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ABSTRACT 

This work addresses a challenge related to Multi-Objective Optimization in machine learning model 

training, specifically the problem of loss coefficients weight determination for physics grounded tasks. 

We propose a comprehensive comparative methodology for the analysis of balancing methods for loss 

function coefficients in deep learning models, to enhance replicability and comparisons across diverse 

applications, emphasizing the use of physical parameters as figures of merit. The proposed methodology 

is illustrated through the evaluation of self-adaptive methods for multicomponent loss coefficients in 

Graph Convolutional Neural Network (GCNN) models. The GCNN are trained to reproduce the forces 

acting on particles during coarse-grained molecular dynamics simulations. Criteria are outlined both for 

individual model assessment and for a statistical comparison between methods, highlight the differences 

in training-related characteristics, and performance metrics for the downstream task, across various self-

balancing approaches. 
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1. Introduction 

In the realm of machine learning (ML) model training, a prevalent challenge involves optimizing an 

objective function crafted as a weighted linear combination of multiple losses [1]. The efficacy of a 

model is intricately tied to the assignment of weights to each loss component during training. 

Traditionally, deciding the optimal set of weights entails designating them as hyperparameters and 

executing an exhaustive grid search, which is a computationally demanding process. However, recent 

years have witnessed the emergence of various weight adaptation methods designed to alleviate this 

computational burden during training of ML models.   

Multi-Objective Optimization (MOO) targets simultaneous optimisation of a set of 𝑘 > 1 objectives, 

that can potentially be conflicting and which can be turned into a single objective through linear 

scalarization [2]:   

  ℒ(𝜃) =  ∑ 𝜆𝑖ℒ𝑖(𝜃)𝑘
𝑖=1  , 𝜆𝑖 ∈ 𝑅 > 0  Eq. 1  

In various domains such as engineering, natural sciences, and economics, numerous challenges can be 

cast as MOO problems, often necessitating trade-offs to concurrently fulfil multiple objectives [3]. The 

solutions to MOO models are typically expressed as sets of Pareto optima, representing optimal 

compromises among given criteria. While, theoretically, Pareto optimal solutions should be independent 

of scalarization [4], the application of neural networks in MOO introduces a highly non-convex solution 

space. Despite the universal approximation capabilities of neural networks [5], achieving global 

optimality through gradient-based optimization is not guaranteed. To address this, scaling the loss space 

offers a means to guide gradients with a predetermined desirable property. However, manual 

determination of optimal scaling factors 𝜆𝑖 becomes impractical, particularly as the number of objectives 

increases, or when dynamic evolution of 𝜆𝑖 during the training process is desired.  

Strategies proposed to balance loss coefficients in deep learning models involve various methodologies, 

including manual tuning, grid search, random search, Bayesian optimization, and multi-task learning 

[3,6–8]. Each method presents unique advantages and drawbacks. For instance, manual tuning, though 

straightforward, can be labour-intensive and suboptimal due to its reliance on human intuition. 

Automated techniques, such as Bayesian optimization and multi-task learning, streamline the process 

but may require significant computational resources. In addition, despite these options, a critical gap 
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persists in establishing a comprehensive and application-agnostic comparative test to evaluate and 

contrast multiple methodologies. Existing methods often rely on model-specific metrics like accuracy or 

loss, which may lack direct relevance to physical outcomes in the downstream task for which the models 

are used. Consequently, there is a pressing need for an evaluation methodology that employs physical 

parameters as key figures of merit, allowing for a more direct assessment of a model’s applicability to 

physical problems.  

In addressing this gap, our research aims to contribute a robust, quantitative, and reproducible 

comparative methodology for assessing loss coefficient balancing techniques. This methodology should 

transcend application boundaries and offer transparent statistical figures of merit, grounded in physical 

parameters. The motivation behind this endeavour lies in the requirement to facilitate comparisons 

across diverse applications, ensuring replicability of outcomes. We argue for the adoption of physical 

parameters as figures of merit, particularly in domains like molecular dynamics, where metrics such as 

accuracy in potential energy and forces prediction, as well as system stability during simulations are 

more meaningful to determine the suitability of a trained model than training-related metrics [9]. To 

illustrate our proposed methodology, we employ self-balancing techniques for a multi-objective loss 

function during the training of Graph Convolutional Neural Network (GCNN) models, used for the 

prediction of particle interactions in coarse-grained molecular dynamics simulations [10,11]. Our loss 

function comprises two components, one targeting forces acting on coarse-grained particles and the 

other related to the prediction of the intermolecular potential energy in a bulk liquid system [11,12]. 

