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Abstract

In distributed systems, mutable digital objects typically require some state machine to
decide on their definitive current state. This state machine can be replicated to enhance
availability and fault tolerance. We call the authoritative state machine of a digital object
its controller. Typical examples of controllers defining objects include a database storing
arecord, or a blockchain storing the current state of a smart contract. Without some kind
of controller, different parties may have contradictory notions of what the state is, and
no way to reconcile them. In a distributed system, some controllers may be Byzantine,
and make duplicitous or incoherent statements about state.

Here we design rules and procedures for a multi-state-machine ecosystem, featuring digi-
tal objects, or resources, with application-defined state-dependent rules for how they can
be updated. Each controller can express an authoritative state, including authoritative
resource states. Each resource is also labeled with a controller identifier, whose state
is definitive for this resource. Resources can transfer between controllers, and updates
can depend on multiple resources, so resource labels also express a dependency graph de-
tailing which controllers, if they were Byzantine, may have corrupted this resource. In
a sense, these labels represent a distributed taint tracking or dynamic information flow
control solution. One challenge is avoiding size explosion in this dependency graph: we
enable removing unnecessary parts of history when, say, a resource transfers from A
to B and back to A again. In information flow control terms, these operations require
endorsement. Our resource controller operations generalize a number of techniques used
in blockchain settings. We define rules and procedures for creating, updating, transfer-
ring, and tracking the state of labeled resources, and prove that our rules maintain safety
properties including causal resource history and consistent controller labels.

(Received: April 16, 2024; Version: Jun 25, 2024)

1. Introduction

Distributed platform interoperability is crucial to improve cost, usability,
adoption, and even security. When applications must share a state machine
(or, more generally, controller) to interact, there is an incentive to push all ap-
plications onto one controller trustworthy enough (and with enough through-
put) for everyone. Attempts to create such a controller typically require trust
in a single authority (e.g., AWS [Ama24]) or an extremely expensive global
consensus (e.g., Ethereum [But13]) and remain inadequate for some applica-
tions: JP Morgan does not trust Ethereum to control their accounts [JP 24].
In fact, it is unlikely that all worthwhile applications will ever agree on a
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controller who can manage all of their state. This is why interoperability is
so important: the internet works not because we all trust some single author-
ity to manage all of it but because many different applications in different
trust domains can interact.

Nevertheless, cross-domain data integrity remains a challenge. While ex-
isting systems can track controllers that may have affected each datum [LAG*17,
WGDW22], these can easily lead to a state explosion: each object’s label
features an ever-growing set of controllers that may have affected it. In
blockchain ecosystems, some protocols cleverly get around this: objects can
reduce their labelling burden when one controller endorses another, review-
ing (some part of) its history and, crucially, pledging not to endorse a contra-
dictory history. For example, blockchains can create wrapped tokens with
IBC and ICS20 [Sco23, Goe20, ics24]. A wrapper represents a controller
that had previously controlled the token, and nested wrappers represent a
list of controllers. A controller can unwrap a token with a simple but ef-
fective review of the wrapped token history. It checks a crucial invariant:
it will unwrap no more tokens of each type from each destination than it
wrapped. In this work, we generalize this controller history tracking and
endorsement approach, and enable fully general transferable digital objects
(not only tokens), with arbitrary transactions. Crucially, this means gener-
alizing resource histories from a list of wrapping controllers to a DAG. This
endorsement approach differs somewhat from some Information Flow Con-
trol approaches [LAG"17, CMA17], in that we assume controllers can review
and endorse entire execution traces of other controllers, and check for con-
tradictions.

Here, we introduce a novel protocol for controllers that enables very gen-
eral operations across state machines with different trust domains. Our con-
troller protocol will eventually be part of a larger unified cross-domain archi-
tecture, with standards for each state machine, as well as transferable objects
called resources [KG24]. We detail controller operations that allow our archi-
tecture to generalize many existing techniques (including many cross-chain
and side-chain operations).

1.1. Controllers

Controllers are a key component of any transaction processing state ma-
chine, including blockchains [AGMS18, Sch90]. We define the controller as
the component that orders: it decides on an ever-growing sequence of trans-
actions defining the execution trace, and thus the current state, of a state
machine. Controllers do not necessarily compute and store this state them-
selves, although it may be efficient to do so. Committing to an ever-growing
sequence of transactions, however, does require that controllers keep some
state, to ensure they do not fork: commit two contradictory traces (neither
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is a prefix of the other). Forks are the essence of, for example, double-spend
attacks [AM17].

