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ABSTRACT 

In this work, we adopted Graph Convolutional Neural Networks (GCNN) to develop Coarse Grained 

(CG) Machine Learned potentials for bulk polymer systems, implementing a scheme that includes a 

force-matching procedure. The GCNN models were used to perform CG Molecular Dynamics (MD) 

simulations of polyethylene and of a polymer of intrinsic microporosity (PIM-1). The structural and 

thermodynamic properties of the CG systems were compared with the underlying atomistic reference, 

examining the effect of the CGNN model size and hyperparameters on the simulation results. The 

models obtained showed transferability to longer chain lengths than the ones use for training. The open-

source python package SchNetPack was extended to support the study of macromolecular systems with 

connectivity information and inter- and intra-molecular neighbours distinctions. The extended version is 

are available on GitHub at the following link: https://github.com/ml-multimem/schnetpack-for-bulk-

systems-for-bult-systems. Moreover, the GCNN models were interfaced with the MD engine LAMMPS. 

This methodology has the potential to streamline the generation of CG force fields, enabling systematic 

multiscale studies of complex macromolecular systems. 
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1. Introduction 

Polymers play a fundamental role in a variety of processes and novel technologies, such as 

manufacturing, biomedical, energy, and environmental applications, owing to their versatile properties, 

originating from their diversity in chemical structure and macromolecular architecture. However, the 

design of task-specific materials with controlled properties is a lengthy and resource-intensive trial-and-

error process. Rational and targeted materials design necessitates a fundamental understanding of the 

structure-properties link, and an unravelling of the microscopic mechanisms that control end-use 

performance at the relevant operating conditions. Simulation and modelling studies play a key role in 

filling this gap, advancing fundamental understanding and accelerating technology transfer [1]. 

However, several unsolved challenges limit the application of molecular simulation methods to 

macromolecules of complex chemical constitution, such as high molecular weight (Mw) polymers, 

especially at bulk conditions. A comprehensive study of these systems necessitates the development of 

innovative multi-scale simulation techniques [2,3].  

Coarse-Graining (CG) [4] is, in many cases, at the core of multiscale methods, especially for the case of 

polymeric systems. Coarse Graining consists of averaging out a certain number of high-resolution 

degrees of freedoms, namely atoms, into a single interaction site, or coarse-grained bead (i.e. choosing a 

CG mapping), and represent the interactions between the CG beads consistently with the underlying 

atomistic system, namely developing a CG force field, or CG potential. Adopting a CG molecular 

description enables access to larger lengths and longer timescales, thereby expanding the reach of 

systems and phenomena that can be investigated with molecular modelling.  

Traditional hierarchical simulation methods and models [5] typically use predefined pairwise functionals 

to describe particle interactions, which inherently limits their ability to describe many-body interactions. 

In order to overcome the limitations of traditional methods, in this work we investigated the 

development of an ML-based hierarchical simulation strategy for bulk macromolecular systems, 

bridging atomistic and coarse-grained scales of description. ML-based strategies have been applied to 

bridge the quantum-mechanical and atomistic levels of descriptions, mostly for the case of inorganic 

systems or isolated small organic molecules [6]. However, their application to complex macromolecular 

systems at bulk conditions has been scarcely explored so far [7]. In particular, in this work we explored 

the possibility to train ML models, such as neural networks, to replace traditional force fields based on 

predefined functionals. 



 

We considered a Graph Convolutional Neural Network (GCNN) architecture named SchNet [8], which 

had previously shown promise in the development of atomistic force fields, trained on quantum 

mechanical calculations. We tested the approach on a benchmark polymer, i.e. polyethylene, considering 

2 different CG mappings, as shown in Figure 1, as well as on a polymer of intrinsic microporosity (PIM-

1). PIM-1 is a material of great interest for environmental applications such as gas separation with 

membranes. It represented a significant breakthrough in terms of separation performance and its 

complex chemical structure makes it a challenging system to simulate with conventional methods [9]. 

