technology,
we look at LTE BSs that either adopt a RRU (Remote Radio
Unit) layout or not. The values reported in Table I are the
resulting daily energy consumptions. In the following, for the
sake of brevity, we will show results only for the weekend
residential data, since they correspond to the highest energy
demand.

TABLE I
ENERGY CONSUMPTION OF LTE BSS FOR DIFFERENT CONFIGURATIONS.

THE VALUES ARE IN KWH.

Residential Profile Business Profile
with RRU w/o RRU with RRU w/o RRU

Week day 15.5 23.8 15.2 23.9
Weed end 15.7 24.7 12.6 19.5

The energy harvested by the PV panel can be computed
with the online tool PVWatts R© Calculator [9], which allows
several parameters to be set. We selected the Premium Module
Type, and the Commercial System Type. All other parameters
were left to their default values. With a Premium Module, the
approximate efficiency is about 20%.

The tool returns, for each month, the harvested energy (in
kWh), and to obtain the mean daily produced energy Pd, with
a level of irradiance Li, we proceed as follows. Let Ii be the
mean value of daily irradiance computed among all available
irradiance values belonging to the same level i; let Id be the
mean daily irradiance computed among all available irradiance
values independently of what irradiance level they belong to.
The energy Pi produced in a day with an irradiance level i is
therefore:

Pi =
Pd

Id
Ii. (1)

IV. BASE STATIONS MODELS

To evaluate the performance of the BS power system,
we develop a DTMC model which accounts for the battery
charge level. We thus combine one of the previously described

meteorological models with the description of the battery
charge level.

We start by considering the 1-day memory meteorological
model. The DTMC state is defined by the irradiance level in a
day and by the battery charge level when the considered day
begins.

Battery charge level x corresponds to an amount of energy
stored in the battery equal to xB/N , where B is the total
battery capacity in kWh, and N + 1 is the number of battery
charge levels. The DTMC state is

(i, x) with
{
i = 1, · · · , Q
x = 0, · · · , N

The amount of energy in the battery at the end of a day
depends on the energy harvested by the PV panel (which in
turn depends on the mean daily irradiance level and on the
dimension of the PV panel) and on the BS energy consumption
C (which depends on the traffic and on the power model of
the BS) during the same day. For simplicity, we assume that
C is constant.

In the DTMC, state (j, x) is reachable from states (i, y)
with yB/N = xB/N − ∆Ei and ∆Ei = Pi − C; Pi is the
harvested energy in a day with irradiance level Li and C is
the daily energy consumption. The transition from state (i, y)
to (j, x) occurrs with probability pij .

For the 2-days memory meteorological model, that accounts
for triples of consecutive days, the DTMC state definition
comprises three components (j, k, x): j is the irradiance level
of the previous day, k the irradiance level of the current
day, and x the battery charge level when the current day
begins. State (j, k, x) is reachable from states (i, j, y), where
yB/N = xB/N −∆Ej and ∆Ej = Pj −C, with probability
pijk.

Note that we assume an idealized battery behavior, where all
the energy stored in the battery can be retrieved from it, and the
battery discharge does not depend on the starting level. Losses
in efficiency in the battery behaviour can be compensated by
slight overdimensioning of the PV panel.

A. Performance indicators

We evaluate the performance of the BS powering system
from the steady-state probabilities. In the following, we report
the performance indicators computed from the 1-day and 2-
days memory models, denoting with π(1)

i,y and π(2)
i,j,y the steady-

state probability that the two DTMCs are in states (i, y) and
(i, j, y), respectively.

