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ABSTRACT 

 

The development and implementation of hierarchical multiscale methods is necessary for the molecular 

simulation of complex chemical systems such as organic fluids and soft matter systems, in order to reach 

longer length and time scales. Coarse-Graining (CG) is at the core of multiscale methods. Machine 

Learning (ML) techniques have been investigated in the recent years for the development of improved 

atomistic force fields based on quantum mechanical calculations. However, the integration of ML methods 

into the development of CG force fields required for hierarchical multiscale modelling schemes for bulk 

organic systems, on the basis of atomistic simulations, is still very scarce. In this work, Graph 

Convolutional Neural Network (GCNN) architectures were adopted to develop CG Machine Learned 

potentials for bulk amorphous systems, implementing a strategy that includes a force-matching scheme 

using benzene liquid as a test system. Two CG representations were implemented for the benzene 

molecule: a single bead and a three-bead representation. The ML-based CG force fields were utilized to 

perform molecular dynamics (MD) simulations of the systems at the CG level and the properties of the 

CG systems simulated with a neural network potential were compared against the underlying atomistic 

ones, to quantify the effectiveness of the developed models. The effects of hyperparameters, loss function 

construction and GCNN architecture size were thoroughly investigated and discussed providing a wealth 

of information that can serve as a general basis for the reliable use of ML-based CG approaches in the 

wide field of bulk soft matter systems.  
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1. Introduction 

 

The development of innovative technologies that can address the crucial contemporary environmental and 

social demands require the design of new materials with controlled properties. This challenge necessitates 

a fundamental understanding of the interactions and the microscopic mechanisms that underlie the 

macroscopic behavior of the materials. Molecular simulations can play a crucial role in gaining such an 

insight and enable the establishment of structure-property relationships. The study of complex chemical 

systems with molecular simulation methods requires the development of multiscale hierarchical methods 

[1]-[3] in order to access longer length and timescale phenomena. 

Coarse-graining methodologies are a core component of multiscale methodologies. Coarse-graining 

involves the substitution of groups of atoms by effective interaction sites [4, 5], in a manner that preserves 

the degrees of freedom that are important for the study of the mechanisms and properties of interest. The 

interactions in this lower dimensional space are modeled through CG force fields which are 

approximations of the potentials of mean force (PMFs). Predefined analytical functional forms are usually 

employed and their parametrization is conducted as a top-down [4]–[8] fitting process, where it is ensured 

that they reproduce the macroscopic behavior of the material, or as a bottom-up [9]–[11] fitting process, 

for the reproduction of properties based on atomistic simulations, or from a combination of these two 

approaches. 

Machine Learning techniques have been investigated in the recent years for the development of improved 

atomistic force fields based on quantum mechanical calculations [13]. However, the integration of ML 

methods into the development of CG force fields required for hierarchical multiscale modelling schemes 

for bulk amorphous systems on the basis of atomistic simulations is still rare [14]. In this work, Neural 

Network-based models capable of learning complex potential energy hypersurfaces are utilized for the 

approximation of PMFs, replacing pairwise predefined analytical functionals for the description of the CG 

interactions. A Graph Convolutional Neural Network (GCNN) architecture, SchNet [15], was adopted  to 

develop CG ML potentials, implementing and optimizing a scheme [16] that includes a force-matching 

procedure [17]. Benzene liquid was used as a benchmark system using two CG representations for the 

benzene molecule: a single bead and a three-bead representation. The influence of hyperparameter tuning, 

loss function construction and GCNN architecture size were widely explored. The obtained models were 

used to perform CG Molecular Dynamics simulations and the structural and thermodynamic properties of 



  

 

 

the CG systems were systematically compared with the underlying atomistic reference to quantify the 

effectiveness of the developed models. 

2. Methodology 

2.1 SchNet Graph Convolutional Neural Network Architecture 

An essential step in the development of ML-assisted methods is the determination of input features for the 

ML model. Generally, such a transformation must end up in the construction of descriptors respecting 

invariance to translation, rotation, and permutation of the particles’ order. Furthermore, it is important to 

have a descriptor independent of the number of particles in the system. Thereby, the resulting ML model 

can be efficiently deployed to larger or smaller systems than the ones upon which it has been trained. 