 

 

Figure 1: Systems studied for the development of GCNN force fields, with their respective CG mappings. 

To train ML potentials and perform CG simulations, we extended the open-source python package 

SchNetPack [10,11] to enable the support for systems including connectivity information and inter- and 

intra-molecular neighbours distinctions, which are key aspects for the description of macromolecular 

systems at bulk conditions. Moreover, the approach is integrated within the Molecular Dynamics engine 

LAMMPS [12], which is one of the most widespread codes in use in the molecular simulation 

community. 

2. Methods 

2.1 Force Matching 

A force matching scheme [13] was adopted for the determination of the CG potential. This method 

involves the minimization of the difference between the atomistic forces, 𝐅A ∈ ℝ3n  (where n is the 

number of atoms), projected on the CG sites, and the forces predicted by the CG model, 𝐅CG ∈ ℝ3N, for 

the N number of CG sites having coordinates 𝐱𝑖: 

        
       

        
        

             
       

             
        

      
        



 

 

𝜒2 = 〈[𝐅CG(𝐱𝑖) − ℳ (𝐅A(𝐫𝑗))]
2

〉  (1) 

ℳ is the mapping operator between the atomistic and the CG space, 𝐫𝑗 are the atomistic coordinates and 

the brackets 〈… 〉 denote average over CG degrees of freedom and the number of sampled atomistic 

configurations. The force matching approach does not include structural information, such as radial 

distribution functions, during the fitting, therefore, the ability of a CG model to represent the structure is 

a true test of quality and an important characteristic that can be used for the comparison among different 

models. 

During the training, the mean squared error between the predicted forces and the ground truth values of 

the forces, associated with the molecular dynamics (MD) trajectory considered as input, is minimized, 

using the following loss function 𝐿: 

𝐿 =
1

3N
∑ {[−𝛻𝐱𝑖

(𝛴𝑖�̂�𝑖 + 𝑈𝑒𝑥 + 𝑈𝑏𝑜𝑛𝑑)] − ℳ (𝐅A(𝐫𝑗))}
2

N
𝑖   (2) 

where N is the total number of CG particles, �̂�𝑖  are the per-particle energy values predicted by the 

CGNN, ℳ (𝐅A(𝐫𝑗)) is the force acting on the CG particle at position 𝐱𝑖, obtained from the atomistic 

MD simulation mapped to the CG space, while the term in square brackets is the force acting on the CG 

particle at position 𝐱𝒊 predicted by the GCNN. The term 𝑈𝑒𝑥 is an excluded volume prior energy term 

based on the pairwise distances between the moieties, included to ensure that the energy will become 

steeply very high when the configuration assumed by the system is departing from physical states, for 

example when atoms are moving too close to each other [14]: 

𝑈𝑒𝑥 = ∑ ∑ (
𝜎

‖𝒙𝑖−𝒙𝑗‖
)

𝑛𝑒𝑥

𝑁
𝑗=𝑖

𝑁−1
𝑖=1  (3) 

𝜎  and 𝑛𝑒𝑥  are hyperparameters, namely the excluded volume diameter and the excluded volume 

exponent, for which suitable values must be identified. Connectivity information was included into the 

model in the form of a harmonic bond prior energy term: 

𝑈𝑏𝑜𝑛𝑑 = 𝑘𝑏(𝑙 −  𝑙0)2  (4) 

Where 𝑙0 is the equilibrium CG bond length, 𝑙 is the actual bond length, and 𝑘𝑏  is the bond stiffness 

constant, which in the present case was considered as a model hyperparameter. Analogously to the case 



 

of the excluded volume term, the addition of this prior term ensures that the energy will become steeply 

very high when unrealistically stretched or compressed bonds occur in the system. 