Outage probability: The outage probability, or discharged
battery probability, is given by the probability that the battery
charge is 0,

P (0)(1) =

Q∑
i=1

π
(1)
i,0 , P (0)(2) =

Q∑
i=1

Q∑
j=1

π
(2)
i,j,0. (2)



Fully charged battery probability: The fully charged battery
probability is the probability that the battery charge is equal
to 100%,

P (100)(1) =

Q∑
i=1

π
(1)
i,N , P (100)(2) =

Q∑
i=1

Q∑
j=1

π
(2)
i,j,N . (3)

Wasted energy: The wasted energy, measured in kWh, is
given by the weighted sum of the amount of energy that cannot
be stored in the battery, because more energy is produced than
what is needed, and the extra-produced energy is too much to
be stored in the battery,

W (1) =

Q∑
i=1

∑
y∈Sj

(yB/N + ∆Ej −B) π
(1)
i,y

W (2) =

Q∑
i=1

Q∑
j=1

∑
y∈Sj

(yB/N + ∆Ej −B) π
(2)
i,j,y (4)

where Sj is the set of values of battery charge such that some
harvested energy is wasted because it cannot be stored in the
battery,

Sj = {y|yB/N + ∆Ej > B} (5)

Virtual energy: The virtual energy, measured in kWh,
represents the amount of energy that the BS needs, but cannot
be provided by the RES powering system. In case of a
BS powering system with back-up power supply, the virtual
energy can be obtained from the backup system; otherwise,
the BS must be powered off,

V (1) =

Q∑
i=1

∑
y∈Tj

(−yB/N −∆Ej) π
(1)
i,y

V (2) =

Q∑
i=1

Q∑
j=1

∑
y∈Tj

(−yB/N −∆Ej) π
(2)
i,j,y (6)

where Tj is the set of values of battery charge such that the
sum of the stored energy and the harvested energy is not
enough to satisfy the BS energy need,

Tj = {y|yB/N + ∆Ej < 0} (7)

Average harvested energy: Finally, the average harvested
energy is given by

P
(1)
h =

Q∑
i=1

N∑
y=0

Pj π
(1)
i,y . P

(2)
h =

Q∑
i=1

Q∑
j=1

N∑
y=0

Pj π
(2)
i,j,y.

(8)

V. NUMERICAL RESULTS - CATANIA

We start by considering the city of Catania in Italy, during
meteorological winter, choosing Q = 5 quantization levels
for the daily irradiance values. Moreover, we discuss the
differences in results between the 1-day and 2-days memory
models, as well as the differences between the summer and
winter cases.

Fig. 1. Daily mean irradiance distribution for Catania in winter.

Fig. 2. Daily mean irradiance distribution for Catania in summer.

Most result curves are plotted versus the PV system size
[9], which is the DC power rating of the photovoltaic array
in kilowatts (kW) at standard test conditions (STC - solar
irradiance of 1 kW/m2, cell temperature of 25 ◦C and air
mass of 1.5).

The histograms of the mean daily irradiance in Catania,
using a quantization on 5 levels, can be seen in Figures 1
and 2 for the winter months (December, January, February)
and for the summer months (June, July, August). As expected,
differences are large (a factor between 2 and 3 applies to the
overall monthly averages, see Table II, because of both longer
hours of daylight and better weather), and winter is the season
with the lowest values of daily irradiance, hence critical for the
dimensioning of the BS. For this reason, we focus our attention
on the solar radiation data of December, January and February
from 1985 to 2004.

TABLE II
MONTHLY HARVESTED ENERGY IN WINTER AND SUMMER COMPUTED

USING PVWATTS R© IN CATANIA.

Dec Jan Feb Jun Jul Aug
Energy [kWh] 248 255 355 660 718 667

From the monthly average energy in December, January and



Fig. 3. Outage probability vs PV panel’s size for several battery capacities
when C = 15.7 kWh. The marker on the x-axis represents the point at
which the chain is balanced, i.e., the average produced energy is equal to the
consumed energy.

February, the daily harvested energy in meteorological winter
can be easily computed.

Considering a LTE BS with a ”residential” traffic profile,
adopting the remote radio unit (RRU) layout, and assuming to
be in weekend days, the average energy consumption is equal
to C = 15.7 kWh (see Table I).