Rather than constructing a priori fixed feature representations, more general and transferable strategies 

have been proposed, which consist of learning the molecular representation instead [18-21] along with the 

desired property. 

The Graph Convolutional NN architecture implemented in this work is based on the SchNet [22] 

architecture. A detailed description of the SchNet architecture can be found in Refs. [15], [22] and [23]. 

The SchNet architecture was initially developed for the analysis of small molecule structures and bulk 

crystals to predict atomistic energies and forces based on the quantum mechanical information, but its 

application can be extended for the study of molecular systems at the CG level as well, based on models 

trained on the atomistic reference [24], [25]. SchNet is a GCNN with learned local environment 

representation, requiring several hyperparameters. The graph nodes represent particles and edges are 

considered between all particles, CG moieties in the present case, within a cutoff distance. Edge features 

are defined as the distances between the beads, preserving translational and rotational invariance. 

Each particle is represented through a feature vector, which is initialized to distinguish between the particle 

chemical identities (embedding layer). The feature is then updated in each NN layer depending on the 

chemical environment, by performing continuous filter convolutions across the particle neighborhoods, 

optimizing the convolutional filter weights during the training (convolutional layers). Afterwards, a fully 

connected section is included (readout layers). A sequence of continuous convolution layers and readout 

layers constitutes a SchNet “block”. Series of blocks can be utilized in series to define the full network 

architecture. The output found at the end of the blocks can be interpreted as a learned feature 

representation, which encodes the many-body information from the particle neighborhood required to 



 

 

predict the target property. Finally, a fully connected (dense) section transforms the fingerprints into the 

final scalar output, which is interpreted as a per-particle energy contribution. This local decomposition 

ensures invariance of the ML potential architecture to the total number of atoms. In the presence of 

intramolecular and intermolecular interactions, the possibility to construct two input features for each 

particle, one that would consider only intermolecular neighboring particles, and one including only the 

intramolecular ones was investigated, as implemented in Ref. [24]. In this case, the values for the learned 

inter- and intramolecular features were summed before the final dense layer. All energy contributions are 

summed per configuration to obtain the total energies, ∑ 𝑈̂𝑗𝑗 , which are then differentiated with respect to 

the positions of the particles to predict the force acting on each particle. 

 

2.2 Loss Function Construction and CG Force Field Determination  

The determination of CG force field is implemented with the inclusion of a the force-matching scheme 

[17]. This scheme considers the mean squared Euclidean (L2-Squared) distance between the forces 

predicted by the CG model, 𝑭𝐶𝐺 ∈ ℝ3𝑁, for the N number of CG sites having coordinates 𝒙𝑖 and the 

coarse-grained forces, as calculated based on the mapping of the atomistic forces, 𝑭𝐴 ∈ ℝ3𝜈, where 𝜈 is 

the number of atoms, onto the respective CG sites: 

𝜒2 = 〈[𝑭𝐶𝐺 (𝒙𝑖) − 𝓜 (𝑭𝐴(𝒓𝑗))]〉         (1) 

 

In the expression above 𝓜 is the mapping operator between the atomistic and the CG space, 𝐫𝑗 are the 

atomistic coordinates and the brackets 〈… 〉 denote average over CG degrees of freedom and the number 

of sampled atomistic configurations. 

During the GCNN training, the loss function was initially constructed to be based on the minimization of 

the mean squared difference between the predicted forces and the forces associated with the atomistic 

molecular dynamics (MD) trajectory considered as input, using the following loss function 𝐿: 

𝐿 =
1

3𝑁
∑ {(−𝜵𝒙𝑖

𝑈𝐶𝐺) − 𝓜 (𝑭𝐴(𝒓𝑗))}
2

𝑁

𝑖

        (2) 

 
Where 𝑈𝐶𝐺 is the estimated energy of the system in the CG representation and the first term in eq. (2) is 

the force acting on the CG particle at position 𝐱𝑖 as predicted CG force field. The estimated CG energy of 



  

 

 

the system in the ML-based procedure is usually obtained by the sum of the per-particle energy 

contributions, 𝑈̂𝑖, which is the output of the GCNN, plus potential prior terms: 

𝑈𝐶𝐺 = 𝑈𝑝𝑟𝑖𝑜𝑟 + ∑ 𝑈̂𝑖

𝑖

        (3) 