Previous work [15,16] suggested that it can be beneficial to modify the loss function including also the 

squared deviation between the energy value predicted by the model and an energy component from the 

atomistic simulation (𝑈𝐴), appropriately weighted (𝜆) with respect to the force component. Thus, the loss 

function definition becomes:  

𝐿 =
1

3𝑁
∑ (−𝛻𝑥𝑖

(𝛴𝑖�̂�𝑖 + 𝑈𝑒𝑥 + 𝑈𝑏𝑜𝑛𝑑) − ℳ (𝑭𝐴(𝒓𝒋)))
2

𝑁
𝑖 + 𝜆 ((𝛴𝑖�̂�𝑖 + 𝑈𝑒𝑥 + 𝑈𝑏𝑜𝑛𝑑) − 𝑈𝐴)

2

   (5) 

 

2.2  SchNet Graph Convolutional Neural Network Architecture 

The main features of the ML architecture utilized are summarized hereafter. For a more detailed 

description, the original works can be consulted [8,17]. The GCNN architecture utilized is named 

SchNet and it adopts a graph representation of molecules, with nodes corresponding to particles and 

edges to bonds or interatomic distances. Each particle is represented through a feature vector, which is 

initialized to distinguish between the particle chemical identities (embedding layer). The feature is then 

updated to encode information on the surrounding environment, by performing continuous convolutions 

across the particle neighbourhood, optimizing the convolutional filter weights during the training 

(convolutional layers). By performing multiple convolution operations, each node can influence other 

increasingly distant nodes, thereby potentially encoding long-range information into the particle 

descriptor. Afterwards, a fully connected section is included (readout layers). A sequence of continuous 

convolution layers and readout layers constitutes a SchNet “block”. Multiple blocks can be utilized in 

series to define the full network architecture. The output found at the end of the last block can be 

interpreted as a learned feature representation, which encodes the information from the particle 

neighbourhood required to predict the target property. Finally, given the learned feature representation 

as input, a fully connected (dense) section is tasked with predicting the final scalar output, which is 

interpreted as a per-particle energy contribution, �̂�𝑖. This local decomposition ensures invariance to the 

total number of particles. All energy contributions are summed to obtain the total energy (𝛴𝑖�̂�𝑖), which 

is then differentiated with respect to the positions of the particles to predict the force acting on each 

particle. In this way, a conservative force field is obtained by design. 



 

 

Overall, there are several hyperparameters to optimize in the SchNet architecture, and this proved to be 

the main hurdle encountered in the application of this method. Hyperparameters are user-defined 

settings of ML models that control various aspects of the model architecture and behaviour, such as (in 

this case): 

(a) the model size & architecture (number of convolutional filters, filters size, number of SchNet 

blocks, activation function) 

(b) the particle representation (feature vector size, cutoff radius of the local neighbourhood) 

(c) the training process (learning rate, decay ratio, batch size, number of samples, number of epochs) 

(d) the embedded prior terms (excluded volume diameter, excluded volume exponent) 

 

2.3 Extensions to the SchNetPack python package 

We extended the open-source python package SchNetPack [10,11] to enable ML CG force field 

development for multi-molecule and macromolecular systems. Originally, SchNetPack had been created 

to develop atomistic ML force fields from quantomechanical simulations. A new “Particle” class was 

defined, which contains additional properties compared to the primitive “Atom” one: particle type, 

molecule membership, connectivity information. Various neighbours’ list construction criteria were 

implemented, to enable to application of selected features of the model architecture only to a certain 

subset of neighbours, such as the bonded/nonbonded or inter-/intramolecular ones. Several other classes 

were extended to support these new functionalities for training and simulation with the ASE python 

package [18]. The possibility to include prior energy terms to the output modules was added, and 

excluded volume and harmonic bond prior classes were implemented. We extended also the 

corresponding SchNetPack-LAMMPS interface, for the utilization of the trained GCNN force fields 

within this widespread and highly optimized MD engine. The code developed in this work is available 

on GitHub at the following link: https://github.com/ml-multimem/schnetpack-for-bulk-systems.   