These examples serve as tangible demonstrations of an automated, rigorous method for model pre-

screening and performance quantification, contributing valuable insights towards our overarching goal 

of proposing a broadly applicable approach for evaluating deep learning models, not only in molecular 

dynamics but for physics-grounded problems in general.  

2. Methodology 

2.1  Test case description and model architecture 

In this work we tested different loss coefficient self-balancing methods and developed comparative 

metrics for a physics-grounded deep learning task. We trained Graph Convolutional Neural Networks 

(GCNN) to reproduce the forces acting on particles during Coarse-Grained (CG) molecular dynamics 
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(MD) simulations. Coarse Graining consists of averaging out a certain number of high-resolution 

degrees of freedoms, namely atoms, into a single interaction site, or coarse-grained bead (i.e. choosing a 

CG mapping) and represent the interactions between the CG beads consistently with the underlying 

atomistic system, namely developing a CG force field, or CG potential. Adopting a CG molecular 

description enables access to larger lengths and longer timescales, thereby expanding the reach of 

systems and phenomena that can be investigated with molecular simulations. In this work, we explored 

the possibility to train ML models, such as neural networks, to replace traditional force fields based on 

predefined functionals. Traditional CG models typically use predefined pairwise functionals to describe 

particle interactions, which inherently limits their ability to describe many-body interactions. To 

overcome the limitations of traditional methods, in this work we investigated the development of an 

ML-based CG simulation strategy [11]. In recent years, ML-based strategies have been applied to bridge 

the quantum-mechanical and atomistic levels of descriptions, mostly for the case of inorganic systems or 

isolated small organic molecules [6]. However, their application to CG simulations, necessary to study 

complex macromolecular systems at bulk conditions has been scarcely explored so far.  The chemical 

system considered for this work is liquid benzene at bulk conditions, and the CG mapping chosen is 1 

CG bead per molecule [11].  

The ML architecture employed in this study is an adaptation of the SchNet model [13,14], specifically 

tailored for the development of Coarse-Grained (CG) Machine Learned force fields applied to bulk 

organic systems [11]. Our focus centres on utilizing liquid benzene as a test system, and the training 

strategy incorporates a force-matching scheme [12,15], described in detail elsewhere [11]. The main 

features of the SchNet architecture utilized are summarized hereafter. For a more detailed description, 

the original works can be consulted [13,14]. The GCNN architecture utilized adopts a graph 

representation of molecules, with nodes corresponding to particles and edges to bonds or interatomic 

distances. Each particle is represented through a feature vector, which is initialized to distinguish 

between the particle chemical identities (embedding layer). The feature is then updated to encode 

information on the surrounding environment, by performing continuous convolutions across the particle 

neighbourhood, optimizing the convolutional filter weights during the training (convolutional layers). 

By performing multiple convolution operations, each node can influence other increasingly distant 

nodes, thereby potentially encoding long-range information into the particle descriptor. Afterwards, a 
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fully connected section is included (readout layers). A sequence of continuous convolution layers and 

readout layers constitutes a SchNet “block”. Multiple blocks can be utilized in series to define the full 

network architecture. The output found at the end of the last block can be interpreted as a learned feature 

representation, which encodes the information from the particle neighbourhood required to predict the 

target property. Finally, given the learned feature representation as input, a fully connected (dense) 

section is tasked with predicting the final scalar output, which is interpreted as a per-particle energy 

contribution. This local decomposition ensures invariance to the total number of particles. All energy 

contributions are summed to obtain the total energy which is then differentiated with respect to the 

positions of the particles to predict the force acting on each particle.   

Overall, there are several hyperparameters to optimize in the SchNet architecture. Hyperparameters are 

user-defined settings of ML models that control various aspects of the model architecture and behaviour, 

such as (in this case):  

• the model size & architecture (number of convolutional filters, filters size, number of SchNet 

blocks, activation function)  

• the particle representation (feature vector size, cutoff radius of the local neighbourhood)  

• the training process (learning rate, decay ratio, batch size, number of samples, number of 

epochs)  

• the embedded prior terms (excluded volume diameter, excluded volume exponent)  

The optimal values for these hyperparameters were adopted from a previous study, carried out on the 

same physical system [11] focusing here only on the optimization of the loss coefficients, as described 

in the following.  