Trusting controllers is fundamental for digital objects: tables in Postgres
maintain their invariants iff the database is working properly [Pos24]. Simi-
larly, a smart contract on Ethereum is consistent iff the Ethereum consensus
is working properly[But13]. We categorize controllers in terms of safety and
liveness:

« Safe controllers commit transactions only in a totally ordered sequence
(called a trace): they do not fork. The state of a valid controller is
unique and defined as the result serially applying the transactions
(atomic transitions defined by the state machine) in the trace commit-
ted, and ignoring any invalid transactions (as defined by the state ma-
chine). Unsafe controllers are also called malicious or Byzantine.

« Live controllers eventually respond to valid queries, and append valid
transactions to their trace. Controllers that are not live are called un-
live or crash-prone.

In general, we assume all unsafe controllers are unlive: controllers that don’t
follow the specification could ignore all queries.

1.2. Resources

Our architecture tracks specific types of transferable digital objects, which
we call resources [KG24]. We can encode extremely general mutable state
with resources, but resources themselves are fairly simple. Resources have
very limited mutable state: they are not yet created by default, can transition
to created, and then to consumed. However, each resource can carry arbi-
trary immutable data: the identity of the resource specifies this data (the id
could be a hash). Resources transition between these states in transactions
ordered by controllers. Each resource therefore specifies a single controller
that can order transactions for each type of transition, ensuring there is a
single authority in charge of deciding whether each transition has or has
not occurred. Transactions which perform a state transition but are ordered
by the wrong controller are invalid.

Each controller’s state carries cryptographic accumulators (e.g., Merkle
roots [Mer88]) representing the set of resources created by transactions or-
dered by this controller and the set of resources consumed. If a resource is
neither created nor consumed, it is not yet created. As part of their immutable
data, resources can have complex proof obligations (which we call resource
logics) determining when they can be created or consumed, and these may
depend on the state of other resources. A resource logic can for example,
specify exactly what programs can consume this resource: it would require
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a proof that the resources created are precisely the outputs of running a par-
ticular program with the consumed resources as inputs. Such a proof might
be as simple as a full execution trace of the program, or as complex as a zero-
knowledge proof [KST22]. Through these logics, resources can encode fairly
arbitrary state, not limited to scalar registers or tokens, while still allowing
ZKP-style confidential transactions [KG24].

1.3. Transactions

Transactions are atomic state transitions [AGMS18, Sch90]. For our pur-
poses, transactions designate a set of resources (which must be created) as
inputs, consume some subset of their inputs, and create some output resources.
In general, we assume these transactions are deterministic, so each new state
is uniquely defined. Transactions can only update state controlled by one
controller, and must include checkable proofs that the relevant resource log-
ics of each resource created or consumed are satisfied. However, input re-
sources may have been created in a transaction on another controller. There-
fore, controllers can sync with one another, allowing transactions to check
if resources on other controllers have been created. These updates can be
asynchronous, so it is possible a transaction will not immediately be able to
prove that a resource has been created.

1.4. Labels
Resources themselves carry labels concerning controllers who can or have af-
fected the history (or ancestry) of that resource. We will detail exactly what
these labels will be later, but they include, among other things, a creating con-
troller, whose state defines whether this resource has transitioned from not
yet created to created, and a terminal controller, whose state defines whether
this resource is consumed. Any transaction with this resource as an input
must be ordered by its terminal controller. This ensures there are never two
controllers trying to consume the same resource with different transactions.
For example, imagine a resource representing a token, created on some con-
troller A. If controller B orders a transaction that consumes this token in
order to create a new token called Alice, and controller C orders a transac-
tion that consumes this token in order to create a new token called Bob, then
we have a “double-consume:” together, Alice and Bob’s histories represent
the token being consumed twice, which should not happen. This is clearly a
problem if the tokens have, say, monetary value: it’s a double-spend [Nako08].
Terminal controllers solve the problem: if the resource specifies it can only
be used by transactions on B, then the token can only be double-spent if B
forks.

We might imagine labels which include a set of affecting controllers, who
have influenced this resource’s history (or provenance). In general, we can
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Figure 1. Timelines for 4 controllers, and resources for a virtual cooking application. Con-
trollers are labeled with letters, and resources are labeled with numbers.

B

C

“transfer” a resource from one controller to another: we consume a resource
with one terminal controller, and produce a similar resource with a different
terminal controller, and the old resource’s terminal controller in its affecting
controllers (encoded in its label).