 

2.4 Dataset generation, training and simulation details 

The training data consisted of atomistic MD trajectory frames. Each system contained 10 polymer 

chains, of 50 monomers in the case of polyethylene, of 10 monomers in the case if PIM-1. They were 

simulated at 300 K and atmospheric pressure, under periodic boundary conditions. The polyethylene 

https://github.com/ml-multimem/schnetpack-for-bulk-systems


 

system was initially equilibrated through a 1 ns NVT MD simulation, then 20 ns NPT, and then 20 ns 

NVT simulation at the average equilibrium density, 0.843 g/cm3. The PIM-1 system was initially 

equilibrated through a 1 ns NVT MD simulation, then simulated using the 21 step equilibration cycle 

described by Colina and coworkers [19], increasing the duration of each step by a factor 10, following 

with a 20 ns NPT simulation at atmospheric pressure, and then a 20 ns NVT run at the average 

equilibrium density of 1.069 g/cm3. For both materials, the first 10 ns of the last NVT run were 

discarded, and, after that, 10000 configurations were retained, using 9000 for the training set and 1000 

for the test set. The molecular configurations from the MD trajectory were randomly assigned to either 

set, and shuffled during the training. Simulations of the atomistic system were conducted with the pcff 

force field [20], using LAMMPS [12]. LAMMPS input files to perform the simulations that were used 

as training sets can be downloaded at the following link: https://zenodo.org/records/10352368.  

After the model training, subsequent NVT CG simulations with the ML CG potentials were conducted 

using the Atomic Simulation Environment (ASE) python package [18]. The loss function definition 

reported in Eq. 5 was used for the training, either considering both energy and forces or only forces (by 

setting 𝜆 = 0). In the first case, different values for the target energy value 𝑈𝐴 were tested (listed in Table 

1) and the best one was found to be the sum of the intermolecular and bond energy contributions from 

the atomistic simulation. Table 1 summarizes the ranges investigated for each hyperparameter for both 

polymers, for a total of approximately 50 combinations for each material investigated. 

For polyethylene, two different mappings were considered: 2 CG beads per monomer, in which each 

bead represents one carbon atom and its bonded hydrogens (often referred to as “united atom” mapping), 

and 1 CG bead per monomer, in which 2 carbon atoms and their bonded hydrogens make up one bead. 

These systems contain 1000 and 500 interaction sites, respectively. The chain ends were distinguished 

from the backbone beads when learning the feature vector, by assigning them a different embedding in 

the SchNet embedding layer. PIM-1 is a copolymer obtained from 2 precursors: 3,3,3′,3′-tetramethyl-

1,1′-spirobiindane-5,5′,6,6′-tetraol, and 2,3,5,6-tetrafluorophthalonitrile. 2 CG beads were used to 

represent the section of the monomer resulting for the first precursor (shown in red in Figure 1), and 1 

CG bead was used for the section of the monomer resulting from the second precursor (shown in violet 

in Figure 1). So overall, 3 CG beads per monomer were used, resulting in 300 CG interaction sites. The 

two “red” beads are almost identical: one contains the carbon atom situated in the spirobiindane 

contortion site, and therefore has a higher mass than the other. A different type embedding was therefore 

https://zenodo.org/records/10352368


 

 

used for each of the 3 beads. Moreover, the chain ends were distinguished from the backbone beads, 

leading to 5 different bead types in the embedding layer of the network. For both polymers, in the prior 

energy terms the same values for the hyperparameters 𝜎, 𝑛𝑒𝑥, and 𝑘𝑏 were used for all bead types, to 

simplify the hyperparameter optimization process. 

 

Table 1. SchNet hyperparameter ranges investigated. 

