

1

Evaluation scheme for self-adaptive methods of coefficients of loss

components of multi-objective loss function

Spilios Dellis

National Centre for Scientific

Research “Demokritos”

Athens, Greece

spiliospdellis@gmail.com

 Eleonora Ricci

National Centre for Scientific

Research “Demokritos”

Athens, Greece

e.ricci@inn.demokritos.gr

Dimitris-Paraskevas Gerakinis

National Centre for Scientific

Research “Demokritos” & National

Technical University of Athens

Athens, Greece

dp.gerakinis@inn.demokritos.gr

Niki Vergadou

National Centre for Scientific

Research “Demokritos”

Athens, Greece

n.vergadou@inn.demokritos.gr

George Giannakopoulos

National Centre for Scientific

Research “Demokritos”

Athens, Greece

ggianna@iit.demokritos.gr

ABSTRACT

This work addresses a challenge related to Multi-Objective Optimization in machine learning model

training, specifically the problem of loss coefficients weight determination for physics grounded tasks.

We propose a comprehensive comparative methodology for the analysis of balancing methods for loss

function coefficients in deep learning models, to enhance replicability and comparisons across diverse

applications, emphasizing the use of physical parameters as figures of merit. The proposed methodology

is illustrated through the evaluation of self-adaptive methods for multicomponent loss coefficients in

Graph Convolutional Neural Network (GCNN) models. The GCNN are trained to reproduce the forces

acting on particles during coarse-grained molecular dynamics simulations. Criteria are outlined both for

individual model assessment and for a statistical comparison between methods, highlight the differences

in training-related characteristics, and performance metrics for the downstream task, across various self-

balancing approaches.

mailto:spiliospdellis@gmail.com
mailto:e.ricci@inn.demokritos.gr
mailto:dp.gerakinis@inn.demokritos.gr
mailto:n.vergadou@inn.demokritos.gr
mailto:ggianna@iit.demokritos.gr

2

1. Introduction

In the realm of machine learning (ML) model training, a prevalent challenge involves optimizing an

objective function crafted as a weighted linear combination of multiple losses [1]. The efficacy of a

model is intricately tied to the assignment of weights to each loss component during training.

Traditionally, deciding the optimal set of weights entails designating them as hyperparameters and

executing an exhaustive grid search, which is a computationally demanding process. However, recent

years have witnessed the emergence of various weight adaptation methods designed to alleviate this

computational burden during training of ML models.

Multi-Objective Optimization (MOO) targets simultaneous optimisation of a set of 𝑘 > 1 objectives,

that can potentially be conflicting and which can be turned into a single objective through linear

scalarization [2]:

 ℒ(𝜃) = ∑ 𝜆𝑖ℒ𝑖(𝜃)𝑘
𝑖=1 , 𝜆𝑖 ∈ 𝑅 > 0 Eq. 1

In various domains such as engineering, natural sciences, and economics, numerous challenges can be

cast as MOO problems, often necessitating trade-offs to concurrently fulfil multiple objectives [3]. The

solutions to MOO models are typically expressed as sets of Pareto optima, representing optimal

compromises among given criteria. While, theoretically, Pareto optimal solutions should be independent

of scalarization [4], the application of neural networks in MOO introduces a highly non-convex solution

space. Despite the universal approximation capabilities of neural networks [5], achieving global

optimality through gradient-based optimization is not guaranteed. To address this, scaling the loss space

offers a means to guide gradients with a predetermined desirable property. However, manual

determination of optimal scaling factors 𝜆𝑖 becomes impractical, particularly as the number of objectives

increases, or when dynamic evolution of 𝜆𝑖 during the training process is desired.

Strategies proposed to balance loss coefficients in deep learning models involve various methodologies,

including manual tuning, grid search, random search, Bayesian optimization, and multi-task learning

[3,6–8]. Each method presents unique advantages and drawbacks. For instance, manual tuning, though

straightforward, can be labour-intensive and suboptimal due to its reliance on human intuition.

Automated techniques, such as Bayesian optimization and multi-task learning, streamline the process

but may require significant computational resources. In addition, despite these options, a critical gap

3

persists in establishing a comprehensive and application-agnostic comparative test to evaluate and

contrast multiple methodologies. Existing methods often rely on model-specific metrics like accuracy or

loss, which may lack direct relevance to physical outcomes in the downstream task for which the models

are used. Consequently, there is a pressing need for an evaluation methodology that employs physical

parameters as key figures of merit, allowing for a more direct assessment of a model’s applicability to

physical problems.

