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Abstract—Content caching on the edge of 5G networks is an
emerging and critical feature to support the thirst for content of
future connected cars. Yet, the compactization of 5G cells, the
finite edge storage capacity and the need for content availability
while driving motivate the need to develop smart edge caching
strategies adapted to the mobility characteristics of connected
cars. In this paper, we propose a Mobility-Aware Probabilistic
(MAP) scheme, which optimally caches content at edge nodes
where connected vehicles mostly require it. Unlike blind popu-
larity decisions, the probabilistic caching used by MAP considers
vehicular trajectory predictions as well as content service time
by edge nodes. We evaluate our approach on realistic mobility
datasets and against popularity-based edge approaches. Our
MAP edge caching scheme provides up to 40% enhanced content
availability, 70% increased cache throughput, and 40% reduced
backhaul overhead compared to popularity-based strategies.

I. INTRODUCTION

Connected cars are considered by drivers as a projection of

their home on the road, and the same connectivity and content

access services are expected. Accordingly, any future large-

scale deployment of connected cars will require a significant

redesign of the architecture of communication networks in

order to support the required connectivity and capacity for

cloud-based content and applications. Content providers are

gradually migrating their content items from the cloud to the

edge of communication networks to bring them as close as

possible to connected cars in order to reduce delay and network

overhead.

A major limitation of this approach is that edge nodes do

not have the same storage flexibility as the cloud, and efficient

strategies have to be developed to store the right content at an

Edge Node (EN) (e.g., cellular base station, AP, roadside unit)

required by the users under its coverage. Moreover, the thirst

for wireless capacity has led to a reduced coverage size of

ENs, which requires content to be replicated in multiple ENs

to sustain user demands. The design of caching policies has

therefore been widely investigated in the past [1], [2], [3], [4],

[5] since caching is considered one of the most efficient ways

to decrease the access delay to the content and to decrease the

congestion in the network. Indeed, effects are beneficial both

for the users, who have a better quality of experience, and the

network operator, which can better exploit network resources.

Yet, connected cars add further challenges to edge caching

strategies. They are, after all, highly-mobile vehicles and such

mobility requires storage strategies to be optimized not to the

current content popularity, but, instead, to the expected content

popularity among future users about to enter the coverage of

ENs. Furthermore, the dynamics of connected cars augmented

by the limited coverage size of ENs require content to be stored

where connected cars have a chance to actually download

it, say in slow-motion areas, such as congested intersections.

All these aspects create a challenging triumvirate for edge

caching for connected cars: low coverage, low storage capacity

and high mobility. Tackling such a triumvirate requires edge

caching strategies to be adapted to car mobility and connec-

tivity.

In the past, mobility-based caching policies have been in-

vestigated, such as in [6], [7], but they require a full knowledge

of the trajectory of each car, rising concerns about drivers’

privacy. Also, most of caching policies (as the ones in [1],

[8], [9]) are not tailored to in-sequence delivery of content,

typically required by future on-board streaming applications.

A major design challenge for caching policies is therefore

to rely only on coarse mobility information (sequences of

waypoints, dwell time, etc.), while supporting in-sequence

content delivery.

In this paper, we propose a Mobility-Aware Probabilistic

(MAP) edge caching strategy specifically adapted to highly

dynamic environments with a coarse knowledge of car trajecto-

ries. Our approach is based on the knowledge of the sequence

of travel waypoints, and some aggregate statistics about the

distribution of the dwell time under each EN. Note that this is

in accordance with the current trend in 5G systems [10], which

foresees a dynamic caching system to proactively store content

in the ENs, based on future demand estimation obtained by

user’s context information such as direction and speed. With

respect to classical works on caching, the peculiarities of the

scenario addressed in our work are two. First, we consider

a data streaming application in which the content is divided

into fixed size chunks, thus the download process is strongly

correlated at each EN, due to the in-sequence chunk delivery.

Second, mobility introduces another level of correlation in

the request process among different ENs. We remark that the

instantaneous popularity of a chunk at an EN depends on the

actual temporal and spatial trajectory of all the cars interested

in the corresponding content. The goal of our strategy is

to cache in advance the chunks in the sequence of ENs

traversed by the car, by choosing the chunks that will be

most likely downloaded at each specific EN. Thus our solution

maximizes the cache hit probability, with beneficial effects on

the backhaul traffic and content access delay.

