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Abstract

Blockchain interoperability often requires a mutually trusted layer (in the case of roll-ups or
side-chains), or a third party (in the case of bridges). Heterogeneous Consensus protocols
introduced the possibility for more direct, decentralized interoperability: chains can commit
transactions together, given “enough” overlap in their trust assumptions. Like a bridge, such
protocols ensure atomicity under specific trust conditions. Unlike a bridge, chains never

relinquish control over the safety or liveness of their data.

However, consensus is only part of the story: efficient mempool architectures like Narwhal can
dramatically improve scalability and increase chain throughput. However, these mempools also
rely on the chain’s underlying trust assumptions. We generalize Narwhal for a Heterogeneous
Trust model, and explain how to use it with Heterogeneous Paxos to commit cross-chain

atomic transactions.
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1. Introduction

In essence, blockchains maintain replicated state machines backed by trust in
validators or miners. Generally, the larger and more trustworthy the validator
set is, the more expensive running a chain becomes. If applications must share a
chain in order to interact, we end up trying to push all applications onto a chain
trustworthy enough for everyone. Attempts at such a global chain (e.g. Ethereum)
are very expensive, and still do not meet every application’s trust demands. For
instance, JP Morgan does not trust Ethereum with its accounts [LSSS520]. Ideally,
applications should pick a chain with a trust model that fits their needs, and be
able to connect to applications on other chains with suitable trust models.

We address the question of how to take base chains’ heterogeneous trust as-
sumptions into account in a common ecosystem. To represent trust assumptions,
we use Heterogeneous Paxos’ learner graphs [SWvRM20]. Heterogeneous Paxos
facilitates agreement between chains with overlapping (but not identical) trust
models, which are surprisingly common among proof-of-stake chains [pr(2)3].
We complement this heterogeneous consensus with a bac-based mempool based
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on Narwhal. Narwhal facilitates much more scalable chains, substantially im-
proving throughput [DKSS22]. Our adaptation preserves safety and liveness
guarantees of the base chains, and adds a cross-chain atomicity guarantee. In
some ways, this resembles a bridge, but each “bridged” chain can evolve inde-
pendently, and atomicity guarantees arise naturally from mutual trust.

Our heterogeneous version of the Narwhal mempool, combined with het-
erogeneous Paxos [SWvRM20], forms a heterogeneous DAG-based consensus
protocol that facilitates cross-chain interoperability. As part of heterogeneous
Narwhal, we clearly separate out certificates of availability and integrity, inspired
by Charlotte [SWB*23]. We apply the idea with a two base chains example, using
a Heterogeneous mempool DAG without a trusted third party or bridge.

Atomic cross-chain transactions typically require multiple phases [Her18],
or combined proposers for multiple chains [RCG23]. Either solution requires
strong liveness or synchrony assumptions. In short, Heterogeneous Narwhal
preserves full BFT guarantees, allows base chains to evolve at different speeds,
and facilitates cross-chain transactions with only partial synchrony.

The remainder of this paper is structured as follows. We first recall essential
concepts from distributed systems and Narwhal in particular. Then, we revisit the
learner-graph as a data structure that captures trust-assumptions of base chains
and we reiterate the changes to consensus, the guarantees that Heterogeneous
Paxos provides for consensus. As preparation for the main developments, we
describe availability and integrity certificates in the context of learner-graphs
in section 4. We then present the main ideas of a heterogeneous mempool paG
and describe the protocol that the validators are running, including how we
interface with Heterogeneous Paxos. We describe how together, these can be
used to commit atomic cross-chain transactions with specific guarantees.

2. Preliminaries and background

This section summarizes basic concepts, notation, and conventions that we
use throughout the paper. We shall use the term algorithm for the restricted
class of computations that neither involve network communication nor require
(geo-)distribution of processors. Otherwise, we prefer protocol for descriptions
including solutions to the consensus problem.

2.1. Distributed systems protocols

Protocol participants are called processes, in general; a possible synonym of
processes is server [MR98]. In the context of specific protocols, there might be
sub-sets of processes that have a specific role, e.g., acceptor is a role in Paxos. In
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the context of the Narwhal mempool protocol [DKSS22], a validator is a group of
processes that one may want to think of as a single trust domain. (We sometimes
refer to a validator as if it is a single process.)