 
The prior terms are oftentimes used to “inform” the model on unphysical states when these states are not 

included in the training data and prevent it from generating them. This is necessary for example in the 

case of training taking place using only physically valid configurations as the ones included in an MD 

trajectory. In order to ensure that the CG beads will not be allowed to approach too close to each other or 

even overlap, an excluded volume energy prior term of the following form is taken into account: 

𝑈𝑒𝑥 = ∑ ∑ (
𝜎

‖𝒓𝑖 − 𝒓𝑗‖
)

𝑛𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

         (4) 

 
Where 𝜎 is the excluded volume diameter and 𝑛 the excluded volume exponent and they are additional 

hyperparameter, whose appropriate values need to be explored in each case. For multi-bead per molecule 

representations in which connectivity is to be taken into account, additional prior terms on specific 

geometric features, such as bonds and angles may need to be added. For example, in the  

three-bead representation of the benzene molecule, a harmonic bond prior energy term was included to 

hinder bonds overstretching: 

𝑈𝑏𝑜𝑛𝑑 = 𝑘𝑏(𝑙 − 𝑙0)2       (5) 
 
Where 𝑘𝑏 is the bond stiffness constant, 𝑙0 is the equilibrium CG bond length, 𝑙 is the actual bond length. 

The bond stiffness constant 𝑘𝑏 is an additional model hyperparameter. 

The appropriate loss construction is a very important component towards an efficient ML-based training 

procedure. In the case of the present test system, it was found that loss function solely based on force 

component is not sufficient to provide well-performing CG models, as discussed in Section 3 and also 

reported in previous work [16]. A modification in the loss function was thus investigated by including 

also the squared deviation between the energy value predicted by the model and an energy component 

from the atomistic simulation (𝑈𝐴). The loss function definition has in this case the following form: 

𝐿 =
1

3𝑁
∑ (−𝜵𝒙𝑖

𝑈𝐶𝐺 − 𝓜 (𝑭𝐴(𝒓𝑗)))
2

𝑁

𝑖

+ 𝜆(𝑈𝐶𝐺 − 𝑈𝐴)2        (6) 



 

 

 

and 𝜆 is a model hyperparameter that serves as weighting factor of the energy component with respect to 

the force component in the loss. 

 

2.3 Simulation Details and Training Procedure 

The liquid benzene system was studied considering two individual CG mapping (Figure 2.1) schemes of: 

(a) one bead per molecule and of (b) three CG beads per molecule. In the latter case, each bead represented 

two carbon atoms and their bonded hydrogens, and its centre of mass was located at the centre of mass of 

its four constituent atoms.  

 

 

Figure 2.1. Graphical depiction of the two CG mappings implemented for the benzene molecule. 

 

The training data were obtained from atomistic MD trajectory frames of liquid benzene simulated at 300 K 

and atmospheric pressure, under periodic boundary conditions using the Amber Cornell force field [26]. 

The system was equilibrated through a 1 ns NPT MD simulation, and then a 20 ns NVT run was conducted 

using LAMMPS [27]. The reference atomistic system for the 1 CG bead case consisted of 500 molecules 

that correspond to 500 CG interaction sites and for the 3 CG bead per molecule representation the 

reference atomistic system contained 300 molecules, corresponding to 900 CG interaction sites. The first 

half of the run was considered equilibration and discarded, and afterwards 10000 simulation frames were 

retained. 90% of the data was used for the training set, 10% was kept for the test set with the configurations 

from the MD trajectory being randomly assigned to either set.  

The SchNet architecture has several hyperparameters that need to be tuned: these values are pre-defined 

and remain unchanged during a training run. The hyperparameters include: the size of the architecture 

(such as number of  convolutional filters and SchNet blocks, filter size), the activation functions in use, 

        
       

        
        

             
       

             
        

      
        



  

 

 

parameters related to the training procedure (such as batch size, learning rate, decay ratio), the input data 

sample size, the systems representation (via the feature size vector and the cutoff distance of neighbors) 

as well as hyperparameters related to the construction of the loss (weighting parameters for the various 

loss components or to tune the prior terms). All these factors may affect the quality of the training and the 

effectiveness of the obtained model. After the ML model training using a specific hyperparameter set, 

NVT CG simulations with the GCNN potentials were conducted using the Atomic Simulation 

Environment (ASE) python package [28], in order to evaluate the performance of the ML-based trained 

models. 