1.5. Salad Example

Suppose four controllers (A, B, C, and D) order transactions for a virtual cook-
ing application (shown in Fig. 1). In the beginning, a tomato resource (0) and
a cucumber resource (3) are on controller A. The tomato resource transfers to
B (resource 0 is consumed, requiring whatever proofs are required to move a
tomato, and resource 1 is created), and then, after some B-only transactions,
it transfers to D (resource 4). Likewise, the cucumber resource transfers
to C and then to D (resource 7). On D, a transaction consumes both the
tomato and cucumber resources to create a salad resource (resource 8). At
this point, the salad resource’s history depends on A, B, C, and D. These are
the affecting controllers of the salad’s label. If any of these controllers have
been unsafe (as in Fig. 2), there may be other resources elsewhere, claiming
to represent the same tomato or cucumber that are supposedly part of this
salad. The salad then transfers from D to A, where the tomato and cucumber
began. Eventually, we want to allow A to endorse the salad’s history, pledg-
ing not to endorse any alternative histories in which the cucumber or tomato
did anything else, and removing the need to remember that B, C, or D could
have “tainted” the salad’s history [WGDW?22]. They can be removed from
the affecting controllers of the salad’s label.
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Figure 2. Controller B has forked into two timelines (gray and black). Resources 10 and 11
conflict with resources 2, 4, 8, and 9.

2. Desiderata

There are several properties we want our controllers and resource labels to
have. As a running example, consider Fig. 2, a version of our salad example
in which controller B has forked into two traces: gray and black. Resource
10 (and therefore 11) has a conflicting history with resource 2 (and therefore,
4, 8, and 9).

2.1. Causal Resource History (CRH)

We begin with a weak but relatively simple to maintain property: causally
consistent resource history, or Causal Resource History (CRH) [LFKA11]. A
resource with CRH was created in a valid' transaction, whose inputs were
resources with CRH. This property is relatively easy to prove with recursive
zero knowledge proofs (compared with some stricter properties we’ll get to
later) [KST22]. In general, in order to maintain CRH, a resource should carry
a (recursive) proof that it was created in a valid transaction, the inputs of
which had CRH proofs. In fact, CRH can be implemented in resource logics.

This property is not perfect: it still permits histories we might want to call
inconsistent, including double-consumes. For example, in Fig. 2, any future
resource that depends on resources 9 and 11 (so, something constructed by
consuming the salad and the tomato), would have a history in which the
same tomato (which started as resource 0), is consumed twice, but would
still have CRH.

2.2. Serializable Resource History (SRH)

Here we define what we consider consistent: each resource (individually)
reflects some fully serializable history featuring only correct atomic trans-
actions (and no forks) [Pap79]. Equivalently, in the resource’s history, all

1 [KG24] defines a “valid” transaction as not using an input that’s already been consumed. Here, as we lack global time, we require

only that a transaction’s inputs have not been consumed by a transaction in its causal past.
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transactions are valid, and no resource is used as an input for a transaction
after it has been consumed. In our Fig. 2 example, resources 11 and 9 indi-
vidually have SRH, but they cannot both appear in the history of any future
resource with SRH (no one can consume both as an input in some trans-
action). Alternatively, you could not combine money from both sides of the
double-spend for one big purchase. SRH can be easily generalized to a group
of resources by imagining a new resource that depends on all the resources
in the group, and checking if it has SRH.

Maintaining SRH requires some kind of mechanism for checking if two
resources can both be part of some future resource’s history. Effectively, any
such mechanism checks for forks, and can be used to filter for resources that
have SRH.

In Appendix A, we detail a technique for maintaining SRH for all resources,
but it can require very expensive computation and requires each resource to
carry an ever-growing set of controllers in its label. Instead, we allow users
to introduce a little trust into the system, and dramatically improve day-to-
day operations. We will detail techniques for checking SRH while using our
technique, but each check can require a lot of information.

2.3. Consistent Controller Labels (CCL)

The Consistent Controller Labels property (CCL) requires that if some re-
source r does not have SRH, then it has an unsafe controller in the affect-
ing controllers set in its label. With CRH, if a user trusts that a resource’s
affecting controllers are all safe, they can be sure the resource has SRH.

One easy way to maintain CCL would be to start with a system that main-
tains CRH, and label every resource with every controller involved in its his-
tory (affecting controllers). If all the controllers are safe, then the resource
has SRH. For example, in Fig. 2, resource 8’s affecting controllers include A,
B, C, and D. However, we explore optimizations that allow removing unnec-
essary controllers from the affecting controllers set. For instance, in Fig. 2,
A can endorse the history of resource 9, and remove B, C, and D from its af-
fecting controllers. The key in this case is to ensure that any future resource
that depends on both resource 9 and resource 11 will include B in its affect-
ing controllers. To accomplish this, we prevent A from endorsing (and thus
removing B from) the history of both resource 9 and resource 11.