The set of subsets of a set M is denoted by ¢(M), and a partial map f: M — N
between sets M and N is a function f: df (f) — N from the domain of definition
df (f) € p(M). For the purposes of the present paper, for each protocol, we
assume a fixed set of participating processes P = {p1, ..., pn}.

2.2. Learners & cross-chain transactions

We concern ourselves with blockchains featuring finality in a partially syn-
chronous network: each has some sets of processes (quorums of validators) that
a user can hear from, and consider a decision final, or decided.

Each chain maintains a replicated state machine [AGMS18, Lam78, Sch90] by
totally ordering user-submitted transactions, and executing them. For historical
reasons, we refer to each base chain as a learner: it wants to learn the decided
total order of transactions. When chains have exactly the same trust model (i.e.,
the same validators decide transaction order), they are identical learners, and can
use a shared sequencer [MS23], but this naturally does not work for independent
chains.

Agreeing on transaction order can be very useful. In particular, it can allow
cross-chain transactions. We can represent a cross-chain transaction as set
of transactions, one for each constituent chain. For such a transaction to be
atomic, we need some guarantee that either all the constituent transactions will
be ordered into their respective chains, or none of them will. For more detailed
transactions (e.g., ones where the precise state changed on one chain depends on
the “current” state of another chain), each chain must learn the order decided
on the others: they require full agreement. Our cross-chain agreement solution
builds on Heterogeneous Paxos’ learner graphs: expressions of conditions under
which learners (chains) must agree, and must be able to make progress. In
general, the more similar learners’ trust models are, the stronger their agreement
guarantees (at the extremes, they are either fully independent or exactly a shared
sequencer).

Recall that the consensus problem for processes P requires deciding on a
common value. We recall the definition of a solution to the consensus problem
in terms of validity, agreement, and termination.

Definition 1 (Consensus requirements). For a fixed set of processes P, consensus
requires:

termination: every correct process eventually decides on a value,
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e agreement: no two correct processes decide different values,
e validity: processes only decide a value that was proposed.

We use the following terminology concerning the behavior of protocol partici-
pants, e.g., in the context of consensus.

Definition 2 (Liveness, safety, and correctness). A process that participates in a
protocol is

safe if every message it sends conforms to the protocol,

live if it will always send messages according to the protocol eventually (even if it
also sends other messages that violate the protocol), and

correct if it is safe and live.

Byzantine processes may be neither live nor safe; however, we consider the
possibility of live processes that exhibit Byzantine behavior: a live and Byzantine
process is one whose behavior can be corrected by suppressing some of the
messages that it is sending, i.e., it has a correct sub-behavior.

Byzantine fault tolerance is often stated in terms of the assumption that less
than % of the processes exhibit Byzantine behavior, i.e., more than % are correct.
Quorum systems generalize this approach:

Definition 3 (Quorum system, quorum [MR98]). Let P be a fixed, arbitrary finite
set. A quorum system Q C @(P) is a non-empty set of subsets of P, any pair of
which intersect, i.e,Vq,q' € Q .qNq # @. Each element of a quorum system is a
quorum.

Quorum systems are usually ranged over by the letter g, possibly with decora-
tions and subscripts.

In the context of a consensus protocol, liveness alone cannot guarantee agree-
ment. We need a minimum number of safe processes. We come back to this topic
when discussing the learner-graph in the context of heterogeneous consensus in
section 3.

2.3. Narwhal Mempool DAG

The Narwhal mempool protocol [DKSS22], conceptually, builds a global paG of
block headers (illustrated in Fig. 1). This is the maximal DAG such that each local
view of any process is a sub-graph, which one may think of “intersection” of all
views. We are mainly concerned with the following properties:

« each validator has proposed at most one block at each height;
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Figure 1. Mempool DAG of four validators where any three validators form a quorum. Edges
correspond to certificates of availability and integrity.

« each block header after genesis references a quorum (i.e., at least 2f + 1)

of blocks headers of the previous height.