3. Results 

 

The training of a successful model was a very challenging and laborious procedure taking into account 

the wide range of hyperparameters that needed to be optimized and tested. The monitoring of the training 

procedure itself could not serve as a reliable verification means of an efficient training as the convergence 

in the loss function is not an indicator of the development a successful model. The performance of the 

obtained ML-based models had to be evaluated conducting CG simulations in order to ensure that a model 

could result in thermodynamically stable simulations and meaningful dynamic behavior and spatial 

organization, the latter being compared to the atomistic ground truth. Several models in which the loss 

function during training was well behaved and converged were found to result either in unstable or 

physically inconsistent CG simulations, as also reported in Ref. [16]. This problematic behavior involved 

very high temperature fluctuations that correspond to fast in place oscillations of the molecules, 

simulations in which the system ends up in a “frozen” state, or observation of unphysical structural 

characteristics, for example at very short distances. For the benzene liquid systems under study, the 

development of reasonable models became systematically feasible when the loss function was extended 

to include, in addition to the mean square error on the prediction of the force, also a second component 

that included an energy term (eq. (6)). 

3.2 Single-bead representation 

For the single-bead representation of the benzene liquid system, we investigated several training 

conditions, primarily focusing on: (a) the size of the architecture through the hyperparameter controlling 

the number of blocks constituting the network, (b) the value of the cutoff hyperparameter through which 

each particle’s neighborhood is defined, (c) the hyperparameters 𝜎 and 𝑛, concerning the excluded volume 



 

 

prior energy term, (d) we investigated the transferability of the trained models by employing them to 

perform CG simulations at different temperatures or for different system sizes than the ones upon which 

they were trained in the first place, (e) the size of datasets for the training and (f) the employment of the 

softplus function as activation function, as an alternative to the tanh function. 

More than 150 sets of tests were conducted, in which we investigated different hyperparameter 

combinations exploring how specific hyperparameters affect the training, the stability and the performance 

of the obtained models. The information on the investigated hyperparameter range is shown in Table 3.1. 

 
Table 3.1. SchNet hyperparameter ranges investigated for the tests with liquid benzene,  

for the cases of the 1-CG-bead-per-molecule representation. 

Hyperparameter Values Hyperparameter Values 

Excluded volume 

radius (𝜎) [Å] 

2, 3, 4, 4.5, 5, 

6, 6.5, 7, 8, 9 
Filter size 40, 80 

Excluded volume 

exponent (𝑛) 
5, 6, 7, 8, 9 Number of filters 128, 256 

Local neighborhood 

cutoff radius [Å] 
5, 7, 8, 9, 12 Activation function Tanh, shifted softplus 

Number of SchNet 

blocks 
1, 2, 3, 4, 6 

Energy scaling in the 

loss function (𝜆) 

0, 10-7, 10-6, 10-4,  

10-3, 10-2, 10-1, 1, 10 

Feature size 120, 240 Batch size 1, 5, 10, 15, 30, 50 

 

 

The influence of hyperparameter combinations on the performance of the obtained models was thoroughly 

investigated. Specific hyperparameter combinations were found to produce models that resulted in stable 

ML-assisted CG simulations and reasonable results in terms of dynamical behavior and of structural 

characteristics compared to the atomistic ground truth provided that the energy term was included in the 

loss functions as shown in eq. (6) In this mapping scheme of 1 bead per molecule only intermolecular 

interactions are present in the system. The energy prior terms used in this case, involve the inclusion of 

the excluded volume prior term.  

In Figure 3.1, the effect of changing the energy scaling factor 𝜆, keeping all other hyperparameters the 

same (cutoff = 8 Å, 𝑛 = 7, 𝜎 = 5 Å) is shown. From these comparative graphs we observe that for 𝜆 = 0, 

an unstable simulation is obtained while positive results are obtained for 𝜆 = 10−1. In Figures 3.2(a) and 

3.2(b), results are presented for hyperparameter combinations with 𝑛 = 6, 𝜎 = 5 Å, 𝜆 = 1 and examining 

the effect of the local neighborhood cutoff radius hyperparameter. From these comparative graphs we 



  

 

 

observe that for cutoff = 6 Å we get a thermodynamically unstable simulation. For larger values of the 

cutoff, the simulation is stable while the position of the first peak of the intermolecular g(r) remains rather 

unchanged. 