2.2  Loss Function definition 

The neural network training involves minimizing a loss function comprising two terms. The first term 

corresponds to the mean squared difference between predicted and MD-derived forces, while the second 

term pertains to the intermolecular energy of the system. As detailed in a previous work, the inclusion of 

the second term proved essential, as solely training on forces led to non-meaningful ML models during a 

wide hyperparameter search, especially in systems with exclusively intermolecular interactions at the 

CG level [11]. The loss function is formulated as:   



 

 

6 

 

  𝐿 = 𝜆1

1

3𝑁
∑ (−𝛻𝑥𝑖

(𝛴𝑖�̂�𝑖 + 𝑈𝑒𝑥) − ℳ (𝑭𝐴(𝒓𝒋)))
2

𝑁

𝑖

+ 𝜆2 ((𝛴𝑖�̂�𝑖 + 𝑈𝑒𝑥) − 𝑈𝐴)
2

 Eq. 2  

where 𝑁  is the total number of CG particles, 𝜆1  and 𝜆2  the loss components scaling coefficients, 

ℳ (𝐅A(𝐫𝑗)) is the force acting on the CG particle at position 𝐱𝑖 , obtained from the atomistic MD 

simulation mapped to the CG space, while the term in square brackets is the force acting on the CG 

particle at position 𝐱𝑖 predicted by the GCNN. �̂�𝑖 are the per-particle energy values predicted by the 

CGNN, and 𝑈𝐴 is the intermolecular energy component from the atomistic simulation. The loss function 

includes a regularization term 𝑈𝑒𝑥 linked to excluded volume repulsion effects. This prior term ensures 

that the system's energy tends towards infinity for nonphysical states where particles have close contacts 

between each other. Specifically, the excluded volume energy is added to the total energy predicted by 

the network, prior to differentiation. This prior term is expressed as:   

  𝑈𝑒𝑥 = ∑ ∑ (
𝜎

‖𝒙𝑖 − 𝒙𝑗‖
)

𝑛𝑒𝑥
𝑁

𝑗=𝑖

𝑁−1

𝑖=1
 Eq. 3  

where 𝜎 and 𝑛𝑒𝑥 are hyperparameters of the model, for which suitable values must be identified. The 

training dataset was generated through atomistic Molecular Dynamics (MD) simulations of a liquid 

benzene system containing 500 molecules, conducted at 340 K and atmospheric pressure, using 

LAMMPS [16]. After equilibration through a 1 ns NPT simulation, a subsequent 20 ns NVT run at the 

average equilibrium density was carried out, from which 10000 configurations were saved every 1 ps. 

9000 configurations were utilized for model training, 1000 for the test set. The molecular configurations 

from the MD trajectory were randomly assigned to either set or shuffled during the training. Subsequent 

NVT CG simulations with trained ML potentials were conducted using the ASE integrator [17] to 

validate the ML-based predictions and optimize the hyperparameter set accordingly. Further details on 

the methodology and the full set of hyperparameters are available in Ref. [11].  

2.3 Evaluation metrics 

To comprehensively assess the performance of each model, various simulation-derived metrics were 

computed for the CG system and compared against the atomistic simulation reference. The evaluated 

parameters include potential energy, mean square displacement, pair correlation function, and 
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temperature. Statistical parameters extracted from these results were employed as metrics within the 

evaluation framework. These metrics are:  

• Δ𝑈 (Absolute Percentage Difference in Potential Energy): This metric quantifies the absolute 

percentage difference between the mean value of the coarse-grained potential energy during a 

CG simulation and its average value in the training set, offering insights into the accuracy of 

energy predictions.  

• 𝐶𝑉𝑈𝐶𝐺
 (Coefficient of Variation of Coarse-Grained Potential Energy): The coefficient of 

variation of coarse-grained simulated potential energy assesses the stability of simulation results. 

A low coefficient of variation signifies greater stability, while a high value may indicate energy 

drifts or unphysically high oscillations.  

• �̅�  (Mean Coarse-Grained Simulated Temperature): This parameter represents the mean 

temperature of the coarse-grained simulation with the trained model, and it is an indicator of the 

simulation stability.  

• 𝐶𝑉𝑇  (Coefficient of Variation of Coarse-Grained Simulated Temperature): Similar to the 

coefficient of variation for potential energy, the coefficient of variation for temperature gauges 

the stability of the simulation, with higher values potentially indicative of model instability.   