The edges in Narwhal mempool DAG are induced by certificates of availability and
integrity for the referenced block headers. These are special case of availability
and integrity attestations as introduced by Charlotte [SWB*23]. In the specific
context of the mempool DAG, a certificate of integrity attests that a certain block
header is the block header that some validator has proposed at some height (i.e.,
no other block header has a certificate of integrity for the same validator and
height). Moreover, as block headers only contain hash references to transaction
data, Narwhal combines certificates of integrity with certificates of availability,
which ensure that all block data (transactions in the mempool DAG) remain
available. Certificates of integrity require signatures from a quorum of validators
while certificates of availability only require certificates from a weak quorum, i.e.,
a set of validators that intersects with every quorum, also known as a blocking
set. We come back to this topic for the heterogeneous setting after reviewing
learner graphs as representations of heterogeneous trust assumptions.

While the Narwhal-DAG is being built, validators periodically run consensus,
selecting a sequence of anchor blocks in the pac. All blocks (and transactions
therein) can then be totally ordered as a function of this anchor block sequence
and the mempool pAG.

The main points are three: an mempool DAG is build independently of consen-
sus, consensus is used to choose anchor blocks, and ordering is a function of the
sequence of chosen anchor blocks.
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3. Connecting quorum systems

We provide a short introduction for reasoning about distributed systems with
several interdependent quorum systems. One may want to think of these as
pre-existing quorum system of some proof-of-stake blockchain and moreover
associate each quorum system with a learner, an archetypal member of one
specific community.’

In more detail, this section explains how we can consolidate learner-indexed
families of quorum systems into a single structure, the learner graph (introduced
in [SWvRM20]).> We also review if and how the notions of consensus agreement,
termination, and validity need to be adapted. Moreover, we describe why learner
graphs can be used without modifications to address questions of availability and
integrity of transaction data in a heterogeneous version of the Narwhal mempool
DAG [DKSS22]. However, we start out with some general remarks about explicit
representations of (assumptions about) learner beliefs, very much in the spirit of
(dynamic) epistemic logic [BR16].

3.1. Generalities about belief systems

In essence, a belief representation is (an encoding of) a predicate that classifies
any given behavior of a validator of interest as possible or forbidden—according
to the belief system of one or several interdependent learners.

In this paper, we only consider static belief change, i.e.,

the objects of agent belief are fixed external truths that do not change,
though the agent’s beliefs about these truths may change [BR16].

As an example for belief change, learners may lose trust in the correctness of
validators in view of evidence that they have violated the protocol (e.g., double
spending). The case of dynamic belief change, which amounts to changeable
truths, remains future work.

We consider a finite set of learners L.

Note 1: We do not address the question of how one would gather the required
information from learners and what the incentives are for reporting them truth-
fully. However, one way to understand the learner graph approach is to imagine
that each learner (representing its blockchain community) is committed to a
publicly known set of beliefs.

!Technically, learner is a specific role in the Paxos protocol, viz. a process whose goal it is to learn about the value that the deciding

consensus participants, called acceptors in Paxos, have agreed upon.

2We have opted to give an alternative, more succinct presentation of the ideas behind learner graphs.
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3.2. Beliefs about liveness

For the case of beliefs or opinions of learners about liveness of (sets of) validators,
we use learner-indexed quorum systems (L1Qs). Each of these quorum systems
consists of sets of validators and the respective learner is assumed to believe that
it has named at least one set of validators that consists of live validators only.

Definition 4 (Learner-indexed quorum system). A learner-indexed quorum
system (L1Qs) is a function

Q :L— p(p(V))

from learners to sets of learner-specific quorums: the learner-specific quorums Q,
of any learner a € L are required to be a quorum system.

For a learner-indexed quorum system Q and a learner a, we denote the learner’s
set of quorums by Q,, whose elements are the learner-specific quorums of a. We use
qas 4, etc. to range over learner-specific quorums of some learner a.

Example 5 (Proof of stake quorum systems). One important example are val-
idator sets of cosmos zones. Each zone has a different token for staking. The
learner-specific quorums for each zone are the sets of validators backed by more
than % of stake. This means that the learner believes that there is at least one set
of live validators backed by more than % of stake.