In addressing this gap, our research aims to contribute a robust, quantitative, and reproducible

comparative methodology for assessing loss coefficient balancing techniques. This methodology should

transcend application boundaries and offer transparent statistical figures of merit, grounded in physical

parameters. The motivation behind this endeavour lies in the requirement to facilitate comparisons

across diverse applications, ensuring replicability of outcomes. We argue for the adoption of physical

parameters as figures of merit, particularly in domains like molecular dynamics, where metrics such as

accuracy in potential energy and forces prediction, as well as system stability during simulations are

more meaningful to determine the suitability of a trained model than training-related metrics [9]. To

illustrate our proposed methodology, we employ self-balancing techniques for a multi-objective loss

function during the training of Graph Convolutional Neural Network (GCNN) models, used for the

prediction of particle interactions in coarse-grained molecular dynamics simulations [10,11]. Our loss

function comprises two components, one targeting forces acting on coarse-grained particles and the

other related to the prediction of the intermolecular potential energy in a bulk liquid system [11,12].

These examples serve as tangible demonstrations of an automated, rigorous method for model pre-

screening and performance quantification, contributing valuable insights towards our overarching goal

of proposing a broadly applicable approach for evaluating deep learning models, not only in molecular

dynamics but for physics-grounded problems in general.

2. Methodology

2.1 Test case description and model architecture

In this work we tested different loss coefficient self-balancing methods and developed comparative

metrics for a physics-grounded deep learning task. We trained Graph Convolutional Neural Networks

(GCNN) to reproduce the forces acting on particles during Coarse-Grained (CG) molecular dynamics

4

(MD) simulations. Coarse Graining consists of averaging out a certain number of high-resolution

degrees of freedoms, namely atoms, into a single interaction site, or coarse-grained bead (i.e. choosing a

CG mapping) and represent the interactions between the CG beads consistently with the underlying

atomistic system, namely developing a CG force field, or CG potential. Adopting a CG molecular

description enables access to larger lengths and longer timescales, thereby expanding the reach of

systems and phenomena that can be investigated with molecular simulations. In this work, we explored

the possibility to train ML models, such as neural networks, to replace traditional force fields based on

predefined functionals. Traditional CG models typically use predefined pairwise functionals to describe

particle interactions, which inherently limits their ability to describe many-body interactions. To

overcome the limitations of traditional methods, in this work we investigated the development of an

ML-based CG simulation strategy [11]. In recent years, ML-based strategies have been applied to bridge

the quantum-mechanical and atomistic levels of descriptions, mostly for the case of inorganic systems or

isolated small organic molecules [6]. However, their application to CG simulations, necessary to study

complex macromolecular systems at bulk conditions has been scarcely explored so far. The chemical

system considered for this work is liquid benzene at bulk conditions, and the CG mapping chosen is 1

CG bead per molecule [11].

The ML architecture employed in this study is an adaptation of the SchNet model [13,14], specifically

tailored for the development of Coarse-Grained (CG) Machine Learned force fields applied to bulk

organic systems [11]. Our focus centres on utilizing liquid benzene as a test system, and the training

strategy incorporates a force-matching scheme [12,15], described in detail elsewhere [11]. The main

features of the SchNet architecture utilized are summarized hereafter. For a more detailed description,

the original works can be consulted [13,14]. The GCNN architecture utilized adopts a graph

representation of molecules, with nodes corresponding to particles and edges to bonds or interatomic

distances. Each particle is represented through a feature vector, which is initialized to distinguish

between the particle chemical identities (embedding layer). The feature is then updated to encode

information on the surrounding environment, by performing continuous convolutions across the particle

neighbourhood, optimizing the convolutional filter weights during the training (convolutional layers).

By performing multiple convolution operations, each node can influence other increasingly distant

nodes, thereby potentially encoding long-range information into the particle descriptor. Afterwards, a

5

fully connected section is included (readout layers). A sequence of continuous convolution layers and

readout layers constitutes a SchNet “block”. Multiple blocks can be utilized in series to define the full

network architecture. The output found at the end of the last block can be interpreted as a learned feature

representation, which encodes the information from the particle neighbourhood required to predict the

target property. Finally, given the learned feature representation as input, a fully connected (dense)

section is tasked with predicting the final scalar output, which is interpreted as a per-particle energy

contribution. This local decomposition ensures invariance to the total number of particles. All energy

contributions are summed to obtain the total energy which is then differentiated with respect to the

positions of the particles to predict the force acting on each particle.

Overall, there are several hyperparameters to optimize in the SchNet architecture. Hyperparameters are

user-defined settings of ML models that control various aspects of the model architecture and behaviour,

such as (in this case):

• the model size & architecture (number of convolutional filters, filters size, number of SchNet

blocks, activation function)

• the particle representation (feature vector size, cutoff radius of the local neighbourhood)

• the training process (learning rate, decay ratio, batch size, number of samples, number of

epochs)

• the embedded prior terms (excluded volume diameter, excluded volume exponent)

The optimal values for these hyperparameters were adopted from a previous study, carried out on the

same physical system [11] focusing here only on the optimization of the loss coefficients, as described

in the following.