• 𝑑𝐾𝑆  and 𝑝𝐾𝑆  (Kolmogorov–Smirnov Test Parameters for Pair Correlation Functions): The 

statistical parameters 𝑑𝐾𝑆  and 𝑝𝐾𝑆  from the Kolmogorov–Smirnov test assess the similarity 

between coarse-grained and atomistic simulated pair correlation functions. A lower 𝑑𝐾𝑆 and a 

higher 𝑝𝐾𝑆 indicate better agreement between the two functions.  

• 𝑠𝑀𝑆𝐷 (slope of the last 30% of Mean Square Displacement): The slope of the last 30% of the 

mean square displacement curve is expression of a specific mode of failure: a slope approaching 

0 suggests a frozen system with minimal particle mobility beyond small in-place oscillations.  

These chosen parameters facilitate a quantifiable assessment of model performance, eliminating the 

need for exhaustive results visualization. A hierarchy between these metrics can be defined and followed 

for a pre-screening of individual models. Notably, the second and fourth parameters, based on the 

Coefficient of Variation (CV) for potential energy and temperature, respectively, serve as simulation 

stability indicators, which is a crucial first requisite for model success. Subsequently, if the initial 

stability criteria are met, the first and third parameters can be considered to verify the validity of results 

by comparing mean potential energy and temperature values from coarse-grain simulations with the 

counterparts derived from the reference atomistic simulation. If these are satisfactory, the fifth 
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parameter, employing the Kolmogorov-Smirnov (K-S) test, indicates the accuracy in the structural 

representation, by evaluating the similarity between pair correlation functions in coarse-grained and 

atomistic simulations.  

Additionally, parameters reflecting the efficiency of the training process can be defined to contribute to 

the comparison between different model training methods. These include: the number of training epochs 

(𝑁𝑒𝑝), mean duration per epoch (𝑡𝑒𝑝), and the standard deviation (𝜎𝑒𝑝) of the duration of each training 

epoch. These efficiency metrics provide valuable insights into the computational resources’ 

requirements, enhancing the overall evaluation framework.  

2.4 Loss coefficients self-adaptive methods 

The self-adaptive methods for loss coefficients employed in this study are categorized into two groups. 

The first group encompasses value-based methods that dynamically adjust the loss coefficients based on 

their actual values, while the second group involves methods that leverage the gradient information of 

the loss components for adaptation.  

2.4.1    Loss component value-based methods  

The first set of methods for self-adaptive loss coefficients in this study comprises two approaches, the 

"constant value" and the "ratio" method. For the "constant value" method, the coefficients (𝜆𝑖) of each 

loss component, i, are considered hyperparameters of the ML model and are optimized through a 

detailed grid search (Eq. 4).  

  𝜆𝑖(𝑡) = 𝐴𝑖         𝑖 = 1, … , 𝑘 − 1  ,  𝐴𝑖  ∈ 𝑅 ≥ 0 Eq. 4  

The "ratio" method calculates the coefficients at each epoch 𝑡 using the normalized value of each loss 

component in the previous epoch (𝑡 − 1) relative to a reference loss component also in the previous 

epoch (Eq. 5). The choice of the reference loss component 𝑘 remains arbitrary but consistent throughout 

training.  

  𝜆𝑖(𝑡) =
𝐿𝑖(𝑡 − 1)

𝐿𝑘(𝑡 − 1)
        𝑖 = 1, … , 𝑘 − 1 Eq. 5  
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2.4.1    Loss component gabased methods  

The second set of self-adaptive methods comprises three variations within the SoftAdapt family, 

developed by A. Ali Heydari et al. [16] to address the challenges associated with weighting multi-

component loss functions. These methods have found application in image reconstruction and synthetic 

data generation. Inspired by softmax, the SoftAdapt methods adaptively adjust the weights in the linear 

combination of individual objective functions based on their respective performances and the collective 

loss function. The methodology assesses performance by approximating the rate of change of each loss 

function over a brief history, discerning whether it has been increasing or decreasing. Subsequently, 

these individual rates of change are compared, determining the visibility of each objective function to 

the optimizer.  