3.3. Shared beliefs about safety

To consolidate a L1Qs to a learner graph, we must express shared beliefs of learners
about safety: if two learners want to agree (decide only on the same value) given
that a specific set of validators are all safe, these validators are a safe set shared
by those learners.

Definition 6 (Safe Set System). In a safe set system for a L1Qs Q, each (unordered)
pair of learners (including pairs of a learner and itself), map to a set of sets of
validators, called their safe sets. We write:

a-s—b

to mean that s (a set of validators) is a safe set for learners a and b (which can be
the same).

In general, if all the validators in one of their safe sets are indeed safe, then a
pair of learners must agree (they only decide on the same value as each other).

A Safe Set System defines the edges of a learner graph, our full representation
of heterogeneous trust:
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Definition 7 (Learner Graph). A learner graph is an undirected graph, with
vertices labeled with learner-specific quorum systems, and edges labeled with sets of
safe sets. Together, the vertices form a L1Qs, and the edge labels form a corresponding
Safe Set System.

We assume that learner-specific quorums and safe sets are upward-closed, i.e.,
qa € ¢, € Pandq, € Q, imply ¢/, € Q, for learner-specific quorums and a —s— b
and s € § C P imply a —5— b for shared safe sets. This assumption is consistent
with intuition, does not impose new restrictions, and allows for an easier way to
explain what it means for a learner graph to be condensed [SWvRM20, Lemma 8].
The agreement requirement of our safe set system carries a transitive implication:
if a must agree with b, and b must agree with c, then a must agree with c. We
call learner graphs that respect this requirement condensed.

Definition 8 (Condensed Learner Graph). A learner graph is condensed iff
a-s—bAb-s—c=a-s—c (1)

holds for all learners a,b,c € L and sets s € p(V).
Heterogeneous Paxos can only solve consensus for valid learner graphs, where
learners’ quorums intersect on honest nodes whenever they must agree:

Definition 9 (Valid Learner Graph). A learner graph is valid iff
a-s—b=q,NqgpNs+ (2)

holds for all learners a,b € L, setss € 9(V), and every pair of learner-specific
quorums q, € Qq, qp € Qp of learner a and b, respectively.

Learner graph validity generalizes the quorum overlap requirement of Byzan-
tine quorum systems. Intuitively, whether or not two learners must agree depends
on what failures actually happen at runtime. We call this property entanglement:

Definition 10 (Entangled learners). Two learners are entangled if one of their
safe sets is composed entirely of safe acceptors.

3.4. Heterogenizing Consensus
We summarize the heterogeneous consensus problem [SWvRM20]. The rough
idea is that the properties of validity, agreement, and termination become relative
to whether learner beliefs are true.

Definition 11 (Heterogeneous termination [SWvRM20] ). A learner terminates
if it eventually decides. A heterogeneous consensus protocol satisfies termination if
every learner a € L terminates if it has a learner-specific quorum q, € Q, composed
entirely of correct validators.
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As aresult, a heterogeneous consensus protocol has to deal with the possibility
that some learners will fail to finish an ongoing execution. This is a crucial
property for cross-chain transactions: no involved chain should be in danger if
the other chains get stuck.

Agreement hinges on learners being entangled:

Definition 12 ([Heterogeneous agreement [SWvRM20]).
Within an execution, a pair of learners agrees if all decisions for either learner have
the same value.

A heterogeneous consensus protocol satisfies agreement if, for all possible execu-
tions, all entangled pairs of learners agree.

Finally, validity remains unchanged.

Definition 13 (Heterogeneous Validity [SWVRM20]). A consensus execution is
valid if all decided values were proposed in that execution. A consensus protocol is
valid if all possible executions are valid.

4. On availability and integrity

We define certificates of availability (ca), e.g., for data that is referenced by
hashes, and certificates of integrity (c1), which specify a unique datum with
certain properties. We now make this precise relative to a learner graph.

We assume a valid and condensed learner graph. Data (identified by hash) can
be made available to all learners if sufficiently many validators store a copy.