Our contributions are manyfold: i) we introduce a split

content caching architecture, with an Area Controller (AC)

located in the backhaul and content caches located on ENs; ii)

we describe a simple analytical model capable of predicting the

probability for content to be required at specific ENs; iii) we

leverage the previous model to develop a mobility-aware edge

caching strategy; iv) we evaluate our solution under a realistic
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Fig. 1: Caching scheme for a car traversing 3 edge nodes.

urban traffic dataset of the city of Bologna. Our proposed MAP

architecture yields a 30% improvement in hit probability and

overall throughput, and reduces the backhaul traffic by 35%,

compared to pure popularity-based caching.

The rest of the paper is organized as follows. In Section II,

we describe our scenario and edge caching system. Section III

introduces the proposed MAP edge caching strategy, while

Section IV provides performance evaluations of MAP. We

discuss related work in Section V. Finally, in Section VI we

conclude the paper and shed light on future directions in edge

caching for connected cars.

II. SYSTEM SCENARIO

We consider an urban environment where cars can connect

to Edge Nodes (ENs) in order to download contents. ENs are

equipped with caches where content can be stored so as to

ensure a swift service to passing-by car users. In particular,

in this work we focus on streaming content applications run

by the car user for which in-order packet delivery should

be ensured. We therefore consider that each content item is

composed of K chunks, which, for the sake of simplicity, we

assume to be of equal size. We also assume each chunk to

be identified by a sequence number, k, with 1  k  K. For

simplicity, each car is supposed to receive a single data stream.

As shown in Fig. 1, a group of nearby ENs are controlled

by an Area Controller (AC), which resides in the network

backhaul. We assume that the AC knows or can predict the ENs

that a car will traverse in the next few minutes, and knows the

distribution of the dwell time under each of them (e.g., based

on past measurements). The AC is also aware of the available

room in the caches of ENs and of content requests made by

the passing-by users. Based on such information, the AC can

define which chunks of which content each EN should cache

and instruct ENs accordingly.

Upon entering the coverage area of an EN, the streaming

application of a car user requests a new batch of chunks,

indicating the content item it is receiving and the chunk

number s from which it expects the streaming to resume. The

EN checks whether it caches chunk number s or it needs

to download it from the backhaul, an operation which is

obviously costly in terms of bandwidth and latency. When the

chunk is delivered, the EN proceeds to send the next chunk,

resorting once more to the backhaul if its own cache does not

store it.

We are interested in establishing an efficient strategy to

store content chunks at ENs so as to ensure that cars receive

prompt, high-throughput content transfers and that the re-

quested data is fetched directly from ENs with high probability,

rather than from the backhaul.

III. MOBILITY-AWARE PROBABILISTIC (MAP) CACHING

As a first step, we theoretically evaluate the probability that

a specific chunk is downloaded from an EN by a tagged car.

We then leverage this probability to define our caching scheme.

Indeed, our approach consists in letting each EN store those

chunks whose probability to be downloaded by a car is above

a given threshold.

A. Chunk download probability

Let us focus on one car and one specific piece of content

that the vehicular user wishes to download from the ENs it

will pass by. We define E as the set of ENs that should serve

vehicular user and |E| its cardinality. We also consider that E
is ordered according to which EN will be visited first by the

tagged car.

We start by defining the chunk delivery process under

the idealistic assumption that all ENs can cache the whole

content, i.e., any chunk can be available at any EN 2 E .

This assumption of unlimited cache size is aimed at devising

a simple model that will be tailored to finite cache sizes in

Section III-C.

Let Y

i

be the random variable representing the last chunk

received from EN i � 1, and let Y0 = 0 by definition. Then

the set of chunks downloaded from EN i is given by: {k|k 2
(Y

i�1, Yi

]}. Thus the probability that chunk k is downloaded

from EN i � 1 is, for any k 2 {1, . . . ,K},

�

i

(k)=P (k 2 (Y
i�1, Yi

]) =P (Y
i

� k ^ Y

i�1 < k) (1)

Let X

i

be the random variable representing the total

number of chunks downloaded from EN i by the tagged car.

The probability density function (pdf) of X

i

depends mainly on

two factors: (1) the mobility of the car, since, e.g., longer dwell

times under the EN coverage typically imply larger amounts

of download data, and (2) the actual throughput obtained by

the vehicular user when connected to the EN, which in its turn

depends on the wireless data rate and on channel contention.