The SoftAdapt family consists of three variants: the original version, the weighted variant, and the 

normalized variant. Each variant introduces unique refinements to the adaptive weight adjustment 

process, providing a nuanced approach to addressing the dynamic nature of the loss functions during 

model training. Mathematically, the three methods are described as:  

Original  𝜆𝑖(𝑡) =
exp(𝛽𝑠𝑖(𝑡))

∑ exp(𝛽𝑠𝑗(𝑡))𝑘
𝑗=1

               𝑖 = 1, … , 𝑘  Eq. 6  

Weighted  𝜆𝑖(𝑡) =
𝐿𝑖(𝑡) exp(𝛽𝑠𝑖(𝑡))

∑ 𝐿𝑗(𝑡) exp(𝛽𝑠𝑗(𝑡))𝑘
𝑗=1

        𝑖 = 1, … , 𝑘  Eq. 7  

Normalized  𝜆𝑖(𝑡) =
exp(𝛽

𝑠𝑖(𝑡)

∑ 𝑠𝑙(𝑡)𝑘
𝑙=1

)

∑ exp(𝛽
𝑠𝑗(𝑡)

∑ 𝑠𝑙(𝑡)𝑘
𝑙=1

)𝑘
𝑗=1

         𝑖 = 1, … , 𝑘  Eq. 8  

In Eqs. 6, 7, 8 the term 𝑠𝑖(𝑡) is the recent rate of change of the i th loss term (e.g. 𝑠𝑖(𝑡) = 𝐿𝑖(𝑡) −

𝐿𝑖(𝑡 − 1) or a more accurate finite difference approximation), and 𝛽 is a tunable hyper-parameter. If 

𝛽 > 0  is used, SoftAdapt will assign more weight to the worst performing component of the loss 

function (i.e. the component with most positive rate of change), 𝛽 < 0 favours the best performing 

losses (most negative rate of change) and using 𝛽 = 0 gives equal weights (classic SoftAdapt method). 

The default value of the 𝛽 hyperparameter according to the original authors is 0.1. In the normalized 

version of the SoftAdapt 𝑠𝑖(𝑡) is normalized before using it.  

 



 

 

10 

 

2.5 Evaluation scheme  

To systematically evaluate and compare the effectiveness of various self-adaptation approaches for 

balancing loss coefficient terms, a structured procedure was developed. Five models were trained for 

each self-adaptation approach, each initiated with different seed values to define diverse initial 

conditions. Consequently, distinct populations of models were generated for each self-adaptation 

approach. The evaluation of individual models was based on the metrics outlined in Section 2.3, serving 

as quantitative metrics to capture diverse behavioural characteristics.  

Following the individual model evaluations, a comparative analysis of model populations was 

undertaken. This involved conducting a Kruskal-Wallis test on the values of the metrics of each model 

population. The Kruskal-Wallis test, a non-parametric statistical method, compares the medians of two 

or more independent groups. The Kruskal-Wallis test does not assume a normal distribution of data, 

offering flexibility for non-normally distributed datasets. However, it does require that samples within 

groups are independent and identically distributed. The null hypothesis posits that all samples originate 

from the same distribution or from distributions with the same median. Rejection of the null hypothesis, 

indicated by a p-value below the significance level, suggests a significant difference between at least 

two groups.  

Upon identifying statistically significant differences using the Kruskal-Wallis test, a post hoc test was 

conducted to discern which models differed and to what extent. The post hoc test employed in this study 

is Tukey’s range test, also known as Tukey’s Honest Significant Difference (HSD) test. This statistical 

method identifies means that are significantly different from each other. Tukey’s range test allow to 

specify which groups exhibit significant differences by comparing all possible pairs of means, proving 

particularly useful when assuming equal variances across groups.  

The proposed evaluation scheme is illustrated using a block diagram in Figure 1.   
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Figure 2. Block diagram describing the proposed evaluation scheme. 

3. Results and Discussion  

3.1 Methods performance and technical comparison   

In the evaluation of self-balancing approaches, the utilization of box plots for different statistical 

parameters is a convenient choice. A box plot, also referred to as a box-and-whisker plot, serves as a 

graphical tool that presents a comprehensive five-number summary of a dataset, encompassing the 

minimum, the first quartile (Q1), the median, the third quartile (Q3), and the maximum. The "box" in a 

box plot represents the interquartile range, signifying the span between Q1 and Q3 and thus 

encapsulating the middle 50% of the data. The line within the box denotes the median of the dataset. 