2.2 Loss Function definition

The neural network training involves minimizing a loss function comprising two terms. The first term

corresponds to the mean squared difference between predicted and MD-derived forces, while the second

term pertains to the intermolecular energy of the system. As detailed in a previous work, the inclusion of

the second term proved essential, as solely training on forces led to non-meaningful ML models during a

wide hyperparameter search, especially in systems with exclusively intermolecular interactions at the

CG level [11]. The loss function is formulated as:

6

 𝐿 = 𝜆1

1

3𝑁
∑ (−𝛻𝑥𝑖

(𝛴𝑖𝑈̂𝑖 + 𝑈𝑒𝑥) − ℳ (𝑭𝐴(𝒓𝒋)))
2

𝑁

𝑖

+ 𝜆2 ((𝛴𝑖𝑈̂𝑖 + 𝑈𝑒𝑥) − 𝑈𝐴)
2

 Eq. 2

where 𝑁 is the total number of CG particles, 𝜆1 and 𝜆2 the loss components scaling coefficients,

ℳ (𝐅A(𝐫𝑗)) is the force acting on the CG particle at position 𝐱𝑖 , obtained from the atomistic MD

simulation mapped to the CG space, while the term in square brackets is the force acting on the CG

particle at position 𝐱𝑖 predicted by the GCNN. 𝑈̂𝑖 are the per-particle energy values predicted by the

CGNN, and 𝑈𝐴 is the intermolecular energy component from the atomistic simulation. The loss function

includes a regularization term 𝑈𝑒𝑥 linked to excluded volume repulsion effects. This prior term ensures

that the system's energy tends towards infinity for nonphysical states where particles have close contacts

between each other. Specifically, the excluded volume energy is added to the total energy predicted by

the network, prior to differentiation. This prior term is expressed as:

 𝑈𝑒𝑥 = ∑ ∑ (
𝜎

‖𝒙𝑖 − 𝒙𝑗‖
)

𝑛𝑒𝑥
𝑁

𝑗=𝑖

𝑁−1

𝑖=1
 Eq. 3

where 𝜎 and 𝑛𝑒𝑥 are hyperparameters of the model, for which suitable values must be identified. The

training dataset was generated through atomistic Molecular Dynamics (MD) simulations of a liquid

benzene system containing 500 molecules, conducted at 340 K and atmospheric pressure, using

LAMMPS [16]. After equilibration through a 1 ns NPT simulation, a subsequent 20 ns NVT run at the

average equilibrium density was carried out, from which 10000 configurations were saved every 1 ps.

9000 configurations were utilized for model training, 1000 for the test set. The molecular configurations

from the MD trajectory were randomly assigned to either set or shuffled during the training. Subsequent

NVT CG simulations with trained ML potentials were conducted using the ASE integrator [17] to

validate the ML-based predictions and optimize the hyperparameter set accordingly. Further details on

the methodology and the full set of hyperparameters are available in Ref. [11].

2.3 Evaluation metrics

To comprehensively assess the performance of each model, various simulation-derived metrics were

computed for the CG system and compared against the atomistic simulation reference. The evaluated

parameters include potential energy, mean square displacement, pair correlation function, and

7

temperature. Statistical parameters extracted from these results were employed as metrics within the

evaluation framework. These metrics are:

• Δ𝑈 (Absolute Percentage Difference in Potential Energy): This metric quantifies the absolute

percentage difference between the mean value of the coarse-grained potential energy during a

CG simulation and its average value in the training set, offering insights into the accuracy of

energy predictions.

• 𝐶𝑉𝑈𝐶𝐺
 (Coefficient of Variation of Coarse-Grained Potential Energy): The coefficient of

variation of coarse-grained simulated potential energy assesses the stability of simulation results.

A low coefficient of variation signifies greater stability, while a high value may indicate energy

drifts or unphysically high oscillations.

• 𝑇̅ (Mean Coarse-Grained Simulated Temperature): This parameter represents the mean

temperature of the coarse-grained simulation with the trained model, and it is an indicator of the

simulation stability.

• 𝐶𝑉𝑇 (Coefficient of Variation of Coarse-Grained Simulated Temperature): Similar to the

coefficient of variation for potential energy, the coefficient of variation for temperature gauges

the stability of the simulation, with higher values potentially indicative of model instability.

• 𝑑𝐾𝑆 and 𝑝𝐾𝑆 (Kolmogorov–Smirnov Test Parameters for Pair Correlation Functions): The

statistical parameters 𝑑𝐾𝑆 and 𝑝𝐾𝑆 from the Kolmogorov–Smirnov test assess the similarity

between coarse-grained and atomistic simulated pair correlation functions. A lower 𝑑𝐾𝑆 and a

higher 𝑝𝐾𝑆 indicate better agreement between the two functions.

• 𝑠𝑀𝑆𝐷 (slope of the last 30% of Mean Square Displacement): The slope of the last 30% of the

mean square displacement curve is expression of a specific mode of failure: a slope approaching

0 suggests a frozen system with minimal particle mobility beyond small in-place oscillations.