In Section IV-A, we will describe how to compute the pdf of

X

i

in the reference scenario under study.

Based on our definitions, it is easy to see that for i � 1,

Y

i

= Y

i�1 +X

i

=
iX

j=1

X

j

. (2)

The following theorem relates the download probability �

i

(k)
to X

i

.

Theorem 1: Given a car traversing a sequence of ENs, E ,

the probability to download a specific chunk k from EN i,

with 1  i  |E|, can be expressed as

�

i

(k) =
k�1X

n=1

P (X
i

� k � n|Y
i�1 = n)P (Y

i�1 = n) . (3)



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

D
o

w
n

lo
ad

 p
ro

b
ab

il
it

y

Chunk k

φ1
φ2
φ3
φ4
pk

Fig. 2: Download probability for each EN and overall down-

load probability, p

k

, for the MAP caching policy, given a toy

example scenario with ⌧ = 0.8 and E[X
i

] = 10 chunks.

Proof: Given (2), we can write (1), for any i � 1, as:

�

i

(k) = P (Y
i�1 +X

i

� k ^ Y

i�1 < k)

=
k�1X

n=1

P (X
i

� k � Y

i�1|Yi�1 = n)P (Y
i�1 = n)

=
k�1X

n=1

P (X
i

� k � n|Y
i�1 = n)P (Y

i�1 = n) .

Note that, as expected, for i = 1 the expression in (3)

becomes �1(k) = P(X1 � k) since the tagged car will

download chunk k from the first EN only if the total amount

of downloaded chunks from EN 1 is greater than k. Also, we

remark that �

i

(k) is not a discrete probability density function.

Indeed, thanks to the well-known property of the expectation

of non-negative integer random variables, we have:

Property 1:
P

K

k=1 �i

(k) = E[X
i

] .

The following corollary holds in the special case when the

car dwell times under the ENs are i.i.d. random variables. Note

that this case is addressed here for completeness, as well as

to provide a more explicit expression of the �’s, however our

approach does not require such an assumption.

Corollary 1: Let the random variables X

i

’s be i.i.d. and

defined on a positive support. Let f

X

(k) be their discrete pdf.

Then, for any i � 1, we have:

�

i

(k) = (f
X

⇤ �
i�1) (k) (4)

where ⇤ is the convolution operator.

The proof is reported in Appendix A.

B. Download probability in a toy scenario

To better clarify the behavior of the download probability at

each EN, consider a toy scenario in which a car traverses four

ENs. As an example, we assume i.i.d. X

i

’s with a symmetric

triangular distribution and mean value equal to 10 chunks, i.e.,

the average number of chunks downloaded at each EN is 10.

Fig. 2 shows the download probabilities �

i

(k) at each EN for

each chunk k. From Fig. 2 we can observe that, at the first

EN, �1(k) decreases as k increases since the randomness in

the mobility reduces the probability of downloading farther

chunks. Due to the limited support of the distribution of

X1, �1(k) becomes zero for k � 20 chunks. At the second

EN, �2(k) is now bell-shaped, since values of k close to

zero correspond to the case in which X1 takes very small

values (which is unlikely), i.e., the car speed is very high

under the coverage of the first EN, hence the car does not

have enough time to download any chunk. The maximum is

obtained around 15, which is reasonable since in the case of

deterministic mobility with X

i

= 10 chunks for any i, the

chunks to be downloaded would be exactly in the interval

[10, 20], which is symmetric around 15. The chunk download

probability from the following ENs (i > 2) still exhibits a

bell-shaped behavior, but with an expanded support. This is

due to the larger uncertainty on downloading a tagged chunk

from a given EN, which, in its turn, is due to the increased

randomness in the number of previously delivered chunks.

C. Finite cache size

The above model can be refined to consider the actual room

that will be available in the cache for the data that an EN

should store. Let M

i

be the maximum amount of data that

can be stored in the cache of EN i for the considered content.

Then we can introduce a discrete random variable,

b
X

i

, which

represents the total number of cached chunks downloaded from

EN i by the tagged car, given the available room in the cache
of EN i. The pdf of

b
X

i

is given by:

P
⇣
b
X

i

= x

⌘
=

( P(X
i

= x) 8 0  x < M

i

P(X
i

� x) x = M

i

0 8x > M

i

.