In Figure 3 we show the results produced by the 2-
days memory model for the BS outage probability, for three
different values of battery capacity, versus the PV panel size.
As expected, fixing the value of the battery capacity, the
probability that the battery discharges decreases as the panel
size increases. Fixing the size of the PV panel, the outage
probability becomes lower as the battery capacity increases.
If the power system design aims at an outage probability of
the order of 1%, the curves tell us that a PV system power
of the order of 8.5 kW and a battery of capacity 50 kWh are
necessary.

The steep transition in the discharged battery probability,
observable when the PV System size is around 6.2 kW, is due
to quantization effects. The jump occurs when the vector of
the values of ∆Ei comprises at least one element which, from
a negative value, assumes a positive value or zero. The curve
becomes smoother when the number Q of quantization levels
of irradiance is increased, as we will show in section V-B.

Figure 4 shows the fully charged battery probability in
the same conditions. For each battery capacity value, the
probability that the battery is fully charged increases as the
PV panel’s dimension increases. For a given PV panel’s size,
the higher the battery capacity, the lower the charged battery
probability.

Figure 5 shows the amount of energy produced by the PV
panel that cannot be stored in the battery because it is already
fully charged. Clearly, the amount of wasted energy increases
as the PV panels size increases and decreases as the battery
capacity increases. With a dimensioning of the power system
that gives an outage probability of the order of 1% (PV panel
of 8.5 kW and battery of 50 kWh), almost 5 kWh per day are

Fig. 4. Charged battery probability vs PV panel’s size for several battery
capacities when C = 15.7 kWh.

Fig. 5. Wasted energy vs PV panel’s size for several battery capacities when
C = 15.7 [kWh].

lost on average.
Figure 6 shows the amount of energy which should be

consumed by the BS, but is not available in the battery, because
it is already fully depleted. This amount of energy becomes
lower as the energy production and the battery capacity in-
crease, and it is very small for the system parameters yielding
a 1% outage probability.

Figure 7 shows all contributions, allowing the reader to
verify the energy balance: all the energy that enters the battery
has to be extracted from the battery itself. Therefore the plotted
quantities are:
• Ph, average amount of energy harvested by the PV panel
• C, daily energy consumption (assumed to be constant)
• W , that part of Ph which does not enter the battery,

because the battery is already fully charged (wasted
energy)

• V , that part of C which cannot be consumed, being the
battery discharged (virtual energy).

Hence, the actual energy which enters the battery is

P ′ = Ph −W (9)

and the actual consumption is

C ′ = C − V. (10)



Fig. 6. Virtual energy vs PV panel’s size for several battery capacities when
C = 15.7 [kWh].

Fig. 7. Energy balance vs PV panel’s size when the battery capacity is 25
kWh.

Fig. 8. Discharged and charged battery probabilities vs PV panel’s size when
the battery capacity is 25 kWh.

Clearly, the following relation must be satisfied:

P ′ − C ′ = Ph −W − C + V = 0. (11)

Results equivalent to Figure 3, assuming the LTE BS does
not adopt a RRU configuration (so that C = 24.7 kWh - see
Table I) are plotted in Figure 9.

Figure 10 shows, for the same BS configuration, the dis-
charged and charged battery probabilities versus the battery

Fig. 9. Outage probability vs PV panel’s size for several battery capacities
when C = 24.7 kWh.

Fig. 10. Discharged and charged battery probability vs battery capacity when
C = 24.7 kWh and the PV panel’s size is 10.4 kW.

capacity, with PV system size set to 10.4 kW. This value is
very close to the equilibrium point, indeed the probabilities
are similar.

Finally, we compare the results obtained using the 1-day
memory and 2-days memory models of solar irradiance. We
assume a daily energy consumption equal to C = 24.7 kWh
and a battery capacity B = 25 kWh. Note that the results
shown so far used the model based on 2-days memory. Figure
11 and Figure 12 report, respectively, the discharged and the
charged battery probability computed by the two models: on
average, both probabilities are slightly higher for the more
detailed model, but results are quite similar. The same can be
said for the wasted and the virtual energies (not reported for
brevity). In general, relative differences remain below 10% for
PV system sizes whose production roughly balances the daily
energy consumption. This means that the gain achieved with
the more refined model is small.