In Appendix B, we introduce Consistent Controller State (CCS), an even
stronger property than SRH, along with a technique to maintain it, but we
believe the inherent “forks split the world” drawbacks make CCS too strong
to be worth using.
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Field Type Description

halted boolean Is this a halting state? There are no valid transi-
tions from halting states.

endorsement | map: controller id — state root | state roots of other controllers this controller has
(non-recursively) endorsed.

sends set of send represents outgoing resource transfers

receives set of receives represents incoming resource transfers

Table 1. Fields in a controller’s state.

3. Controller DAGs with Endorsement: a Technique for
CCL

In this approach, we maintain CRH and CCL, with relatively little overhead.
Resource label size can be kept proportional to the number of cross-controller
resource transfers in its history (in the worst case), but in the best case is
much smaller. Moving a resource between controllers is relatively cheap,
requiring only few simple checks and a single endorsement (which can be
done as two recursive ZKP checks). Endorsements are not resource-specific,
so they can be done opportunistically and their costs amortized.

3.1. Controller State

We assume each controller has a unique controller id. We also assume that
each controller’s entire state (including accumulators for which resources it
has created and consumed, and everything else) can be uniquely identified
with a digest or hash called a state root. We have a notion of one state (or state
root) being provably after another state (or state root) if the “later” one is the
result of a (possibly empty) sequence of valid state transitions (transactions)
ordered by the state root’s controller, starting with the “earlier” one. We can
define provably before similarly.

Each controller’s state includes (but is not limited to) the data in Table 1.
The endorsement map starts with every controller id mapping to genesis
(whatever state root it must start with; this may be defined in the controller
id itself). There is one exception: the element for this controller’s id is the
state root for this state. We also introduce a new type of transaction. A
controller id’s endorsement element can be updated, given:

« a proof that the new state root is provably after the old state root, and

« aproof that if the endorsed state root contains an endorsement for this
controller, it endorsed a state root provably before this state (you can’t
endorse someone who has endorsed a fork of yourself).

Note that this update does not require any kind of recursive update of con-
trollers the endorsed controller has endorsed.
Next we discuss send and receive records.
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Field Type Description

id send id uniquely identifies this send record.
resource resource id the resource sent.
removable | boolean defaults to false, true if this has no incoming, or as

a result of some activity that can only occur on this
controller (e.g. minting a currency).

updatable | boolean defaults to true, set to false as part of endorsement-
reduction.

incoming | set of receive ids the receive records on which this send depends.

outgoing set of controller ids | the controller(s) to which a resource was sent.

Table 2. Fields of a send record.

Field Type Description

id receive id uniquely identifies this receive record.

resource | resource id the resource sent.

incoming | set of send ids non-empty set of send records on other controllers.

live set of resource ids | the created (and not consumed) resources on this
controller which depend on this receive.

outgoing | set of send ids the sends on this controller created when recources
dependent on this receive were sent elsewhere.

Table 3. Fields of a receive record.

3.1.1. Send Records

Each controller maintains a set of send records, which are created each time a
resource transfer from one controller to another begins. To initiate a transfer,
a controller consumes the sent resource, and creates a similar resource with
a different terminal controller, as well as a corresponding send record. Each
send record has an (immutable) unique send id, as well as fields described
in Table 2. If the transferred resource has ancestors from another controller,
the incoming field reflects the events when ancestors came to this controller.
Similarly, the outgoing field represents the destination of the transfer. This
can be updated as part of the reducing process (Section 3.4). If a send record’s
updatable field is false, it becomes immutable: it can never change again.
This is used in controller DAG reduction (Section 3.4).

A send record represents a promise: when one controller transfers a re-
source to another, it promises to accept those resources, or new resources
created using those, in transfers back. Pending a review of the returned re-
sources’ history, these can be treated just like resources created on the origi-
nal sending controller. We describe this process in more detail in Section 3.4.

3.1.2. Receive Records

Each controller also maintains a set of receive records, which are created
each time a transfer from one controller to another completes. Note that a
resource cannot be received twice: no state can contain two receives with the
same id or the same resource. To receive a transfer, a controller creates a re-
ceive record, as well as a copy of the sent resource, whose terminal controller
matches the destination controller. Each receive record has an (immutable)
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Field Type Description
creating | controller id which controller determines if this resource has
been created?

terminal | controller id which controller determines if this resource has
been consumed?

backup list of controller ids | If the terminal controller halts, who will be the new
terminal controller? If that controller has halted,
who will be the new terminal controller? and so
on...

receives | set of receive ids the receive records (on the terminal controller) on
which this resource depends.