Polyethylene 

Hyperparameter Values Hyperparameter Values 

Excluded volume 

radius (𝜎) [Å] 
1.5, 2, 2.5, 3, 4 

Number of SchNet 

blocks 
2, 3, 4 

Excluded volume 

exponent (𝑛𝑒𝑥) 
5 Target energy 

Intermolecular, 

intermolecular + bonded 

Local neighbourhood 

cutoff radius [Å] 
6, 7, 8 

Bond stiffness 𝑘𝑏 

[
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙 Å2 
] 

20, 100, 200, 1000 

Energy scaling in the 

loss function (𝜆) 
0, 0.01, 0.1, 0.5, 1 Batch size 20, 50 

PIM-1 

Hyperparameter Values Hyperparameter Values 

Excluded volume 

radius (𝜎) [Å] 
4, 5, 6, 7, 8, 9 

Number of SchNet 

blocks 
2, 3 

Excluded volume 

exponent (𝑛𝑒𝑥) 
5, 6 Target energy 

Total potential, intermolecular, 

intermolecular + bonded 

Local neighbourhood 

cutoff radius [Å] 
8, 9, 10, 15 

Bond stiffness 𝑘𝑏  

[
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙 Å2 
] 

20, 50, 100, 200 

Energy scaling in the 

loss function (𝜆) 

0, 0.01, 0.05, 

0.1, 0.5, 1 
Batch size 10, 50, 100 

 

3. Results 

The training of a successful model proved to be a computationally intensive task, primarily due to the 

extensive testing required to identify a hyperparameter combination that would yield satisfactory 

simulations in terms of stability and structural and dynamic representation. In the majority of cases, very 

similar final values of the loss function were reached when using different hyperparameter 



 

combinations. However, when the models were used for simulations, very different and at times 

unphysical behaviours were observed. Similar challenges were described also for other systems 

[15,16,21,22]. The discrepancy between the metric employed during training (mean square error on the 

prediction of the forces) and the criteria used to assess a model's ability to produce meaningful 

simulation results (mainly related to thermodynamic stability and accurate reproduction of structural 

characteristics) posed a significant challenge. It was unclear how one could leverage simulation results 

to inform the training process and guide hyperparameter search. As a consequence, the exploration of 

the hyperparameters space became a time and resource-intensive trial-and-error process. In the polymer 

systems investigated, simulation stability issues tended to manifest less frequently compared to other 

cases, such as bulk liquid systems [15], therefore the hyperparameter search was mostly focused on the 

structural representation, evaluated by computing the radial distribution function, or g(r), between the 

centres of mass of the CG beads, and its intra- and intermolecular components.  

The best model obtained for each material, as well as full specifications of their hyperparameters, can be 

found at the following link: https://zenodo.org/records/10343599. 

 

3.1 Results obtained for polyethylene  

The best results obtained for the case of polyethylene mapped using 2 CG beads are shown in Figure 2. 

It was observed that a very good structural representation could be achieved when training the model on 

the force differences alone, i.e. setting the scaling factor 𝜆 = 0. Irrespective of the scaling factor chosen, 

when the energy component was considered in the loss function, the intermolecular component of the 

radial distribution function would always display too weak structural features compared to the atomistic 

reference. The excluded volume radius did not influence this behaviour within the range investigated. 

The bond stiffness constant did not affect the structure appreciably as well, but we noted that very high 

values tended to favour instability. The best result was obtained considering 𝜎 = 1.5 Å, 𝜆 = 0, cutoff = 7 

Å, 𝑘𝑏 = 200 
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙 Å2 
. 

https://zenodo.org/records/10343599


 

 

  

  

Figure 2: Comparison of the (a) temperature trend, (b) backbone bonds length probability distribution, (c) 

intramolecular radial distribution function, and (d) intramolecular distribution function during CG NVT MD 

simulations of polyethylene mapped using 2 CG beads per molecule, performed at 300 K and atmospheric 

pressure with GCNN potentials trained using Eq. 5 as the loss function, with different values of the energy 

scaling factor 𝜆 (blue: 𝜆=0, green: 𝜆=0.1, black atomistic reference). 

In the case of polyethylene mapped using 1 CG bead per monomer, the match between the reference 

intermolecular g(r) and the one obtained from the CG MD simulations is not as close as in the case of 

the united atom system, as shown in Figure 3. Nonetheless, also in this case, a better result was obtained 

considering only force differences in the loss function. Several attempts were made to find a 

(c) (d) 

(a) (b) 



 

combination of hyperparameters that would yield an improved structural representation. The best result, 

shown in Figure 3, was obtained considering 𝜎 = 4 Å, 𝜆 = 0, cutoff = 7 Å, 𝑘𝑏 = 20 
𝑘𝑐𝑎𝑙

𝑚𝑜𝑙 Å2 
. 