These chosen parameters facilitate a quantifiable assessment of model performance, eliminating the

need for exhaustive results visualization. A hierarchy between these metrics can be defined and followed

for a pre-screening of individual models. Notably, the second and fourth parameters, based on the

Coefficient of Variation (CV) for potential energy and temperature, respectively, serve as simulation

stability indicators, which is a crucial first requisite for model success. Subsequently, if the initial

stability criteria are met, the first and third parameters can be considered to verify the validity of results

by comparing mean potential energy and temperature values from coarse-grain simulations with the

counterparts derived from the reference atomistic simulation. If these are satisfactory, the fifth

8

parameter, employing the Kolmogorov-Smirnov (K-S) test, indicates the accuracy in the structural

representation, by evaluating the similarity between pair correlation functions in coarse-grained and

atomistic simulations.

Additionally, parameters reflecting the efficiency of the training process can be defined to contribute to

the comparison between different model training methods. These include: the number of training epochs

(𝑁𝑒𝑝), mean duration per epoch (𝑡𝑒𝑝), and the standard deviation (𝜎𝑒𝑝) of the duration of each training

epoch. These efficiency metrics provide valuable insights into the computational resources’

requirements, enhancing the overall evaluation framework.

2.4 Loss coefficients self-adaptive methods

The self-adaptive methods for loss coefficients employed in this study are categorized into two groups.

The first group encompasses value-based methods that dynamically adjust the loss coefficients based on

their actual values, while the second group involves methods that leverage the gradient information of

the loss components for adaptation.

2.4.1 Loss component value-based methods

The first set of methods for self-adaptive loss coefficients in this study comprises two approaches, the

"constant value" and the "ratio" method. For the "constant value" method, the coefficients (𝜆𝑖) of each

loss component, i, are considered hyperparameters of the ML model and are optimized through a

detailed grid search (Eq. 4).

 𝜆𝑖(𝑡) = 𝐴𝑖 𝑖 = 1, … , 𝑘 − 1 , 𝐴𝑖 ∈ 𝑅 ≥ 0 Eq. 4

The "ratio" method calculates the coefficients at each epoch 𝑡 using the normalized value of each loss

component in the previous epoch (𝑡 − 1) relative to a reference loss component also in the previous

epoch (Eq. 5). The choice of the reference loss component 𝑘 remains arbitrary but consistent throughout

training.

 𝜆𝑖(𝑡) =
𝐿𝑖(𝑡 − 1)

𝐿𝑘(𝑡 − 1)
 𝑖 = 1, … , 𝑘 − 1 Eq. 5

9

2.4.1 Loss component gabased methods

The second set of self-adaptive methods comprises three variations within the SoftAdapt family,

developed by A. Ali Heydari et al. [16] to address the challenges associated with weighting multi-

component loss functions. These methods have found application in image reconstruction and synthetic

data generation. Inspired by softmax, the SoftAdapt methods adaptively adjust the weights in the linear

combination of individual objective functions based on their respective performances and the collective

loss function. The methodology assesses performance by approximating the rate of change of each loss

function over a brief history, discerning whether it has been increasing or decreasing. Subsequently,

these individual rates of change are compared, determining the visibility of each objective function to

the optimizer.

The SoftAdapt family consists of three variants: the original version, the weighted variant, and the

normalized variant. Each variant introduces unique refinements to the adaptive weight adjustment

process, providing a nuanced approach to addressing the dynamic nature of the loss functions during

model training. Mathematically, the three methods are described as:

Original 𝜆𝑖(𝑡) =
exp(𝛽𝑠𝑖(𝑡))

∑ exp(𝛽𝑠𝑗(𝑡))𝑘
𝑗=1

 𝑖 = 1, … , 𝑘 Eq. 6

Weighted 𝜆𝑖(𝑡) =
𝐿𝑖(𝑡) exp(𝛽𝑠𝑖(𝑡))

∑ 𝐿𝑗(𝑡) exp(𝛽𝑠𝑗(𝑡))𝑘
𝑗=1

 𝑖 = 1, … , 𝑘 Eq. 7

Normalized 𝜆𝑖(𝑡) =
exp(𝛽

𝑠𝑖(𝑡)

∑ 𝑠𝑙(𝑡)𝑘
𝑙=1

)

∑ exp(𝛽
𝑠𝑗(𝑡)

∑ 𝑠𝑙(𝑡)𝑘
𝑙=1

)𝑘
𝑗=1

 𝑖 = 1, … , 𝑘 Eq. 8

In Eqs. 6, 7, 8 the term 𝑠𝑖(𝑡) is the recent rate of change of the i th loss term (e.g. 𝑠𝑖(𝑡) = 𝐿𝑖(𝑡) −

𝐿𝑖(𝑡 − 1) or a more accurate finite difference approximation), and 𝛽 is a tunable hyper-parameter. If

𝛽 > 0 is used, SoftAdapt will assign more weight to the worst performing component of the loss

function (i.e. the component with most positive rate of change), 𝛽 < 0 favours the best performing

losses (most negative rate of change) and using 𝛽 = 0 gives equal weights (classic SoftAdapt method).

The default value of the 𝛽 hyperparameter according to the original authors is 0.1. In the normalized

version of the SoftAdapt 𝑠𝑖(𝑡) is normalized before using it.