Definition 14 (Global weak quorum). A global weak quorum is a set of validators
X that intersects each learner-specific quorum:

VaelLVq, € Q,.XNqy # @

The archetypal example for global weak quorums are sets of validators holding
more than % of the stake of every base chain. For a valid learner graph, every
learner-specific quorum is a global weak quorum®. Global weak quorums are
useful for certificates of availability.

Definition 15 (Certificate of availability (ca)). For a fixed hash function #, a
certificate of availability for some data d is a set of cryptographic signatures
over #(d) such that the signers form a global weak quorum. Each signature is
an availability commitment: a correct signer will keep d available in their local
storage.

3Ass.uming all edges have some safe set, i.e., all learners agree when all validators are safe
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A process issues an availability commitment when it stores data, and can make
it available on request. Since data is referenced by hash, they cannot lie about
content, only fail to be available. A ca proves that, for any learner, so long as
one of their quorums is live, they can retrieve the data.

For integrity, we are mainly interested in the uniqueness. In Narwhal, each
validator may at most produce one block at a certain “height”. The idea however
generalizes to all settings of where something is required to be the unique x with
a certain property ¢(x).

What counts as proof of integrity may vary for learners. However, for a
specific learner, signatures from a learner-specific quorum of validators suffice.

Definition 16 (Certificate of integrity (c1)). Given a fixed predicate ¢|[_], appli-
cable to blobs of data, a certificate of integrity is a set of signatures over the pair
of the data and the predicate (x, ¢) such that the signers form a learner-specific
quorum. Each signature is called an integrity vote.

A safe process does not sign integrity votes for both (x, ¢) and (y, ¢’) if y
satisfies ¢: the whole point is to guarantee uniqueness. Thus, for the original
Narwhal, the predicate in question is “x is the n" block of validator o”.

Note that, for both integrity and availability, certificates can use aggregated or
threshold signatures [BNN07] to save space while still proving the same guar-
antees. Now, all preparations are in place to describe the global heterogeneous
mempool DAG.

5. Heterogeneous Narwhal DAG

We now present the main novelty of the paper: a heterogeneous version of
the Narwhal mempool paG [DKSS22]. Recall that the core properties of the
Narwhal are availability of transactions referenced via hashes, uniqueness of
each validator’s vertex at a certain height, and the referencing of a quorum of
vertices from a previous height—ensuring that sufficiently many vertices are
created by correct validators—(see subsection 2.3 for more details).*

We describe the graph structure in this section (defining vertices, worker
hashes, signed quorums, etc.) and describe the actual protocol subsequently,
separating out the data structure of interest from the operational context. Con-
cerning the mempool DAG, we put the focus on the global paG. In view of the
complexity of the subject, we kick off with a short synopsis of the main ideas.

4See Charlotte [SWB*23] for a general approach integrity and availability in the context of blockchains.
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5.1. Superimposing Narwhal DAGs

As a running example, let us consider two base chains running Narwhal with
proof-of-stake. Instead of building a separate Narwhal pAG for each base chain,
the validators will build a single shared Narwhal paG that comprises the informa-
tion of both. The motivation is that a shared mempool DAG facilitates cross-chain
transactions.

A first idea would be a direct “superposition” of DAGs, illustrated in Figure 3:
the colored circles next to the validator icons (=) represent the stake they hold,
namely blue, red, or both. Now, we could simply restrict anchor blocks to
those that satisfy the conditions for both base chains. This would lead to safe
implementation of a shared Narwhal mempool paG. Unfortunately, the sketched
superposition sacrifices liveness: roughly, superimposing Narwhal paGs leads to
a “less live” DAG, relative to each of the base chains. In terms of the learner graph,
the “superposition” could only produce anchor candidates if a “superquorum”
including both a red and a blue quorum were live. Thus, the learners of the two
base chains would have to have full trust in each other’s chains. Instead, we aim
for cooperation with only the minimum number of strings attached.