Table 4. Fields in a resource label.

receive id, as well as fields described in Table 3. A receive’s incoming field
must feature at least one send, and all on other controllers: these are the
sends which this receive received.

In a safe controller’s state, each send in a receive’s outgoing field should
feature the receive in its incoming field.

Note that send and receive records can be encoded as resources (with suf-
ficiently precise resource logics). For our purposes, it is useful to discuss
them as mutable records, even if they are implemented as resources “under
the hood”

3.2. Resource Controller Labels

Each resource features a label with information about controllers that can
or have affected it. The label includes a DAG representing controllers who
have affected the history of this resource. Each node of this DAG includes:

« a controller id

« a send id representing when an ancestor of this resource was trans-
ferred out of this controller.

« a state root for this controller, after (or equal to) the state when the
send was created.

For each edge in the DAG s — ¢, there must be a receive id r € s.incoming
such there is or was a corresponding receive record r with s’ € r.incoming.
(here we abuse notation and use r for both the receive id and the correspond-
ing receive record.) Without reductions as in Section 3.4, the DAG has an
edge whenever there is such an r. In this way, the controller DAG reflects
(some of the) history of the resource.

The set of all controllers from all the nodes of this DAG are the resource’s
affecting controllers.
Each resource label also includes the fields in Table 4.
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3.3. Creating a resource

A transaction must use as inputs resources with the same terminal controller:
the controller that orders the transaction. The terminal controller’s state de-
termines if any of the input resources have been consumed (which would
make the transaction invalid). To determine if all the input resources have
in fact been created, one must check whether the creating controller of the
resource has created it. To ensure CRH, any resource with a creating con-
troller other than the terminal controller requires a corresponding receive
record to prove it has been created (see Transfers below).

A created resource can depend on input resources, meaning the new re-
source’s history includes those input resources, and their histories. In gen-
eral, it is safe for a created resource to depend on all the input resources used
in proofs of the resource’s logic; this would work for very general applica-
tions. However, we might allow resource logics to specify a subset of the
input resources on which they depend. We might imagine a UTXO-style cur-
rency application [Kha22] which tracks only input resources of the same cur-
rency as dependencies: anything which was necessary to authorize a “spend”
isn’t considered part of the history of the currency resource.

The resource’s creating id is the id of the controller ordering the transac-
tion that created it: this matches the terminal id of all the input resources. If
the resource’s terminal id is another controller, this is a transfer: the trans-
action must also produce a corresponding send record. The resource has
“transferred” to a different controller from its ancestors.

Each resource’s controller DAG includes the union of the controller DAGs
of the input resources on which it depends. If this is a transfer, then the DAG
also includes a node for the new send record, and an edge from each sink of
the input resource’s DAGs to the new node.

Each resource’s receives field is the union of the receives field of all of its
dependencies, or for dependencies created on another controller, the corre-
sponding receive record. Each time a resource is created, it must be added
to the live set of each receive in its receives field. Likewise, each time a re-
source is consumed, it must be removed from the live set of each receive in
its receives field.

3.3.1. Transfers

In order to create a resource on one controller and consume it on another,
there are several steps. First, in a transaction on the sending controller:

« Create a new send id

« Create the “sent” resource: it must have a new unique controller DAG
sink: this send id. This resource’s receives field is empty. Do not add
this resource to any receive record’s live field.
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« add this send id to the outgoing field of all the receives in the resource’s
dependencies’ receives fields.

« Create a new send record with this new send id, referencing this re-
source, with incoming set to the union of all of the receives of the
dependencies.

Second, on the receiving controller:

« Endorse a state root from the sending controller whose corresponding
state features the send record and the sent resource.

+ Create a receive record with a unique id, empty outgoing, a live set
containing only the sent resource, and an incoming field containing
only the send id. Future transactions can now consume the resource,
and new resources which depend on it must put this receive record in
their receives field.

For example, in Fig. 1, in order the first transfer (resource 0 on A to re-
source 1 on B), would require creating a send record s, on A, and a re-
ceive record r; on B, with rj.incoming = {sy}. Any subsequent resources
representing the tomato would appear in ry.l/ive, until they are consumed.
Eventually, transferring resource 2 to B creates a new send record, s; on B,
and ry.outgoing must include s;. We illustrate the resulting state of affairs
in Fig. 3a. Resource 4, then, with a history that depends on 2 sends, would
have a Controller DAG: A : sy — B : s9, and terminal controller C.