Indeed, it is not possible to download more than M

i

cached

chunks, and the events corresponding to a number of down-

loaded chunks larger than M

i

in the original model with

unlimited cache size, now correspond to downloading all the

M

i

available chunks. The tagged car can of course download

more than M

i

chunks from EN i, provided that the chunks in

excess are actually fetched by EN i from the backhaul (i.e.,

they were not available in the cache).

Given the above distribution, the probabilities �

i

(k) can be

computed as in (3), or as in (5) when

b
X

i

’s are i.i.d. .

D. Caching scheme

We now define our caching scheme, i.e., for each chunk we

determine which ENs should store it. The goal of our scheme

is to ensure that the probability with which a tagged car can

download a chunk from one of the EN caches is greater than

a given threshold ⌧ , so as to reduce the need to fetch chunks

from the backhaul. For each chunk, our scheme thus identifies

the minimum set of ENs that should cache it so that such

probability exceeds threshold ⌧ .

To this end, for each chunk k we first order the probabilities

�

i

(k) in decreasing order. Then, chunk k should be stored

at the EN i corresponding to the highest �

i

(k) value. If this



value is already greater than ⌧ , no other EN should cache k.

Otherwise, the EN corresponding to the second top value of

�

i

(k) should store the chunk too. Eventually, chunk k will be

cached at as many ENs, associated to the top �

i

(k) values,

as necessary so that the sum of their �

i

(k) exceeds ⌧ . The

scheme is reported in Algorithm 1, which, for each chunk k,

returns the set of ENs, S(k), that should store k.

Algorithm 1 MAP caching algorithm

Require: ⌧ , {�
i

(k)}
i,k

1: for k = 1, . . . ,K do
2: S(k) = ;, p

k

= 0
3: F(k) {�

i

(k)}
i

4: while F(k) 6= ; and p

k

< ⌧ do
5: p

top

 remove the highest value from F(k)
6: i

top

 EN index corresponding to p

top

probability

7: p

k

= p

k

+ p

top

8: S(k) = S(k) [ {i
top

}
9: end while

10: end for
11: return {S(k)}

k

At the end of procedure, p

k

represents the estimated

download probability based on the actual number of copies

for chunk k; by construction, we have p

k

� ⌧ . In the example

of Fig. 2, we show the p

k

obtained in our toy scenario and

assuming a simple triangular distribution for X

i

. Note that

the non-monotonic behavior is due to the different number of

copies that are stored at the ENs for different chunks. Intu-

itively, as k increases, the uncertainty about the possibility to

download chunk k increases, thus the MAP caching algorithm

compensates by creating a higher number of copies. Any time

the number of copies increases, we observe an upward spike

in p

k

.

Whenever a car enters the coverage area of an EN request-

ing a new content item, the EN contacts the AC. Based on the

predicted car mobility, the controller determines the set E and

then, using the above MAP algorithm, computes the set S(k)
for each chunk of the requested content. It thus instructs the

ENs in E accordingly, about which chunks they should store

for the new user. As the car proceeds along its route, the AC

predicts the new sets of ENs that will be traversed by the car

and notifies them about the corresponding new S(k) (i.e., the

chunks to store), until the content downloading is completed.

Next, consider the more general scenario where an EN

should serve multiple cars. Since ENs have finite cache sizes,

an eviction policy is needed to determine which chunks should

be removed in the case where the cache is full and new chunks

should be inserted. The chunks to be removed at higher priority

are the ones that have been already delivered, i.e., the chunks

destined to cars not anymore under coverage. Among these

chunks, we evict at higher priority the chunks with the lowest

download probability. In this way, our caching policy is able

to exploit the cache under both space and time varying chunk

demands.

IV. PERFORMANCE EVALUATION

We now introduce the scenario and real-world vehicular

traces that we have used to assess the performance of our solu-

Fig. 3: Reference scenario: road topology in the city of

Bologna. Circles represent RSU locations. Distances are ex-

pressed in meters.