10

2.5 Evaluation scheme

To systematically evaluate and compare the effectiveness of various self-adaptation approaches for

balancing loss coefficient terms, a structured procedure was developed. Five models were trained for

each self-adaptation approach, each initiated with different seed values to define diverse initial

conditions. Consequently, distinct populations of models were generated for each self-adaptation

approach. The evaluation of individual models was based on the metrics outlined in Section 2.3, serving

as quantitative metrics to capture diverse behavioural characteristics.

Following the individual model evaluations, a comparative analysis of model populations was

undertaken. This involved conducting a Kruskal-Wallis test on the values of the metrics of each model

population. The Kruskal-Wallis test, a non-parametric statistical method, compares the medians of two

or more independent groups. The Kruskal-Wallis test does not assume a normal distribution of data,

offering flexibility for non-normally distributed datasets. However, it does require that samples within

groups are independent and identically distributed. The null hypothesis posits that all samples originate

from the same distribution or from distributions with the same median. Rejection of the null hypothesis,

indicated by a p-value below the significance level, suggests a significant difference between at least

two groups.

Upon identifying statistically significant differences using the Kruskal-Wallis test, a post hoc test was

conducted to discern which models differed and to what extent. The post hoc test employed in this study

is Tukey’s range test, also known as Tukey’s Honest Significant Difference (HSD) test. This statistical

method identifies means that are significantly different from each other. Tukey’s range test allow to

specify which groups exhibit significant differences by comparing all possible pairs of means, proving

particularly useful when assuming equal variances across groups.

The proposed evaluation scheme is illustrated using a block diagram in Figure 1.

11

Figure 2. Block diagram describing the proposed evaluation scheme.

3. Results and Discussion

3.1 Methods performance and technical comparison

In the evaluation of self-balancing approaches, the utilization of box plots for different statistical

parameters is a convenient choice. A box plot, also referred to as a box-and-whisker plot, serves as a

graphical tool that presents a comprehensive five-number summary of a dataset, encompassing the

minimum, the first quartile (Q1), the median, the third quartile (Q3), and the maximum. The "box" in a

box plot represents the interquartile range, signifying the span between Q1 and Q3 and thus

encapsulating the middle 50% of the data. The line within the box denotes the median of the dataset.

Extending from the box, the "whiskers" illustrate the variability beyond the lower and upper quartiles,

providing a holistic depiction of the data dispersion. Any outliers, if present, are typically depicted as

individual points lying beyond the whiskers. Box plots can be drawn either vertically or horizontally and

12

prove particularly valuable for comparing one or more datasets, identifying outliers, gauging variability,

and detecting symmetry in the data.

Despite the limited population size within each approach, certain preliminary conclusions can be

inferred. As depicted in Figure 2a, a noticeable difference emerges in the required number of epochs for

model training across various self-balancing approaches. Notably, the constant weight approach

demands the fewest number of epochs, whereas the normalized version of SoftAdapt necessitates the

most. This visual representation through box plots offers a clear and intuitive means of comparing the

training characteristics of different self-balancing methods, facilitating a quick grasp of the observed

trends and variations. The integration of self-balancing methods within the model appears to exert an

influence not only on the duration but also on the consistency of training epochs time, as depicted in

Figure 2c and d. Notably, all SoftAdapt variants demand less time per epoch, and this duration is more

consistent during training compared to the constant weight and ratio approaches.

When examining the absolute difference between the mean Coarse-Grained (CG) and atomistic

simulated potential energies, no substantial differences emerge between the approaches (Figure 2e). The

constant weight and ratio approaches seem to exhibit a lower mean value compared to the SoftAdapt

methods, but the presence of outliers in both cases, coupled with a small population size, complicates

the drawing of clear conclusions. This complexity is also apparent in the case of the coefficient of

variation of the CG simulated potential energy (𝐶𝑉𝑈𝐶𝐺
), where, despite the lower mean value and

dispersion for the constant weight and ratio approaches, outliers are present in both instances and cloud

the interpretation (Figure 2f). All methods deliver a simulated temperature close to the expected value,

with similar dispersion if outliers are accounted for (Figure 2g). However, the box plots of the

coefficient of variation of the simulated temperature (𝐶𝑉𝑇) parameter indicate that the normalized

version of SoftAdapt exhibits significantly higher oscillations in the simulated temperature relative to

the other methods (Figure 2h).

In the case of the Kolmogorov-Smirnov (K-S) test results, no notable difference between the self-

balancing methods is observed. Both the statistic and p-value parameters display similar behaviour

across the various approaches (Figure 2i and j). Lastly, a significant difference between the self-

balancing methods emerges in the Mean Square Displacement (MSD) slope parameter. The constant

13

weight approach results in the highest MSD slope, while the normalized version of SoftAdapt yields the

lowest.

14

Figure 2. Box plots of the (a) number of epochs, (b) the last 30% of the MSD function, (c)

mean and (d) standard deviation of the duration of training epoch, (e) absolute percentage

difference between the CG and atomistic simulated potential energy and (f) its coefficient of

variation, (g) mean CG simulated temperature and (h) its coefficient of variation, (i) statistic

and (j) p-value of K-S test for the constant weights approach, the ratio approach, the original

variant of SoftAdapt, the normalized SoftAdapt, and the weighted SoftAdapt.