As a more in depth example, we draw the controller DAG for resource 9,
with s, as the send record for sending resource n:

A:so~>B:s
0 sz:SS
A:s3>C:sg

Note that, since they have no incoming, s, and s3 have removable=false.

3.4. Reducing a Controller DAG

3.4.1. Endorsement

We can use the controller’s endorsement map to remove unnecessary ele-
ments from a resource’s controller DAG. The idea is that if a resource’s his-
tory involves moving to some intermediate controller, doing some transac-
tions, and then moving on, the intermediate controller is arbitrary: as long
as other controllers are willing to check the part of the history done on the
intermediate controller, they can claim they “may as well have” done those
state changes themselves, and remove the intermediate controller. This kind
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Figure 3. Steps to generate a reduce proof for B in resource 4’s DAG (Fig. 1). The proof
itself has a state root for A, B, and D, and shows they have the send and receive objects in

(d).

(@) start‘ (b) updat-(c) . fedirect (d) update par-(e) garbage col-
able=false receives ents lect

of endorsement-based DAG reduction generalizes IBC and ICS20’s unwrap-
ping [Sco23, Goe20, ics24]. In our Fig. 2 example, A could endorse C, D, and
(one fork of) B, and then reduce resource 9’s controller DAG to just nodes
with controller A. The challenge is to do this in a way that provably main-
tains CCL. We would not want to allow resource 11 to end up with a DAG
that doesn’t contain B, or someone could consume resources 9 and 11 to cre-
ate a new resource that doesn’t have SRH (it contains a double-consume of
a tomato), and also doesn’t have B in its controller DAG: that would violate
CCL. There are a number of subtleties here, so we start with some definitions.

Definition 1 (Endorsement). A controller A endorses a state root R if A’s en-
dorsement map element for R’s controller id is provably after (or equal to) R.

Definition 2 (Remove). We remove a node from a resource’s controller DAG
if we consume the resource, and create an identical one whose controller DAG
is missing the node. Instead, the new resource’s controller DAG has edges from
all of the removed node’s parents to all of the removed node’s children.

3.4.2. Reduce Proofs

Before we can remove a node n, we require a reduce proof for the send record
in n. Conceptually, a reduce proof shows that n’s parents and children have
endorsed the history that happened on n’s controller, and agreed not to en-
dorse any contradictory history. Note that we can only create reduce proofs
for sends with removable=true. In “promise” terminology, wherein each
send represents a promise to review and accept descendants of the sent re-
source, if A promises to accept resources from B, and B promises to accept
resources from C, then with enough endorsement, we can collapse this to
A promising to accept resources directly from C. In taint tracking terminol-
ogy, the controllers from n’s neighbors accept any responsibility for taint n’s
controller might have caused, by reviewing the history of n’s send record.

For a send record s, let P(s) = {s’|r’ € s.incoming A s’ € r’.incoming} be
the parents of s. These sends mark the boundary of s’s history on its own
controller.

For various reasons, it is convenient to define reduce proofs for sets of
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send records. Consider a set of sends Y such that each send record has
removable =true (which in turn implies that each has parents). We now
detail the process of creating a reduce proof for Y.

Let X be the set of parents of sends in Y which are not themselves in Y:
X = UerP(y)/Y-

Suppose a receive exists for every send in Y. Let Z contain a receive for
eachsendin Y: Vy € Y : 3z € Z : z.resource = y.resource.

Let the ancestors a : Z — 2% of a receive record z € Z be the elements
x € X such that there is a path (defined by incoming field elements) from z
to x in which all but the final send element (x) are in Y. These represent the
boundary events that “transitively affect” z.

Let C : (set of send or receive — set of controller) be the function that
maps a set of send or receive records to the controllers of those records, so
C(Y) is the set of controllers of the send records in Y.

The steps to create a reduce proof for all the sends in Y are below. In Fig. 3,
we illustrate this process with Y = {s3}, X = {so}, and Z = {rs}.

1. For each y € Y, set y.updatable to false (Fig. 3b). This effectively
prevents us from making a reduce proof for any of y’s “neighbors”
(sends connected to the same receives as y) without making a reduce
proof for y. Otherwise, we can get some very peculiar behavior where
2 resources with identical DAGsS A :sy — B:s; — C:s3 > D : s4 can
end up with DAGs A:s) > B:s; > D:sgand A:sy > C:s3 = D
sa, which can cause problems for maintaining CCL.