Figure 2. Two “global” Narwhal pAG of five validators with stakes

Before we delve into the details of how we can do better—in general and for
this particular example—let us quickly give a picture of how the heterogeneous
mempool DAG will look. Figure 4 illustrates a heterogeneous mempool DAG.
The first obvious point is that some mempool vertices do not link to anything
other than the previous vertex from the same validator. This allows validators to
produce vertices as long as they have certificates for availability for transaction
data. However, the key feature is that validators can have vertices with a quorum
of references for each base chain, independently of the other base chain. The top
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Figure 3. Naive superposition of two Narwhal pags

left area thus amounts to a vertex with a new height for the red chain, but not a
new height for blue chain.

5.2. The mempool DAG

The original Narwhal (resp. Bullshark) has a height (or round) number for each
new block (resp. vertex). This generalizes naturally to a number for each learner.

Definition 17 (Height map). A height map is a partial function h: L — N that
maps each learner x € L on which it is to defined to h(x), the learner-specific

height.

Genesis vertices have a height map that maps all learners to 0. In our running
example, we have two learners, namely red and blue. In Figure 4, the top left
vertex will have a height map [red — 2, blue — 1], or [2, 1] (for short). Genesis
vertices have [0, 0].

In the original Narwhal, in order to create a vertex, a validator must gather
references for a quorum of vertices at the previous height, and include them in the
new vertex at the next height. We separate the notion of creating a vertex from
incrementing height. In particular, a vertex can increment height for any number
of learners (including 0), by gathering references for a quorum of vertices.

Definition 18 (Signed quorum®). A signed quorum at height n € N for a learner
I € L is a c1 and a cA for each of a set of vertices, such that the a-specific height of
each vertex is n, and the creators of the vertices form an a-quorum.

Using signed quorums, we can define our vertices as a generalized version of
original Narwhal’s:

Definition 19 (Vertex). A vertex, then, is a data structure that includes:
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Figure 4. Heterogeneous mempool DAG where certificates of integrity are rendered as ¢8 next
the respective vertex, together with the learner-specific height

i: Public Key, the creator ID (public key)

n: N, sequence number

c: CA referencing the vertex with the same creator and sequence numbern — 1
S: a (possibly empty) set of signed quorums

H: a non-empty set of worker hashes

Note that genesis vertices have sequence number 0, and safe validators do not
issue multiple vertices with the same sequence number. Thus, safe validators
issue a chain of vertices.

Here, worker hashes are much the same as they are in original Narwhal: they
uniquely identify a batch of data (transactions) distributed in parallel by this
validator (and its worker processes).

An availability commitment for a vertex must attest that not only is the signer
storing (and willing to supply) the vertex itself, but all the data represented in
all of the worker hashes. As in original Narwhal, the signer can use multiple
worker processes to store and supply these in parallel.

Definition 20 (Vertex Parentage and Ancestry). A vertex’s parentage is a set
containing the previous vertex from the same validator (referenced by c), and any
vertices referenced in signed quorums in the vertex. A vertex’s ancestry is a set
consisting of itself, its parentage, and all of their ancestry.
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Note that a vertex includes cas for each of its parentage: a validator can always
fetch and read all of the ancestry of a vertex.

Definition 21 (Vertex Height). The height of a vertex is the height map that maps
each learner to 1+(the maximum height of any l-signed-quorum in any vertex in
the ancestry), or to 0, if there is no such signed quorum.

A vertex must not include a signed quorum if removing that signed quorum
wouldn’t change the vertex’s height (we don’t want redundant signed quorums).
Note that it is easy to calculate a vertex’s height given only its parentage and
their heights. Just as in original Narwhal, heights increment when a vertex’s
parentage includes a quorum of vertices from the previous height. One might
imagine “projecting” a heterogeneous Narwhal DAG into a traditional Narwhal
DAG for a specific learner I by combining all vertices from each validator that
have the same [-specific height.

Next we proceed to the actual protocol, and its connection to Heterogeneous
Paxos.

6. HNarwhal protocol

The Heterogeneous Narwhal protocol (HNarwhal) assumes an actor model, in
which processes send messages as a reaction to events such as other messages
arriving, or local conditions becoming true (including local timers).® Like original

validator

validator

Figure 5. Communication patterns of validators

Narwhal, each validator has one primary and several workers. Each worker has
a unique corresponding mirror worker on every validator. In Figure 5, we have
primaries p and q, each of which has seven workers.