Extending from the box, the "whiskers" illustrate the variability beyond the lower and upper quartiles, 

providing a holistic depiction of the data dispersion. Any outliers, if present, are typically depicted as 

individual points lying beyond the whiskers. Box plots can be drawn either vertically or horizontally and 
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prove particularly valuable for comparing one or more datasets, identifying outliers, gauging variability, 

and detecting symmetry in the data.  

Despite the limited population size within each approach, certain preliminary conclusions can be 

inferred. As depicted in Figure 2a, a noticeable difference emerges in the required number of epochs for 

model training across various self-balancing approaches. Notably, the constant weight approach 

demands the fewest number of epochs, whereas the normalized version of SoftAdapt necessitates the 

most. This visual representation through box plots offers a clear and intuitive means of comparing the 

training characteristics of different self-balancing methods, facilitating a quick grasp of the observed 

trends and variations. The integration of self-balancing methods within the model appears to exert an 

influence not only on the duration but also on the consistency of training epochs time, as depicted in 

Figure 2c and d. Notably, all SoftAdapt variants demand less time per epoch, and this duration is more 

consistent during training compared to the constant weight and ratio approaches.   

When examining the absolute difference between the mean Coarse-Grained (CG) and atomistic 

simulated potential energies, no substantial differences emerge between the approaches (Figure 2e). The 

constant weight and ratio approaches seem to exhibit a lower mean value compared to the SoftAdapt 

methods, but the presence of outliers in both cases, coupled with a small population size, complicates 

the drawing of clear conclusions. This complexity is also apparent in the case of the coefficient of 

variation of the CG simulated potential energy (𝐶𝑉𝑈𝐶𝐺
), where, despite the lower mean value and 

dispersion for the constant weight and ratio approaches, outliers are present in both instances and cloud 

the interpretation (Figure 2f). All methods deliver a simulated temperature close to the expected value, 

with similar dispersion if outliers are accounted for (Figure 2g). However, the box plots of the 

coefficient of variation of the simulated temperature (𝐶𝑉𝑇 ) parameter indicate that the normalized 

version of SoftAdapt exhibits significantly higher oscillations in the simulated temperature relative to 

the other methods (Figure 2h).  

In the case of the Kolmogorov-Smirnov (K-S) test results, no notable difference between the self-

balancing methods is observed. Both the statistic and p-value parameters display similar behaviour 

across the various approaches (Figure 2i and j). Lastly, a significant difference between the self-

balancing methods emerges in the Mean Square Displacement (MSD) slope parameter. The constant 
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weight approach results in the highest MSD slope, while the normalized version of SoftAdapt yields the 

lowest.  
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Figure 2. Box plots of the (a) number of epochs, (b) the last 30% of the MSD function, (c) 

mean and (d) standard deviation of the duration of training epoch, (e) absolute percentage 

difference between the CG and atomistic simulated potential energy and (f) its coefficient of 

variation, (g) mean CG simulated temperature and (h) its coefficient of variation, (i) statistic 

and (j) p-value of K-S test for the constant weights approach, the ratio approach, the original 

variant of SoftAdapt, the normalized SoftAdapt, and the weighted SoftAdapt.  

  

3.2 Assessment of the loss coefficient self-adaptation methods through evaluation scheme  

The methodology outlined in Section 2.5 facilitates a robust, repeatable, and quantifiable comparison of 

various self-balancing methods. This approach employs the Kruskal-Wallis test, a non-parametric 

statistical tool, to identify statistical parameters where at least one method exhibits distinct behaviour 

compared to others. Subsequently, Tukey’s test, a post-hoc analysis, is utilized to pinpoint differing 
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methods and quantify the extent of these differences. Adopting a significance level of 0.1, the null 

hypothesis of the Kruskal-Wallis test is dismissed for several parameters, including the total number of 

epochs, mean iteration time, standard deviation of iteration time, and MSD slope parameters. This 

suggests that, for these specific parameters, the mean value of at least one method is statistically 

significantly different from the others. The results from the Kruskal-Wallis test are shown in Table 1. 

 

Table 1. Results of the Kruskal-Wallis test for the different statistical parameters. 