  

  

Figure 3: Comparison of the (a) temperature trend, (b) backbone bonds length probability distribution, (c) 

intramolecular radial distribution function, and (d) intramolecular distribution function during CG NVT MD 

simulations of polyethylene mapped using 1 CG bead per molecule, performed at 300 K and atmospheric 

pressure with GCNN potentials trained using Eq. 5 as the loss function, with different values of the energy 

scaling factor 𝜆 (red: 𝜆=0, yellow: 𝜆=0.5, black atomistic reference). 

(a) (b) 



 

 

CG MD simulations of longer chain systems were performed in both CG representations, utilizing the 

best models obtained. Double and quadruple Mw were considered, simulating two systems containing 5 

chains of 100 monomers and 3 chains of 200 monomers respectively. As can be seen in Figure 4, the 

systems exhibited consistent thermodynamic, structural, and dynamics characteristics, thus giving 

positive indication about the size transferability of the GCNN force fields to higher Mw polymer chains.  

  

  

Figure 4: Comparison of the (a) temperature trend, (b) bond length probability distribution for one of the 

backbone bond types (bond between a “red” and a “violet” bead – see Figure 1), (c) Mean Square 

Displacement of the centre of mass of the CG beads, and (d) intramolecular distribution function during CG 

NVT MD simulations of PE of different molecular weight mapped using 2 CG beads per molecule, performed 

at 300 K and atmospheric pressure with a GCNN potential trained on 50-mers.  

(a) (b) 

(c) (d) 



 

3.2 PIM-1  

Figure 5 shows the best results obtained for PIM-1 considering only force differences in the loss 

function, or including also the energy contribution, appropriately weighted. For this polymer, a better 

structural representation was observed when the energy contribution was considered, both concerning 

the inter- and intramolecular parts of the g(r). The bond length probability distributions were more 

spread than the atomistic reference one, and it was observed that increasing the value of 𝑘𝑏  had a 

slightly positive effect, but if too high values were used, the system would freeze. 

 

  

  

Figure 5: Comparison of the (a) temperature trend, (b) bond length probability distribution for one of the 

backbone bond types (bond between a “red” and a “violet” bead – see Figure 1), (c) intramolecular radial 

distribution function, and (d) intramolecular distribution function during CG NVT MD simulations of PIM-1 

mapped using 3 CG beads per molecule, performed at 300 K and atmospheric pressure with GCNN potentials 

trained using Eq. 5 as the loss function, with different values of the energy scaling factor 𝜆 (blue: 𝜆=0.05, 

yellow: 𝜆=0, black atomistic reference). 

(a) (b) 

(c) (d) 



 

 

The effect of 𝜎 was also investigated and can be seen in Figure 6. It did not affect the stability of the 

simulations, but high values seem to result in slower dynamics of the system and are also associated to 

the appearance of spurious peaks in the g(r), both inter- and intramolecular. It is worth noting that, in 

this system, the backbone is made of beads of different mass and representing different underlying 

chemical identities, contrary to the case of polyethylene, where all backbone beads are identical among 

themselves and minimally different from chain-end beads. For this reason, considering the same values 

for the energy prior hyperparameters could introduce a greater level of approximation in this system. 

This was not investigated at this stage, but it is noted for future work. 

  

  

Figure 6: Comparison of the (a) temperature trend, (b) MSD of the centre of mass of the CG beads, (c) 

intramolecular radial distribution function, and (d) intramolecular distribution function during CG NVT MD 

simulations of PIM-1 mapped using 3 CG beads per molecule, performed at 300 K and atmospheric pressure 

with GCNN potentials trained using Eq. 5 as the loss function, with energy scaling factor 𝜆=0.05, and various 

values of the excluded volume diameter 𝜎  (green: 𝜎 = 4 Å, blue: 𝜎 = 7 Å, red: 𝜎 = 8 Å, yellow: 𝜎 = 9 Å, black 

atomistic reference). 