We first describe the worker protocol, which in principle could run indepen-
dently. Then, we describe the primary protocol, which relies on the worker

6This roughly amounts to the pattern of event-driven state machines in Erlang.
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protocol. Finally, we describe how we interact with Heterogeneous Paxos for
choosing anchor vertices.

Workers keep transaction data available’ such that primaries can “build” the
mempool DAG using hash references instead of full transaction data. Heteroge-
neous Paxos, in turn, chooses a sequence of anchor vertices in order to establish
a total order of transactions (refining the partial order from the pAG), very much
like in the original Narwhal protocol.

6.1. The worker protocol

Users submit transactions (to be ordered) directly to workers. Workers also
handle most of the bandwidth between validators. In particular, primaries do not
transmit transaction data, because the workers keep it available so that primaries
can reference transactions via hash.

The Heterogeneous Narwhal worker protocol is similar to the original Narwhal
worker protocol. Each worker copies incoming transactions to its mirror workers.
Once it has completed a batch (a set of transactions to be included in a vertex),
it distributes a signed hash of the complete batch (a worker hash) to both its
primary and its mirror workers. Mirror workers communicate to their primaries
that they have stored (and can make available) all the transactions involved with
this worker hash. Primaries use this information for vertex cas.

The worker protocol is illustrated in Fig. 6. New transactions (@3) are submitted
to the worker. Copies of those transactions (TX) are forwarded to mirror workers.

6.1.1. Batch completion

Batch completion may be triggered by a timer that has elapsed or when a batch
reaches a target metric (e.g., maximum size). Worker hashes (\8l) are formed
and broadcast to mirror workers. This mechanism is essentially the same as in
the original Narwhal.

6.2. The primary protocol

Each validator has one primary process. Each primary produces a sequence of
vertices, each carrying a vertex number. For a safe validator, these vertices form
a chain. The primary protocol builds on the worker protocol, which provides
worker hashes. In addition to its sequence number, each vertex has a height
map (Definition 21), which generalizes height or “round” in the original Narwhal
or Bullshark.

7Typically, only until execution, but there can be other reasons to keep data available.
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Figure 6. Steps towards forming a vertex. Transactions (rendered as @9) are submitted to
Validator 3, to workers 1 and 2. The vertex is announced and a certificate of availability (@) is
formed using signatures from Primaries 1,2,3, and 4, and is broadcast.

6.2.1. Vertex announcement

Each primary announces a sequence of vertices, starting with a genesis vertex. It
broadcasts each vertex to all other primaries. In Fig. 6, vertices are rendered as
boldface V. Each vertex should contain all worker hashes and signed quorums
the primary has received so far (but not included in previous vertices).

Finally, (for non-genesis vertices) the primary must create a ca for its previous
vertex before it can complete the new vertex. This is done by collecting responses
to the vertex announcement (as illustrated on the right in Fig. 6 where cas are
rendered as €).

6.2.2. Responses to vertex announcement
The first time a primary j receives a vertex o with sequence number n from
another primary i, it stores it, and responds promptly with an integrity vote o}
(as illustrated in Figure 7 on the left where primaries 1, 2 and 4 send integrity
votes to primary 3).
The primary j ignores other vertices from i with the sequence number n.
When it has been notified by its workers that all the referenced worker hashes
are available, it also sends an availability commitment for o to i.
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6.2.3. Receiving availability commitments

Each primary stores availability commitments from other primaries for its own
vertices. When it receives enough commitments for a vertex U?, it creates a ca,
and broadcasts it to all other primaries. These may be used in future signed
quorums (Definition 18).

6.2.4. Integrity votes

Each primary stores integrity votes from other primaries for its own vertices.
When it receives enough votes to complete a learner specific c1 for a vertex o,
(if it has not previously sent a cr1 for o} for the same learner), it broadcasts the
c1 to all other primaries (as illustrated left of the double line in Figure 7 where
primary 3 is broadcasting a red and a blue certificate of integrity for its vertex).
These may be used in future signed quorums (Definition 18).