 𝑁𝑒𝑝 𝑡𝑒𝑝 𝜎𝑒𝑝 Δ𝑈 𝐶𝑉𝑈𝐶𝐺
 �̅� 𝐶𝑉𝑇 𝑑𝐾𝑆 𝑝𝐾𝑆 𝑠𝑀𝑆𝐷 

statistic 17.78 17.79 19.61 4.45 4.31 2.80 6.57 2.88 2.88 8.37 

p-value 0.0014 0.0014 0.0006 0.35 0.35 0.59 0.16 0.58 0.58 0.079 

 

Given the limited number of experiments for each approach, a more lenient p-value of 0.35 is employed 

for Tukey’s test. This extends the scope of Tukey’s test to parameters such as the absolute difference 

between mean CG and atomistic simulated potential energies, and the coefficient of variation for CG 

simulated potential energy and temperature. The results of the pairwise Tukey’s tests for these 

parameters are compiled in Table 2, with the "rejected" column indicating null hypothesis rejection 

using a significance level of 0.35.  

Leveraging the outcomes from Tukey’s test, a ranking system was created for the different self-

balancing approaches. A score was assigned to each method for each of the 10 training- or simulation-

based metrics (same score if the performance of the methods was statistically equivalent, different score 

if they were statistically different). By summing all the assigned scores, a ranking is obtained. In terms 

of the total number of epochs parameter, the constant weight approach closely aligns with the ratio 

approach and the original variance of SoftAdapt, requiring fewer epochs compared to the normalized 

and weighted versions of SoftAdapt. The latter two also appear to demand fewer epochs. For the mean 

iteration time parameter, no significant difference is evident among the SoftAdapt methods or between 

the constant weight and ratio methods. Moreover, the SoftAdapt group requires less time per epoch than 

the constant weight and ratio group. The same trend is observed concerning the standard deviation of the 

time per epoch.  
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Table 2. Results of the pairwise Tukey’s test for the parameters that present p-value equal or below 0.35 in the Kruskal-Wallis test. 

  𝑁𝑒𝑝 𝑡𝑒𝑝 𝜎𝑒𝑝 Δ𝑈 𝐶𝑉𝑇 𝑠𝑀𝑆𝐷 

Group A Group B 
Mean 

diff. 
p-adj Reject? 

Mean 

diff. 
p-adj Reject? 

Mean 

diff. 
p-adj Reject? 

Mean 

diff. 
p-adj Reject? 

Mean 

diff. 
p-adj Reject? 

Mean 

diff. 
p-adj Reject? 

constant ratio 77.0 0.987 False -0.250 0.955 False 0.014 0.999 False 16.237 0.873 False 16.237 0.873 False -0.018 0.777 False 

constant Normalized SA   797.0 0.001 True -12.972 0.0 True -0.294 0.006 True 4.381 0.968 False 50.3830 0.052 True -0.040 0.127 True 

constant Original SA  207.2 0.682 False -12.523 0.0 True -0.382 0.0 True 1.627 0.999 False -0.638 1.0 False -0.019 0.770 False 

constant Weighted SA 401.0 0.118 True -12.943 0.0 True -0.221 0.010 True -0.414 1.0 False 15.701 0.886 False -0.011 0.951 False 

ratio Normalized SA  720.0 0.002 True -12.722 0.0 True -0.308 0.0 True -2.860 0.993 False 34.594 0.290 True -0.022 0.657 False 

ratio Original SA   130.2 0.918 False -12.273 0.0 True -0.395 0.0 True -5.613 0.924 False -16.875 0.857 False 0.007 0.992 False 

ratio Weighted SA 324.0 0.273 True -12.693 0.0 True -0.235 0.006 True -7.613 0.802 False -0.536 1.0 False 0.007 0.992 False 

Normalized SA  Original SA   -589.8 0.01 True 0.449 0.725 False -0.086 0.593 False -2.753 0.994 False -51.468 0.048 True 0.022 0.665 False 

Normalized SA  Weighted SA -396.0 0.125 True 0.029 1.0 False 0.074 0.720 False -4.794 0.956 False -35.130 0.276 True 0.029 0.400 False 

Original SA  Weighted SA 193.8 0.732 False -0.420 0.770 False 0.16 0.086 True -2.041 0.998 False 16.339 0.871 False 0.007 0.991 False 

  

 

Table 3. Ranking of each self-balancing method based on individual metrics. 