TABLE I: Number of vehicles stopping on red light and going

through green light at each RSU

RSU1 RSU2 RSU3 RSU4 RSU5

Green Red Green Red Green Red Green Red Green Red

423 1036 1084 704 281 323 137 274 18 118

TABLE II: Average number of users under each RSU

RSU1 RSU2 RSU3 RSU4 RSU5

23.75 15.26 7.28 6.94 3.18

tion. Then we compare the MAP scheme against a popularity-

based solution in terms of some relevant performance metrics.

A. Reference scenario

We consider an urban environment where Internet connec-

tivity to cars is provided by WAVE roadside units (RSUs).

Each RSU is equipped with a cache and acts as an EN. In

order to represent real-world conditions, we take as reference

scenario a 2 km ⇥ 2 km urban section of the Italian city of

Bologna, illustrated in Fig. 3. The vehicular mobility traces

correspond to a dataset adjusted to real traffic by Bieker et

al. [11], using real Origin-Destination matrices and traffic

detectors at intersections. The total trace duration is 78.6

minutes comprising 11,079 vehicles (approximately, 950 are

simultaneously on the map) and representing 120 minutes of

the morning rush hours, under quite stationary traffic condi-

tions.

In this scenario, we select the east-north corridor, corre-

sponding to a major traffic artery of this section of Bologna,

and place five RSUs along it (represented as circles in Fig. 3).

All RSUs are placed in correspondence of intersections regu-

lated by a traffic light and have the same cache size and radio

range. Since our objective is to have a sequence of waypoints

that are not fully connected given the reference scenario, we

set the radio range to 100 m. The overall number of cars that

were observed to enter the coverage of at least two RSUs were

2,199 and our investigation focuses on such subset of cars.

Given the vehicular traces, for each RSU we derived the

pdfs of car dwell times, conditioned to the car stopping on



red light and to the car going through green light. We then

used such pdfs to obtain the predicted dwell time at the AC,

for a car under a given RSU. Table I reports the number of

vehicles that, according to our mobility traces, stop on red light

and go through green light at the intersections covered by the

deployed RSUs. The average number of vehicles under each

RSU is presented in Table II.

Furthermore, we consider that RSUs serve the car users

under coverage by devoting the same amount of time to each

of them. Indeed, according to the WAVE standard, RSUs adopt

the IEEE 802.11p MAC protocol, which provides temporal

fairness to traffic flows belonging to the same access category.

Thus, in order to determine X

i

for each connected car, we

scale the car dwell time distribution dividing it by the average

number of cars served by RSU i and multiplying it by the

average data rate that a car experiences while being under

coverage of RSU i. Finally, we evaluate

b
X

i

to take into

account the finite cache, according to the formula discussed

in Section III-C.

Figs. 4 and 5 depict the distribution corresponding to X̂1

and X̂3 in the considered traces, when the cache size is set

equal to 600 chunks. For the first RSU, Fig. 4 shows that “red

cars” (i.e., stopping on red light) and “green cars” (i.e., going

through green light) can download, on average, around 200

chunks and 80 chunks, respectively. The difference between

these values is clearly due to the different average speed of

the cars when under coverage. Observing the average number

of cars in Table II, RSU 1 is expected to be located at a

very congested intersection. Indeed, only very few red cars

experience a large enough dwell time and a small channel

contention that would allow them to download all the 600

chunks stored in the cache. RSU 3, instead, appears to be

located at a much less congested intersection, according to

Table II. This implies a lower channel contention, hence, a

higher download capability, as shown in Fig. 5. Indeed, under

RSU 3, green cars are able to download at least 140 chunks,

with an average around 200, whereas most of the red cars

download around 600 chunks, i.e., the maximum number of

chunks available in the cache. For the sake of brevity, we omit

the distribution of the number of chunks downloaded from the

other RSUs, but we mention that

b
X2 behaves very similarly to

b
X1, while

b
X4 and

b
X5 are very similar to

b
X3. This is due to

their similar levels of congestion, coherently with the values

reported in Table II.

B. Methodology

We have investigated the performance of our MAP caching

scheme by simulating the vehicular traffic according to the

mobility trace of Bologna. In our discrete-event simulator,

developed using OMNeT++ [12] libraries, we have modeled

the backhaul network with fixed propagation delays to access

the content server, whereas the wireless access network has

been modeled in terms of communication data rates and

channel contention. RSUs use IEEE 802.11p at the MAC

and physical layer, and operate on a 10 MHz-wide frequency

channel.