3.2 Assessment of the loss coefficient self-adaptation methods through evaluation scheme

The methodology outlined in Section 2.5 facilitates a robust, repeatable, and quantifiable comparison of

various self-balancing methods. This approach employs the Kruskal-Wallis test, a non-parametric

statistical tool, to identify statistical parameters where at least one method exhibits distinct behaviour

compared to others. Subsequently, Tukey’s test, a post-hoc analysis, is utilized to pinpoint differing

15

methods and quantify the extent of these differences. Adopting a significance level of 0.1, the null

hypothesis of the Kruskal-Wallis test is dismissed for several parameters, including the total number of

epochs, mean iteration time, standard deviation of iteration time, and MSD slope parameters. This

suggests that, for these specific parameters, the mean value of at least one method is statistically

significantly different from the others. The results from the Kruskal-Wallis test are shown in Table 1.

Table 1. Results of the Kruskal-Wallis test for the different statistical parameters.

 𝑁𝑒𝑝 𝑡𝑒𝑝 𝜎𝑒𝑝 Δ𝑈 𝐶𝑉𝑈𝐶𝐺
 𝑇̅ 𝐶𝑉𝑇 𝑑𝐾𝑆 𝑝𝐾𝑆 𝑠𝑀𝑆𝐷

statistic 17.78 17.79 19.61 4.45 4.31 2.80 6.57 2.88 2.88 8.37

p-value 0.0014 0.0014 0.0006 0.35 0.35 0.59 0.16 0.58 0.58 0.079

Given the limited number of experiments for each approach, a more lenient p-value of 0.35 is employed

for Tukey’s test. This extends the scope of Tukey’s test to parameters such as the absolute difference

between mean CG and atomistic simulated potential energies, and the coefficient of variation for CG

simulated potential energy and temperature. The results of the pairwise Tukey’s tests for these

parameters are compiled in Table 2, with the "rejected" column indicating null hypothesis rejection

using a significance level of 0.35.

Leveraging the outcomes from Tukey’s test, a ranking system was created for the different self-

balancing approaches. A score was assigned to each method for each of the 10 training- or simulation-

based metrics (same score if the performance of the methods was statistically equivalent, different score

if they were statistically different). By summing all the assigned scores, a ranking is obtained. In terms

of the total number of epochs parameter, the constant weight approach closely aligns with the ratio

approach and the original variance of SoftAdapt, requiring fewer epochs compared to the normalized

and weighted versions of SoftAdapt. The latter two also appear to demand fewer epochs. For the mean

iteration time parameter, no significant difference is evident among the SoftAdapt methods or between

the constant weight and ratio methods. Moreover, the SoftAdapt group requires less time per epoch than

the constant weight and ratio group. The same trend is observed concerning the standard deviation of the

time per epoch.

16

17

Table 2. Results of the pairwise Tukey’s test for the parameters that present p-value equal or below 0.35 in the Kruskal-Wallis test.

 𝑁𝑒𝑝 𝑡𝑒𝑝 𝜎𝑒𝑝 Δ𝑈 𝐶𝑉𝑇 𝑠𝑀𝑆𝐷

Group A Group B
Mean

diff.
p-adj Reject?

Mean

diff.
p-adj Reject?

Mean

diff.
p-adj Reject?

Mean

diff.
p-adj Reject?

Mean

diff.
p-adj Reject?

Mean

diff.
p-adj Reject?

constant ratio 77.0 0.987 False -0.250 0.955 False 0.014 0.999 False 16.237 0.873 False 16.237 0.873 False -0.018 0.777 False

constant Normalized SA 797.0 0.001 True -12.972 0.0 True -0.294 0.006 True 4.381 0.968 False 50.3830 0.052 True -0.040 0.127 True

constant Original SA 207.2 0.682 False -12.523 0.0 True -0.382 0.0 True 1.627 0.999 False -0.638 1.0 False -0.019 0.770 False

constant Weighted SA 401.0 0.118 True -12.943 0.0 True -0.221 0.010 True -0.414 1.0 False 15.701 0.886 False -0.011 0.951 False

ratio Normalized SA 720.0 0.002 True -12.722 0.0 True -0.308 0.0 True -2.860 0.993 False 34.594 0.290 True -0.022 0.657 False

ratio Original SA 130.2 0.918 False -12.273 0.0 True -0.395 0.0 True -5.613 0.924 False -16.875 0.857 False 0.007 0.992 False

ratio Weighted SA 324.0 0.273 True -12.693 0.0 True -0.235 0.006 True -7.613 0.802 False -0.536 1.0 False 0.007 0.992 False

Normalized SA Original SA -589.8 0.01 True 0.449 0.725 False -0.086 0.593 False -2.753 0.994 False -51.468 0.048 True 0.022 0.665 False

Normalized SA Weighted SA -396.0 0.125 True 0.029 1.0 False 0.074 0.720 False -4.794 0.956 False -35.130 0.276 True 0.029 0.400 False

Original SA Weighted SA 193.8 0.732 False -0.420 0.770 False 0.16 0.086 True -2.041 0.998 False 16.339 0.871 False 0.007 0.991 False

Table 3. Ranking of each self-balancing method based on individual metrics.