(a)  (b)  

Figure 3.1. Comparative graphs of (a) the evolution of the temperature during the ML-based CG simulation [left]  

and (b) Comparison between the intermolecular radial distribution functions of the system after the simulation [colored] 

and the atomistic ground truth [black], for cutoff = 8 Å, 𝑛 = 7, 𝜎 = 5 Å, various values of  𝜆, Τ = 300 K, p = 1atm,  

for a benzene liquid system of 500 molecules. 

(a)  (b)  

Figure 3.2. Comparison of the (a) temperature trend and (b) radial distribution function during ML-based CG NVT MD 

simulations of liquid benzene mapped using 1 CG bead per molecule, performed at 300K and atmospheric pressure with 

GCNN potentials trained with different values of the cutoff radius of 6Å, 8Å and 9Å for 𝑛 = 6, 𝜎 = 5 Å, 𝜆 = 1,  

various values of cutoff, Τ = 300K. 

 



 

 

Figure 3.3 depicts an example of results of a satisfactory CG model, that were obtained by a model for the 

training of which the loss function defined in eq.(6) was used, and cutoff = 8 Å, 𝑛  = 7,  

𝜎 = 5 Å, 𝜆 = 10-1, is presented. The corresponding CG simulation was thermodynamically stable and 

reasonable results were observed in terms of dynamical behavior and of structural characteristics, 

compared to the atomistic ground truth. 

 

(a)  (b)  

(c)  (d)  

Figure 3.3. Example of a well-behaved model trained considering both force and energy differences in the loss function for 

liquid benzene mapped using 1 CG bead per molecule. (a) Trends of the loss components and total values over the training set. 

(b) Energy values calculated during the CG NVT MD simulation performed at T = 300 K and p = 1atm with the GCNN 

potential. (c) Mean Squared Displacement of the centers of mass of the particles. (d) Radial distribution for the centers of mass 

of the particles. 

 



  

 

 

In Figure 3.4., the system size effect for the single-bead representation is shown on the values of the energy 

per particle. A model that was trained on data from a 500 benzene molecules system is used for a 

simulation of a system of 200 benzene molecules and another one of 1000 benzene molecules. It is 

apparent that the results of the initial system are reproduced also for the other systems. 

 

 
Figure 3.4. System size effect for the single-bead representation on “Energy per particle” values. 

 

3.3 Three-bead representation 

In total, more than 150 tests were conducted with different hyperparameter combinations in order to 

investigate the effect that certain hyperparameters have onto the training and the performance of the 

obtained models. The hyperparameter range is investigated is summarized in Table 3.2 and specific cases 

are presented in the analysis that follows. 

. 

Table 3.2. SchNet hyperparameter ranges investigated for the tests with liquid benzene,  

for the cases of the 3-CG-bead-per-molecule representation 

Hyperparameter Values Hyperparameter Values 

Excluded volume 

radius (𝜎) [Å] 

0.9735, 2, 2.1667, 

2.334, 2.5, 3.5, 4 

Number of intermolecular 

SchNet blocks 
2, 3, 4 

Excluded volume 

exponent (𝑛) 
5, 6, 7, 8 

Number of intramolecular 

SchNet blocks 
0, 1 

Local neighborhood 

cutoff radius [Å] 
6, 7 Bond stiffness 𝑘𝑏 [

𝑘𝑐𝑎𝑙

𝑚𝑜𝑙 Å2 
] 

10, 15, 20, 50, 

100, 400, 1000 

Energy scaling in the 

loss function (𝜆) 

0, 10-6, 10-4, 10-3,  

10-2, 10-1, 1, 10 
  



 

 

 

In the case of the three-bead representation, intramolecular interactions are also present and a bond prior 

term (see eq.(5)) was also included, with the addition of the hyperparameter 𝑘 of effective CG bond 

stiffness. In Figures 3.5. and 3.6., results are presented from ML CG simulations with a model trained 

with the hyperparameter combinations 𝜎  = 2 Å, cutoff = 6 Å, 𝜆  = 10−1  and 𝑛  = 6. The conducted 

simulations were thermodynamically stable and the radial distributions functions between benzene 

molecules centers-of-mass exhibit a reasonable behavior in comparison to the atomistic reference (Fig. 