Regarding the content request process, each time a new car

enters the coverage of an RSU for the first time, it generates a

request for a content item. We assume that such item is chosen
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at random according to a Zipf’s distribution with exponent

↵ = 0.5. The size of content item is 600 chunks, with each

chunk being 10 kbytes large. The normalized cache size is

defined as the cache size divided by the total size of all content

items in the catalog.

In our simulations, we compare the performance of the

MAP caching scheme to that of the classical policy (denoted

by POP in the following). According to POP, the cache stores

the most popular content items. In our streaming scenario,

where content items are divided into chunks, we assume that

the POP policy stores the chunks of the most popular item in

sequence; thus, if no room is available for the whole item, only

the first chunks of it are stored until the cache is full. We have

considered the POP policy since, under a stationary content

request process feeding a single cache, it is well known to be

the optimal in terms of hit probability.

The performance metrics we consider are as follows:

• cache throughput: amount of data received by the car

and directly downloaded from the cache, i.e., in the
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event of a cache hit;

• cache hit probability: fraction of chunk requests that

are satisfied by directly downloading the chunk from

the cache;

• backhaul bandwidth: amount of data downloaded from

the server in the backhaul per time unit, i.e., in the

event of a cache miss;

• total throughput: total amount of data received by cars

per time unit, obtained as the sum of cache throughput

and backhaul bandwidth.

C. Simulation results

As a preliminary step, we have investigated the effect of

the threshold ⌧ adopted in the definition of our MAP policy.

Fig. 6 shows the average cache throughput for different values

of ⌧ given a cache size equal to 1800 chunks. Intuitively, one

would expect that, in a cache system with infinite cache size,

large values of ⌧ should imply that every chunk is stored

across all caches. However, the finite size of caches limits

the effectiveness of this approach (almost oblivious of car

mobility). Thus, when ⌧ is close to one, MAP, which is very

sensitive of the mobility, instructs the RSUs to store just few

copies for the first chunks (for which the effect of mobility

can be estimated with higher confidence), and an increasing

number of copies for the remaining chunks, so as to satisfy the

minimum download probability ⌧ . From Fig. 6, it can be seen

that in our scenario the best value of ⌧ is equal to 0.9; this

value appears to be optimal also for all the other cache sizes

we considered in our simulations. Thus, we use this value in

all of the following results.

Fig. 7 depicts the cache throughput as a function of the

normalized cache size, for the POP and the MAP caching

schemes. As expected, larger values of cache size improve

the performance of both caching schemes. However, MAP

outperforms POP by 15% up to 70%, depending on the cache

size. This is due to the higher effectiveness of the MAP policy,

which tends to store chunks only in those RSUs from where

they can be downloaded with high probability, taking into

account the channel contention and the dwell time statistics.

Indeed, Fig. 8 shows that the cache hit probability on the cache
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Fig. 9: Backhaul bandwidth.

for MAP is 30%-40% higher than POP, which is oblivious of

mobility, for most of the values of cache size.

The performance gain provided by MAP over POP can be

observed also in terms of backhaul bandwidth, since the higher

hit probability of MAP implies a lower probability to access

the server and retrieve the content from there. Fig. 9 shows

that the reduction of the used backhaul bandwidth obtained
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when MAP is applied is between 25% and 40%. Clearly, such

reduction leads to a lower backhaul congestion. Finally, Fig. 10

presents the overall system throughput, accounting for both

the chunks downloaded from a cache and from the backhaul.

This value must be compared with the maximum throughput

achievable in the overall network, which is equal to 28.7 Mbit/s

(i.e., around 5.7 Mbit/s, which is the average data rate we

observed at the application layer, times 5 RSUs). This value

would be achieved for infinite cache sizes, independently of

content popularity or car mobility.

We remark that, while deriving our results, we considered

that the AC has just a rough estimate of car mobility, since it

predicts only whether a car will stop on red or will go through

green light, and then leverages the pdf of the dwell time under

each RSU conditioned to the status of the traffic light. Still,

MAP significantly outperforms the popularity-based solution.

We expect that greater improvements can be obtained if a more

accurate mobility prediction is available at the AC.

V. RELATED WORK

In the context of cellular networks, [8] devises an optimal

geographic caching assuming that a user is covered by multiple

base stations; this case is different from our work, since

we do not consider overlapping coverage areas among ENs.