Method  𝑁𝑒𝑝  𝑡𝑒𝑝  𝜎𝑒𝑝  Δ𝑈  𝐶𝑉𝑈𝐶𝐺
 �̅�  𝐶𝑉𝑇 𝑑𝐾𝑆 𝑝𝐾𝑆 𝑠𝑀𝑆𝐷  Total score  

Constant  1  1  4  2  2  1  1  3  1  3  19  

Ratio  2  1  3  5  3  1  2  2  1  1  21  

Original SA  3  1  3  4  3  1  2  2  1  1  21  

Weighted SA  4  1  2  1  1  1  2  2  1  2  17  

Normalized SA  5  1  1  3  2  1  3  1  1  4  22  
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For the absolute difference between CG and atomistic simulated potential energy, all methods can be 

deemed equivalent. Regarding the coefficient of variance of the simulated temperature parameter, all 

methods, except the normalized SoftAdapt, are analogous, demonstrating a lower 𝐶𝑉𝑇 compared to the 

normalized SoftAdapt. Lastly, for the MSD slope parameters, all methods, except the constant weight 

method, can be considered equal. All these methods also have lower mean values compared to the 

constant weight method. 

Considering these comparisons, the self-balancing methods can be ranked as follows: Weighted 

SoftAdapt > Constant Weights  > Ratio/Original SoftAdapt  > Normalized SoftAdapt  

This ranking is based on the performance of each method across various parameters presented in Table 

3. It is important to take though into account that all individual metrics were considered of equal 

significance for the extraction of the above ranking. Further refinement can be implemented by defining 

appropriate weightings depending on each metric importance towards an even more robust 

quantification of performance of each method. These findings highlight that, even without any 

optimization of the weighted version of SoftAdapt’s hyperparameters, the SoftAdapt method is a strong 

candidate for further investigation. Its ability to deliver good performance without specific 

hyperparameter optimization suggests there might great untapped potential in the utilization of this 

methods. 

4. Summary and Conclusions  

This investigation set out to devise a robust and reproducible framework capable of automating the 

process of pre-screening ML models, quantifying the performance of more promising candidates, and 

compare different training strategies. This objective is tackled via the creation of an evaluation and 

ranking protocol that considers the behaviour of a model using metrics grounded on physical insights, 

and subsequently gauges the performance of a population of models employing statistical tests. By 

establishing a hierarchy between the evaluation metrics, it presents a powerful tool that can sieve out 

suboptimal models earlier in the process, hence, saving valuable computational resources and time. 

Concurrently, it quantifies the performance of promising models with a statistical rigour that adds a 

layer of reliability and objectivity to the selection process.  
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The developed methodology was implemented to evaluate the most effective among multiple self-

balancing methods for a MOO problem. This problem was contextualized within the domain of self-

adapting the weights associated with the two components of the loss function for a GCNN model. The 

underlying model used for this problem was rooted in the SchNet architecture, which was tasked here 

with acting as a force field for CG molecular dynamics simulations. The self-balancing methods 

employed in the study are the linear scalarization constant weight method, the ratio method, and three 

variations of SoftAdapt: original, weighted, and normalized. For the rigorous evaluation of the models 

under consideration, a comprehensive set of phtsics-grounded performance metrics was established.   

The findings derived from the Kruskal-Wallis test reveal that the various self-balancing approaches 

diverge specifically in relation to five factors. These include the cumulative number of training epochs, 

the coefficient of variance of the simulated temperature, the average duration of each training epoch, the 

standard deviation of the duration of each epoch, as well as the slope of the MSD. Subsequent to the 

Kruskal-Wallis test, a pairwise Tukey’s test was implemented to conduct a comparative analysis 

between the distinct approaches. Through this statistical method, it was possible to rank these different 

methods based on their overall performance. In accordance with the results from Tukey’s test, the 

Weighted SoftAdapt method proved to be the most efficient approach. Following in the ranking was the 

Constant Weight approach. The Ratio Approach was ranked third, together with the Original SoftAdapt 

whereas the Normalized SoftAdapt approach ranked at the bottom. In light of these findings, it appears 

that the SoftAdapt method is the best candidate for further investigation.  

Following the aforementioned results, several areas have been highlighted for further exploration. 

Firstly, the validation of these findings through an increased number of experiments would be of 

interest, to increase the robustness of the statistical analyses and strengthen the reliability of the 

conclusions drawn. Secondly, refining the evaluation parameters, by assigning varying levels of 

significance to each metric could reflect the real-world relevance or importance of each parameter more 

accurately and potentially improve the quality of conclusions drawn from the method, providing a more 

precise measure of the models’ effectiveness. Lastly, an exploration into other self-adaptation 

approaches could be undertaken. Given the performance of the SoftAdapt methods in our study, further 

investigation into alternative approaches may reveal additional or even more effective strategies for 

optimizing the balance of the loss function.   
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