3.6a). Changing the 𝑘 does not seem to significantly affect the obtained results for this set of 

hyperparameters. Figure 3.6b depicts the intermolecular radial distribution function in which, though, an 

unphysical first peak at around ~2.3 Å is observed. To further examine this effect, hyperparameters related 

to the excluded volume prior term were investigated. 

 

Figure 3.5. Comparative graphs of the evolution of the temperature during the ML-based CG simulation for cutoff = 6 Å,  

𝜎 = 2 Å, 𝜆 = 10−1, 𝑛 = 6, various values of 𝑘, Τ = 300 K, p = 1atm, for a benzene liquid system of 300 molecules. 



  

 

 

(a)  (b)   

Figure 3.6. (a) Center-of-mass radial distribution functions and (b) intermolecular radial distribution functions  

of various systems (colored) with the respective atomistic ground truths (black) for cutoff = 6 Å,  

𝜎 = 2 Å, 𝜆 = 10−1, 𝑛 = 6, various values of 𝑘, Τ = 300 K, p = 1atm, for a benzene liquid system of 300 molecules. 

 

In Figures 3.7. and 3.8., results are presented for the hyperparameter combinations 𝜎  = 2 Å,  

cutoff = 6 Å, 𝑘 = 1000, 𝜆 = 10−1 and various values of the excluded volume exponent 𝑛. The radial 

distribution between the benzene molecules’ centers of masses is shown (Fig. 3.8(b)) in comparison to the 

atomistic reference. In Figure 3.8(a) the intermolecular radial distribution functions are shown in which 

the unphysical first peak at short distances remains unaffected in the range values of the excluded volume 

exponent that were tested.  

 



 

 

 

Figure 3.7. Comparative graphs of the evolution of the temperature during the ML-based CG simulation for cutoff = 6Å, 

𝜎 = 2, 𝜆 = 10−1, various values of 𝑛, Τ = 300K, p = 1atm, for a benzene liquid system of 300 molecules. 

(a)  (b)  

Figure 3.8. (a) Comparison between the intermolecular radial distribution functions and the center-of-mass radial 

distribution functions from ML CG simulations of the various models (colored) with the respective atomistic ground truths 

(black) cutoff = 6Å, 𝜎 = 2, 𝜆 = 10−1, various values of 𝑛, Τ = 300K, p = 1atm,  

for a benzene liquid system of 300 molecules. 

 

In Figures 3.9. and 3.10., ML CG simulations results are shown for models trained with cutoff = 6 Å,  

𝑛  = 6, 𝜆  = 10−1 , 𝑘  = 1000 and various values of 𝜎 . From these comparative graphs we observe a 

monotonic behavior as far as the height of the first unphysical peak in the intermolecular g(r) graph is 

concerned, with respect to the value of 𝜎. More specifically, as the value of 𝜎increases, the height of the 



  

 

 

peak becomes smaller and disappears for 𝜎 ≥ 3 Å (Fig. 3.10(a)). Simultaneously, in the center-of-mass 

radial distribution functions (Fig. 3.10(b)) a more intense peak is also observed for the higher 𝜎 values 

along with a slight movement of the peak to right, improving the agreement with the atomistic reference. 

 

 

Figure 3.9. Comparative graphs of the evolution of the temperature during the ML-based CG simulation for cutoff = 6 Å, 

n = 6, 𝜆 = 10−1, various values of 𝜎, Τ = 300 K, p = 1atm, for a benzene liquid system of 300 molecules. 

 

(a)  (b)  

Figure 3.10. (a) Comparison between the intermolecular radial distribution functions and the center-of-mass radial 

distribution functions of ML CG simulations of various models (colored) with the respective atomistic ground truth (black) 

for cutoff = 6 Å,𝑛 = 6, 𝜆 = 10−1, various values of 𝜎, Τ = 300 K, p = 1atm, for a benzene liquid system of 300 molecules. 



 

 

Figures 3.11. and 3.12., depict results for the hyperparameter combinations 𝜎 = 3, cutoff = 6 Å, 𝑛 = 6 and 

𝑘 = 1000 and varying values of the loss energy component weighting factor 𝜆. The temperature evolution 

is shown in Fig. 3.11 which depicts unstable simulations for the case of 𝜆 ≤ 10−2. For 𝜆 = 0, no energy 

component is considered in loss function which includes solely the mean squared difference between the 

predicted forces and the forces associated with the atomistic MD configurations. Very small effects are 

observed on the structural characteristics of the various systems. 