A. Winter vs Summer

While it is clear that winter, having the lowest value of
average solar irradiation, is the most relevant period for
dimensioning a solar power system for the LTE BS, it can
be interesting to discuss what happens in more favorable



Fig. 11. Outage probability vs PV panel’s size for both employed metereo-
logical models when C = 24.7 kWh and the battery capacity is B = 25
kWh.

Fig. 12. Charged battery probability vs PV panel’s size for both employed
metereological models when C = 24.7 kWh and the battery capacity is
B = 25 kWh.

periods of the year. For this reason, we plot in Figure 13 the
BS outage probability due to energy depletion. As expected,
this probability is almost zero at the same PV System sizes
exploited in winter. Again as expected, the waste of energy
is huge (see Figure 14). This means that dimensioning the
BS power system for the winter period implies a large energy
surplus in summer, but also that dimensioning over the yearly
average implies an energy transfer from summer to winter,
which may be problematic and costly in terms of the necessary
battery capacity. Of course, dimensioning for the summer
period yields unacceptable performance in winter.

B. Number of irradiance levels

The choice of the number Q of irradiance levels partially
modifies the output of the models. Indeed, increasing the
number of irradiance levels produces smoother transitions
with respect to the previous plots, but the computational time
required to solve the DTMC models increases. Figures 15
and 16 show the outage and charged battery probabilities for
several values of Q. Note that the choices Q = 8, 10 allows
smoothing the jump observed in the outage probability with
Q = 5 (Figure 3).

Fig. 13. Outage probability vs PV panel’s size in winter and summer when
C = 24.7 kWh and the battery capacity is B = 25 kWh.

Fig. 14. Wasted energy vs PV panel’s size in winter and summer when
C = 24.7 kWh and the battery capacity is B = 25 kWh.

Fig. 15. Outage probability vs PV panel’s size for different quantization levels
of irradiance when C = 24.7 kWh and the battery capacity is B = 25
kWh.



Fig. 16. Charged battery probability vs PV panel’s size for different
quantization levels of irradiance; C = 24.7 kWh and B = 25 kWh.

Fig. 17. Discharged and charged battery probabilities vs PV panel size;
C = 24.7 kWh and B = 25 kWh.

VI. THE TORINO LOCATION

To evaluate how much the geographical location impacts
the characterization of the energy flows in a RES base station,
we now look at the case of Torino, considering solar radiation
data of December, January and February from 1985 to 2004
(as done for Catania). As expected, on average the amount of
solar radiation in northern Italy is less than the one in Catania.
The monthly harvested energies from a PV panel at the same
conditions of Table II are shown in Table III.

TABLE III
MONTHLY HARVESTED ENERGY IN METEOROLOGICAL WINTER

COMPUTED USING PVWATTS R© IN TORINO.

Dec Jan Feb
Energy [kWh] 110 122 179

Figure 17 reports the discharged and charged battery prob-
abilities versus the PV system size. The equilibrium point,
assuming the battery capacity equal to B = 25 kWh, is
approximately 21.7 kW, roughly double the value of the case
of Catania. Figure 18 shows the energy balance and the wasted
and virtual energies as the PV system size varies.

Fig. 18. Energy balance vs PV panel size; C = 24.7 kWh and B = 25
kWh.

VII. CONCLUSION

We described two DTMC models that can be used for
dimensioning the solar power supply of a LTE macro BS.
The DTMC models account for the solar irradiance levels in
pairs or triples of consecutive days, and for the quantity of
energy stored in the battery. By applying our models to BS
locations in southern and northern Italy we observed that the
resulting system dimensioning is not significantly influenced
by the longer memory. We also observed that the number
of quantization levels for both irradiance and battery charge
must be carefully chosen, and that seasonal behaviors are
(obviously) of key importance in the dimensioning.
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