Method 𝑁𝑒𝑝 𝑡𝑒𝑝 𝜎𝑒𝑝 Δ𝑈 𝐶𝑉𝑈𝐶𝐺
 𝑇̅ 𝐶𝑉𝑇 𝑑𝐾𝑆 𝑝𝐾𝑆 𝑠𝑀𝑆𝐷 Total score

Constant 1 1 4 2 2 1 1 3 1 3 19

Ratio 2 1 3 5 3 1 2 2 1 1 21

Original SA 3 1 3 4 3 1 2 2 1 1 21

Weighted SA 4 1 2 1 1 1 2 2 1 2 17

Normalized SA 5 1 1 3 2 1 3 1 1 4 22

18

For the absolute difference between CG and atomistic simulated potential energy, all methods can be

deemed equivalent. Regarding the coefficient of variance of the simulated temperature parameter, all

methods, except the normalized SoftAdapt, are analogous, demonstrating a lower 𝐶𝑉𝑇 compared to the

normalized SoftAdapt. Lastly, for the MSD slope parameters, all methods, except the constant weight

method, can be considered equal. All these methods also have lower mean values compared to the

constant weight method.

Considering these comparisons, the self-balancing methods can be ranked as follows: Weighted

SoftAdapt > Constant Weights > Ratio/Original SoftAdapt > Normalized SoftAdapt

This ranking is based on the performance of each method across various parameters presented in Table

3. It is important to take though into account that all individual metrics were considered of equal

significance for the extraction of the above ranking. Further refinement can be implemented by defining

appropriate weightings depending on each metric importance towards an even more robust

quantification of performance of each method. These findings highlight that, even without any

optimization of the weighted version of SoftAdapt’s hyperparameters, the SoftAdapt method is a strong

candidate for further investigation. Its ability to deliver good performance without specific

hyperparameter optimization suggests there might great untapped potential in the utilization of this

methods.

4. Summary and Conclusions

This investigation set out to devise a robust and reproducible framework capable of automating the

process of pre-screening ML models, quantifying the performance of more promising candidates, and

compare different training strategies. This objective is tackled via the creation of an evaluation and

ranking protocol that considers the behaviour of a model using metrics grounded on physical insights,

and subsequently gauges the performance of a population of models employing statistical tests. By

establishing a hierarchy between the evaluation metrics, it presents a powerful tool that can sieve out

suboptimal models earlier in the process, hence, saving valuable computational resources and time.

Concurrently, it quantifies the performance of promising models with a statistical rigour that adds a

layer of reliability and objectivity to the selection process.

19

The developed methodology was implemented to evaluate the most effective among multiple self-

balancing methods for a MOO problem. This problem was contextualized within the domain of self-

adapting the weights associated with the two components of the loss function for a GCNN model. The

underlying model used for this problem was rooted in the SchNet architecture, which was tasked here

with acting as a force field for CG molecular dynamics simulations. The self-balancing methods

employed in the study are the linear scalarization constant weight method, the ratio method, and three

variations of SoftAdapt: original, weighted, and normalized. For the rigorous evaluation of the models

under consideration, a comprehensive set of phtsics-grounded performance metrics was established.

The findings derived from the Kruskal-Wallis test reveal that the various self-balancing approaches

diverge specifically in relation to five factors. These include the cumulative number of training epochs,

the coefficient of variance of the simulated temperature, the average duration of each training epoch, the

standard deviation of the duration of each epoch, as well as the slope of the MSD. Subsequent to the

Kruskal-Wallis test, a pairwise Tukey’s test was implemented to conduct a comparative analysis

between the distinct approaches. Through this statistical method, it was possible to rank these different

methods based on their overall performance. In accordance with the results from Tukey’s test, the

Weighted SoftAdapt method proved to be the most efficient approach. Following in the ranking was the

Constant Weight approach. The Ratio Approach was ranked third, together with the Original SoftAdapt

whereas the Normalized SoftAdapt approach ranked at the bottom. In light of these findings, it appears

that the SoftAdapt method is the best candidate for further investigation.

Following the aforementioned results, several areas have been highlighted for further exploration.

Firstly, the validation of these findings through an increased number of experiments would be of

interest, to increase the robustness of the statistical analyses and strengthen the reliability of the

conclusions drawn. Secondly, refining the evaluation parameters, by assigning varying levels of

significance to each metric could reflect the real-world relevance or importance of each parameter more

accurately and potentially improve the quality of conclusions drawn from the method, providing a more

precise measure of the models’ effectiveness. Lastly, an exploration into other self-adaptation

approaches could be undertaken. Given the performance of the SoftAdapt methods in our study, further

investigation into alternative approaches may reveal additional or even more effective strategies for

optimizing the balance of the loss function.