6.2.5. Clreception

Primaries store each received c1, for use in signed quorums (Definition 18). The
formation of signed quorums is illustrated right of the dotted double line in
Figure 7 where primary 3 has collected enough blue certificates to form a signed
quorum.

When it announces a new vertex, the primary should form signed quorums of
the highest height possible for each learner, and within each, reference the latest
vertex possible from each primary.

6.3. Interaction with Paxos

Concurrently to the Heterogeneous Narwhal protocol, all validators run a se-
quence of Heterogeneous Paxos ([SWvRM20]) executions using the same learner
graph. These executions determine an ever-growing sequence of anchor vertices.
Note that only the vertex (and not the full text of all the transactions) must be
transmitted as part of the consensus protocol.

6.3.1. Safety Guarantees

Heterogeneous Paxos ensures that entangled learners (Definition 10) agree on the
anchor vertex sequence. Given a sequence of anchor vertices, an arbitrary (but
global) function can refine the mempool DAG’s partial order of vertices (and by
extension, transactions), into a total order, which defines a blockchain. Because
a vertex contains a cA for each element of its parentage, all of these transactions
are available (for all learners).
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Figure 7. Formation of integrity certificates (on the left) and signed quorum (on the right) in
the context of one red quorum (red cross-hatch) and two blue quorums (vertical and horizontal
lines): blue certificates of integrity are annotated by the number of the validator whose vertex is
certified.

6.3.2. Liveness Guarantees

Heterogeneous Narwhal retains the guarantees of original narwhal for each
learner. One of these is inclusion-fairness: if some vertex form each learner-
specific height is eventually chosen as anchor, it will commit new transactions
from an entire learner-specific quorum of validators. For this reason, honest
validators should favor proposed anchor blocks with a higher height (for as many
learners as possible) than previously chosen anchors.

If two learners (say, red and blue) are entangled, then each of their quorums
intersects each other on a safe validator. As a consequence, if there is some
vertex with a red height of » and a blue height of b, then any vertex with a red
height strictly greater than » must have a blue height of at least b — 2. In other
words, if red and blue are entangled and continue making progress, then any
new red proposals will include the same new content (modulo a finite delay)
as new blue proposals. This means that if a learner repeatedly commits new
learner-specific height vertices as anchors, then for all entangled learners, an

DOI: 10.5281/zenodo.10498999 Anoma Research Topics |  June 27,2024 | 19


https://dx.doi.org/10.5281/zenodo.10498999
http://art.anoma.net

entire learner-specific quorum of validators eventually commit new transactions.
When learners are not entangled, byzantine behaviour violating this guarantee
is detectable, eventually allowing both to make progress:

6.3.3. Byzantine Behavior Evidence

If a set of Byzantine failures (unsafe validators) ensures that two learners are not
entangled, it is possible that separate sub-paGs will form: one in which blue’s
height advances, but red’s does not, and one in which red’s height advances, but
blue’s height does not. Fortunately, these DAGs include evidence of the Byzantine
failures involved: multiple signed vertices from the same validators for the same
sequence numbers. This can be integrated directly with Heterogeneous Paxos’
caught function, which removes the requirement that red and blue agree. Once
this has been proven for an anchor block, the chain can fork: future anchor
blocks in the sequence can be decided independently. This means that honest
validators can favor anchor proposals that advance blue height on the blue chain,
and red height on the red chain, preserving the safety and liveness guarantees
for each.

We cannot provide much in the way of guarantees for learners who are not
entangled with themselves. That would be the equivalent of a base chain forking.

7. Conclusion

We have described a heterogeneous mempool DAG protocol that adapts Nar-
whal [DKSS22]. Making a clear distinction between certificates of availability
and integrity, we obtain a protocol description that allows for an interleaving
execution of two Narwhal instances, but shared between base chains.

Paired with Heterogeneous Paxos [SWvRM20], Heterogeneous Narwhal can
facilitate cross-chain atomic transactions with well-defined guarantees, and
without traditional drawbacks. We leave it to future work to explore suitable
fee mechanisms for inclusion and ordering fees (besides execution fees) such
that the theoretical potential of horizontal scaling of workers is matched with a
suitable auction mechanism.
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