2. Let Ry be the set of state roots of C(Y) just after completing step 1.

3. For each controller in C(Z):

« endorse all roots in Ry.

« for each controller in C(X), endorse a state root after all ele-
ments of X on that controller were created. This essentially just
recognizes that everything in X has indeed occurred.

« Update all receives z € Z by removing elements of Y in z.incoming
and adding all elements of a(z) to z.incoming (Fig. 3c). Effec-
tively, controller in C(Z), having reviewed the history of C(Y),
accepts responsibility for the history (from X onward) of the re-
sources received.

4. let Rz be the set of state roots of Cz just after completing step 3.
5. For each controller in ¢ € Cx:
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. endorse Ry and R>.

« update all elements x € X to include outgoing references to the
receives Z: C(z) € x.outgoingif 3z € Z : ¢ € z.incoming (Fig. 3d).

6. The reduce proof for each y € Y is a collection of state roots from all the
controllers in C(X), C(Y), and C(Z), with proofs that the above steps
have happened. These proofs show that Vy € Y : y.updatable=false,
all z € Z now have incoming sends from X, and all x € X have been
updated to refer to C(Z) where appropriate.

Once enough reduce proofs have been generated, we can even garbage
collect some send and receive records (Fig. 3e). Specifically, when a send
record sy on controller A has a controller B in its outgoing field, but all receive
records r; on B receiving sy have an empty live field, and there are reduce
proofs for all the sends ry.outgoing, (and A and B has endorsed state roots
proving this is the case) we can remove B from the sq.outgoing.

Once all a receive record’s incoming sends have removed that receive
record’s controller from their outgoing fields (and the receive record’s con-
troller has endorsed state roots that prove this), we can garbage-collect the
receive record: it will no longer be used. Once all of a send record’s incoming
receive records are garbage collected (if the send record has removable=true),
we know that send will no longer be used, and can garbage collect it.

For liveness, reduce proofs should remain available indefinitely unless
there is a way to prove that every resource with the send record in its con-
troller DAG has been consumed. However, they do not need to be stored on
any particular controller. We leave reduce proof distribution to future work.

3.4.3. Removing a Node from a Controller DAG

For any transaction that creates a resource r with a node n in its controller
DAG, removing n requires a reduce proof for n.send. First, r’s terminal con-
troller must endorse all the state roots in the proof. Then each node in r’s
controller DAG must update its state root to whichever is provably after the
other: the state root it currently has or the state root with the same controller
in the proof. (If there is a state root with the same controller in the proof,
but neither is provably after the other, this remove operation is not valid.)
Then it can remove n from the controller DAG, and add edges from all of n’s
parents to all of n’s children. For example, given a reduce proof for s;, we
could reduce the controller DAG of resource 9 (Fig. 2):

A:sg>B:sy

A:s
2 D:sg to: O\’D:,s‘g
A:s3->C:sg

from:
AZSg%C:S(,%

DOI: 10.5281/zenodo.10498997 Anoma Research Topics |  June 25,2024 | 15


https://dx.doi.org/10.5281/zenodo.10498997
http://art.anoma.net

With enough reduce proofs, we could eventually reduce it to just A : sy and
A : s3 (and no edges). Note that, since they have no incoming, s, and s; have
removable=false, so they will never have a reduce proof.

Theorem 3 (Reduction preserves CCL). If a safe controller creates a resource
r, and valid transactions must follow the “Creating a Resource”, endorsement,
and “Removing a Node from a Controller DAG” procedures above, then r has
CCL.

Proof. First, we note that all resources created on safe controllers have CRH:
safe controllers only create resources through valid transactions with inputs
that have CRH, and only accept transferred resources after they have en-
dorsed their history, proving the transferred resources have CRH.

Consider S, the graph of send objects in the most recent state of all safe
controllers, and all the most recent states of all forks of unsafe controllers.
We define directed edges of S using P: each send references any send which
has ever been its parent (an incoming send of an incoming receive).

All paths through r’s controllers DAG correspond to a path through S.
Some sends in that path may have reduce proofs, so there may be shorter
paths.

Either r has an unsafe controller in its DAG or it does not. If r has an
unsafe controller in its DAG, then r has CCL. Hereafter we consider the case
where r’s dag is entirely safe.

Either r has SRH or it does not. If r has SRH, then r has CCL. Hereafter
we consider the case where r’s dag is entirely safe but r does not have SRH.