 

Figure 3.11. Comparative graphs of the evolution of the temperature during the ML-based CG simulation for cutoff = 6 Å,  

𝜎 = 3, 𝑛 = 6, 𝑘 = 1000, various values of 𝜆, Τ = 300 K, p = 1atm, for a benzene liquid system of 300 molecules. 

(a)  (b)  

Figure 3.12. (a) Comparison between the inter-molecular radial distribution functions and (b) the center-of-mass radial 

distribution functions from the ML CG MD simulation using the various models (colored) with the respective atomistic 

ground truth (black) cutoff = 6Å, 𝜎 = 3, 𝑛 = 6, 𝑘 = 1000, various values of 𝜆, Τ = 300K, p = 1atm, for a benzene liquid 

system of 300 molecules. 



  

 

 

In Figures 3.13. and 3.14., ML CG MD simulation results are presented varying again the values of the 

loss energy component weighting factor 𝜆  and for the hyperparameter combinations 𝜎  = 4 Å,  

cutoff = 6 Å, 𝑛 = 6 and 𝑘 = 1000. In this case, also it is depicted that incorporation of the energy component 

in the loss function is crucial for obtaining a stable simulation. The hyperparameter combinations 

presented here (for 𝜆 ≠ 0 ) apart from stable simulations exhibit good agreement in terms structure for the 

center-of-mass radial distribution function while the case of 𝜆 = 1 seems to be able to capture better the 

double peak that is observed in the inter-molecular radial distribution function. 

 

Figure 3.13. Comparative graphs of the evolution of the temperature during the ML-based CG simulation for cutoff = 6 Å,  

𝜎 = 4 Å, 𝑛 = 6, 𝑘 = 1000, various values of 𝜆, Τ = 300 K, p = 1atm, for a benzene liquid system of 300 molecules. 

(a)  (b)  

Figure 3.14. (a) Comparison among the intermolecular radial distribution functions [left] and the center-of-mass radial 

distribution functions [right] of several systems (colored) with the respective atomistic ground truths (black) cutoff = 6 Å, 

𝜎 = 3 Å, 𝑛 = 6, 𝑘 = 1000, various values of 𝜆, Τ = 300 K, p = 1atm, for a benzene liquid system of 300 molecules. 



 

 

4. Conclusions 

In this study, the implementation of an ML-based scheme that utilizes a graph convolutional neural 

network architecture was investigated for development of coarse-grained interaction potentials for the 

simulation of bulk amorphous systems. Liquid benzene was chosen as the benchmark test system and two 

different CG mappings were applied for the CG representation of the benzene molecule: a single-bead 

representation, in which only intermolecular interactions between the CG moieties are present, and a three-

bead one. The procedure following involved training on data obtained from atomistic MD simulations of 

the system under study. A thorough investigation was conducted on the effect of various hyperparameters 

and loss construction on the training and the performance of the obtained models. The single-bead 

representation models were found to be generally more sensitive to changes in the values of the 

hyperparameters than the three-bead representation models. The efficiency of the developed ML-based 

models was evaluated by performing CG MD simulation to inspect the stability of the simulation and 

quantifying the dynamic behavior as well as the system structure in comparison to the atomistic reference, 

investigating also system size transferability prospects. 

In this work several open challenges were detected and discussed for the CG simulations at bulk conditions 

using ML-based force fields, contributing to a deeper understanding in this still rather nascent domain. 

Unlike to several conventional applications of ML-methods, the convergence in the (currently used) loss 

functions during training, does not serve as a reliable evaluation metric of the performance of the 

developed models during CG simulations. In parallel, the potential need for multicomponent loss functions 

has been identified, a fact that also poses that need for appropriate balancing or mixing strategies. Future 

steps will also involve extension for the inclusion of directional characteristics in the description of local 

environments. The above aspects are crucial towards the scope of developing accurate, transferable and 

interpretable, higher-order CG potentials, that could be also streamlined with further developed and 

validated forward- and reverse-mapping ML-based schemes [29]–[31], for hierarchical multiscale 

simulations of bulk soft matter systems. 
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