(a) (b) 

(c) (d) 



 

An interesting effect associated to the value of the local neighbourhood cutoff radius was observed. 

Increasing the cutoff lead to a more pronounced overfitting behaviour, as shown in Figure 7: the energy 

component of the loss would decrease more markedly, and, concurrently, the force component would 

experience an increase. The model with the overall lowest value of the loss function over the validation 

set was used for the subsequent simulation, which for the case of Figure 7a was reached at epoch 56. 

During the simulations, the three models differed mostly in the intermolecular structural representation, 

and, to a lower extent, also in the intramolecular one, as shown in Figure 8. 

 

Cutoff = 10 Å Cutoff = 9 Å Cutoff = 8 Å 

   

Figure 7: Comparison of the trends of the loss components calculated over the training and validation sets for 

models trained with different values of the local neighbourhood cutoff radius. 

  

(a) (b) (c) 



 

 

 

 

  

  

Figure 8: Comparison of the (a) temperature trend, (b) bond length probability distribution for one of the 

backbone bond types (bond between a “red” and a “violet” bead – see Figure 1), (c) intramolecular radial 

distribution function, and (d) intramolecular distribution function during CG NVT MD simulations of PIM-1 

mapped using 3 CG beads per molecule, performed at 300 K and atmospheric pressure with GCNN potentials 

trained using Eq. 5 as the loss function, with energy scaling factor 𝜆=0.05, and various values of the local 

neighbourhood cutoff radius (orange: 8 Å, green: 9 Å, blue: 10 Å, black atomistic reference). 

 

 

 

(a) (b) 

(c) (d) 



 

4. Conclusions 

In this work, we explored the application of graph convolutional neural networks for the generation of 

coarse-grained potentials for two polymer systems, namely polyethylene and PIM-1, at bulk conditions. 

For polyethylene, two different CG mappings were considered. We investigated the effect of the model 

hyperparameters on the results and identified a suitable combination for each system. In the case of 

polyethylene, simulations of systems containing longer chains were performed using the best model, and 

consistent results were obtained. The code developed and the best models obtained are available online, 

and links can be found in the Supplementary Materials section. 

Future work will focus on the investigation of methods to lower the burden of hyperparameter 

optimization, for example by implementing automatic schemes for the balancing of the loss function 

coefficients [23], and bypassing the definition of adjustable prior energy terms. Moreover, it will be of 

interest to test different architectures to build the feature representation of the molecules, such as those 

based on an equivariant description of the local environment including distance vectors in addition to 

distance values [24]. 

This work attests to the potential of using Machine Learning within multiscale molecular simulation 

frameworks of complex systems, to expand the scope of applicability of molecular modelling to 

materials of industrial relevance and enable the creation of novel multiscale simulation pipelines. Given 

the early stage of research and limited available reports on the utilization of machine learning potentials 

in CG molecular simulations, it is crucial to uncover and discuss not only the progress but also the 

obstacles, challenges, and any unforeseen or problematic behaviour that may arise. Sharing such insights 

will facilitate the pursuit of enhanced strategies, accelerating the pace of discovery and broadening the 

scope of successful applications. 

Supplementary Material 

The code used in this work is available on GitHub at the following link: https://github.com/ml-

multimem/schnetpack-for-bulk-systems. LAMMPS input data to perform the simulations that were used 

as training sets can be downloaded at the following link: https://zenodo.org/records/10352368. The best 

model obtained for each material, as well as full specifications of their hyperparameters, can be found at 

the following link: https://zenodo.org/records/10343599. 

https://github.com/ml-multimem/schnetpack
https://github.com/ml-multimem/schnetpack
https://zenodo.org/records/10352368
https://zenodo.org/records/10343599
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