Furthermore, [8] proposes an optimal probabilistic content

placement policy that maximizes the total hit probability for

random network topologies, based on content popularity. Thus,

the policy there is oblivious of the actual mobility pattern of

users, differently from our MAP policy. In a hybrid scenario

comprising MANET and cellular networks, [9] proposes an

optimal caching and routing policies. Each node estimates

locally the content popularity and stores the content in the

cache based on its popularity. This scheme can be considered

as a distributed implementation of the POP policy that we use

for comparison in our work.

For the specific case of cellular backhaul networks, [13]

investigates the effect of different criteria to identify the web

content adopted when accessing the caching system. The main

idea is to avoid duplicated content items in the caches, since

those same items could appear with different identifiers at

application level. In our scenario, instead, we specifically con-

sider the streaming of content through a chunk-based approach,

for which we assume that each chunk and each content item

are univocally identified.

We remark that all the above cited caching schemes are

oblivious of user mobility. Instead, we assume to know the

sequence of waypoints of the temporal and spatial trajectory

followed by the cars. This information can be deduced from car

navigation systems or it can be easily predicted. For example,

studies such as [14] and [15] suggest that people usually

drive on familiar routes (drive to work, school, etc.) and this

can be exploited to develop quite accurate prediction models.

On this regard, [16] proposes a mobility prediction scheme,

based on the previous history of users, which improves content

distribution in vehicular networks through simpler handover

procedures.

Few works have investigated caching schemes specifically

taking into account user mobility. The authors in [6] consider a

scenario very similar to ours, based on an architecture denoted

as “MobilityFirst”, introduced in [17], which ensures seamless

mobile content delivery when users move across the network.

Thanks to a global identifier associated to each user, the user

mobility is recorded at each node. In terms of caching, each

node is equipped with two distinct buffers. The first one caches

the most popular content items, exactly as the POP policy

considered in our work. The second buffer is instead devoted

to store the content based on a prefetching policy leveraging

the predicted sequence of nodes traversed by each particular

user. A similar prefetching policy is proposed by [7] in a

cellular network scenario. Similarly to our work, the content

is delivered to users by base stations using a chunk-based

approach. The specific mobility of each user is considered in

order to identify the chunks to prefetch in the caches along the

user path. Unlike our work, however, both [6] and [7] assume

that the caching policy knows or predicts the spatial and

temporal trajectory of each user, in order to estimate the time

intervals in which the user will be covered by each base station.

Our approach instead requires to know just the distribution of

the dwell times under each edge node at aggregate level. This

distribution can be estimated locally by each EN and does not

require at all the precise knowledge of the car trajectory: only

the sequence of ENs is needed. This simplifies the prediction

process and goes a long way toward preserving the privacy of

users.

VI. CONCLUSIONS

In this paper we have studied the problem of efficiently

providing connected cars with streaming data as they drive

along a road covered by wireless edge nodes. Using a Mobility-

Aware Probabilistic (MAP) edge caching strategy, we let a

central controller determine the content of edge node caches

by predicting the probability for content to be required at each

edge node. The controller can base such prediction upon the

achievable data rates and the distribution of dwell times of cars

under the coverage of edge nodes. Our scheme was designed

to allow an operator to select a minimum set of edge nodes

that should cache the content achieving a desired delivery

probability without having to fetch it from the backhaul. We

have tested the MAP strategy with real traces from the city

of Bologna dataset and registered significant improvements in

content availability, throughput and backhaul overhead with

respect to popularity-based strategies.
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APPENDIX A

PROOF OF COROLLARY 1

Proof: When X

i

’s are i.i.d.,

�

i

(k) =
k�1X

n=1

P (X � k � n)P (Y
i�1 = n) .

Thus, (3) can be rewritten as:

�

i

(k)=
k�1X

n=1

P (X � k � n)
nX

t=1

P (X = t|Y
i�2 = n� t) ·

P (Y
i�2 = n� t))

z=n�t

=
k�1X

z=1

P (X � (k � t)� z) ·

k�1X

t=1

P (X = t|Y
i�2 = z)P (Y

i�2 = z)

=
k�1X

t=1

P (X = t) ·

k�1X

z=1

P (X � (k � t)� z)P (Y
i�2 = z)

= (f
X

⇤ �
i�1)(k) . (5)