20

Acknowledgments

E.R. gratefully acknowledges funding from the European Union’s Horizon 2020 research and

innovation programme under the Marie Sklodowska-Curie grant agreement No 101030668.

This work was supported by computational time granted from the National Infrastructures for Research

and Technology S.A. (GRNET S.A.) in the National HPC facility - ARIS - under the project

MULTIPOLS II (ID: 013019).

References

[1] Z. Xiang, W. Peng, X. Liu, W. Yao, Self-adaptive loss balanced Physics-informed neural networks, Neurocomputing. 496

(2022) 11–34. doi:10.1016/j.neucom.2022.05.015.

[2] D.. Jones, S. Mirrazavi, M. Tamiz, Multi-objective meta-heuristics: An overview of the current state-of-the-art, Eur. J.

Oper. Res. 137 (2002) 1–9. doi:10.1016/S0377-2217(01)00123-0.

[3] O. Sener, V. Koltun, Multi-task learning as multi-objective optimization, Adv. Neural Inf. Process. Syst. 2018-Decem

(2018) 527–538. http://arxiv.org/abs/1810.04650.

[4] M. Ruchte, J. Grabocka, Scalable Pareto Front Approximation for Deep Multi-Objective Learning, Proc. - IEEE Int.

Conf. Data Mining, ICDM. 2021-Decem (2021) 1306–1311. doi:10.1109/ICDM51629.2021.00162.

[5] K. Hornik, M. Stinchcombe, H. White, Universal approximation of an unknown mapping and its derivatives using

multilayer feedforward networks, Neural Networks. 3 (1990) 551–560. doi:10.1016/0893-6080(90)90005-6.

[6] Y. Bengio, Practical Recommendations for Gradient-Based Training of Deep Architectures, in: Lect. Notes Comput. Sci.

(Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2012: pp. 437–478. doi:10.1007/978-3-642-35289-

8_26.

[7] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13 (2012) 281–305.

[8] J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning algorithms, in: Adv. Neural

Inf. Process. Syst., 2012: pp. 2951–2959. https://arxiv.org/abs/1206.2944v2

[9] S. Chmiela, H.E. Sauceda, K.-R. Müller, A. Tkatchenko, Towards exact molecular dynamics simulations with machine-

learned force fields, Nat. Commun. 9 (2018) 3887. doi:10.1038/s41467-018-06169-2.

21

[10] G. Fitzgerald, J. DeJoannis, M. Meunier, Multiscale modeling of nanomaterials: Recent developments and future

prospects, in: Model. Charact. Prod. Nanomater. Electron. Photonics Energy Appl., Woodhead Publishing, 2015: pp. 3–53.

doi:10.1016/B978-1-78242-228-0.00001-6.

[11] E. Ricci, G. Giannakopoulos, V. Karkaletsis, D.N. Theodorou, N. Vergadou, Developing Machine-Learned Potentials

for Coarse-Grained Molecular Simulations: Challenges and Pitfalls, in: Proc. 12th Hell. Conf. Artif. Intell., ACM, New York,

NY, USA, 2022: pp. 1–6. doi:10.1145/3549737.3549793.

[12] E. Ricci, N. Vergadou, G.G. Vogiatzis, M.G. De Angelis, D.N. Theodorou, Molecular Simulations and Mechanistic

Analysis of the Effect of CO2 Sorption on Thermodynamics, Structure, and Local Dynamics of Molten Atactic Polystyrene,

Macromolecules. 53 (2020) 3669–3689. doi:10.1021/acs.macromol.0c00323.

[13] K.T. Schütt, P.J. Kindermans, H.E. Sauceda, S. Chmiela, A. Tkatchenko, K.R. Müller, SchNet: A continuous-filter

convolutional neural network for modeling quantum interactions, Adv. Neural Inf. Process. Syst. 2017-Decem (2017) 992–

1002.

[14] K.T. Schütt, H.E. Sauceda, P.J. Kindermans, A. Tkatchenko, K.R. Müller, SchNet - A deep learning architecture for

molecules and materials, J. Chem. Phys. 148 (2018). doi:10.1063/1.5019779.

[15] F. Ercolessi, J.B. Adams, Interatomic Potentials from First-Principles Calculations: The Force-Matching Method,

Europhys. Lett. 26 (1994) 583–588. doi:10.1209/0295-5075/26/8/005.

[16] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1–19.

doi:10.1006/jcph.1995.1039.

[17] A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, J. Friis, M.N. Groves, B.

Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P. Bjerre Jensen, J. Kermode, J.R. Kitchin, E. Leonhard Kolsbjerg, J.

Kubal, K. Kaasbjerg, S. Lysgaard, J. Bergmann Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J.

Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K.W. Jacobsen, The atomic

simulation environment—a Python library for working with atoms, J. Phys. Condens. Matter. 29 (2017) 273002.

doi:10.1088/1361-648X/aa680e.