Given that r has CRH, lack of SRH means there is a fork in r’s history.
Some unsafe controller, which we will call C, created 2 contradictory sends
s; and sz, which share an incoming element, but neither of which is provably
after the other. If we consider all the transactions in r’s history in some seri-
alized order, and consider the set of all sends in all (unconsumed) resources’
controller DAGs, we show that no transaction can remove the last element
of the last pair of contradictory sends.

Specifically, suppose that r’s ancestor a wishes to remove the last element
sp of a contradictory pair of sends from unsafe controller C. These sends
share an incoming element and therefore an ancestor send sy on another con-
troller, which we’ll call B. Without loss of generality, s, has updatable=false,
since without an updatable ancestor, B cannot be removed. Therefore, B : s
has not yet been removed from a’s controller DAG. B cannot endorse both
contradictory sends and add them to sy without forking and creating two
contradictory versions of sy. Thus it is impossible to remove the last element
of the last contradictory pair. Therefore, if r does not have SRH, it has an
unsafe controller in its DAG (and thus its affecting controllers). Thus CCL is
guaranteed.
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O

Moving and Reducing Together. Itis possible to move a resource to another
controller and remove the sender together. Specifically, the send is marked
updatable=true as soon as its created, and the receive updates its incoming
field immediately. With one transaction from the parents of the send, the
received resource could remove the send the first time it’s used.

This is useful when, for example, some state has been temporarily moved
from a base chain to a side chain, and the side chain wants to move it back
to the base chain. The side chain would condense all its nodes on the con-
troller graph to a single node, and set that node’s reducing field. The base
chain could then endorse the side chain, and remove the side chain from the
resource’s controller DAG.

3.4.4. Removing a Halted Controller

Controller states carry a boolean halted flag, which defaults to false. At any
time, changing this flag to true is a valid transition. All transitions must be
ordered / decided by the controller, so this transition would represent the
controller deciding to halt. There are no valid state transitions starting with
a state featuring a halted flag set to true. In effect, a halt transaction creates
a send for every unconsumed resource with outgoing set to the resource’s
backup controller, and updatable set to false. A halted controller can also be
said to have a receive record for every resource sent to it, followed immedi-
ately by a send.

A connected sub-DAG (of a controller DAG) consisting entirely of halted
controllers can be removed if all of the sub-DAG’s children endorse every
node in the sub-DAG, and all of the sub-DAG’s parents endorse every ele-
ment of the sub-DAG, and all of the sub-DAG’s children. We can be certain
that the halted controllers will not endorse some contradictory send (unless
the halted controllers have forked), since they are halted, and cannot endorse
anything.

3.4.5. Backup Controllers

If the terminal controller has halted, a backup controller (who has endorsed a
halted state for the halted controller) can assume control of the resource with
a receive record. In order to show the corresponding send has in effect hap-
pened, the backup controller must also show that any earlier controllers in
the resource label’s backup field have halted without receiving this resource.
This allows resources to survive a halted controller.

A good default backup controller list might be derived some kind of path
“up” the controller DAG, representing a history of controllers who have re-
cently affected this resource.
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3.4.6. Emergency Override Condition (EOC)

Controllers decide on an order of transactions. Usually this decision is de-
fined by some kind of signature or record of consensus proving that some
computer or computers decided on some ordering. In principle, not all deci-
sions (not all transactions) require the same procedure. In particular, we can
add to a controller a special case that is only allowed to do the halt transition.
We call this the Emergency Override Condition (EOC). For example, this
could be some kind of high-integrity (but slow) “supervisor” who is trusted
to declare when a controller’s consensus mechanism (e.g. a blockchain) is
dead. If an EOC incorrectly halts a controller, but that controller continues
ordering, it has forked: mistaken EOCs make controllers unsafe.

This does mean there could be multiple controllers who differ only in
their EOC, but are otherwise maintained by the same consensus or machine.
These are still distinct controllers. These controllers would be trivially able to
endorse each other frequently, making transferring resources between them
very easy. We might even be able to do atomic transactions consuming re-
sources from both, although we leave that to future work.

3.5. Checking SRH

The protocol described does not guarantee SRH. A violation can occur when
one of the controllers in the DAG has forked. In our Fig. 2 example, a trans-
action could create a new resource which depends on resources 9 and 11. Its
controller DAG would include the forked controller B (preserving CCL), but
its history would not be serializable, and in fact contains a double-consumed
tomato.

This can happen even if the controller appears only once in the DAG: the
“other” fork may have been endorsed and removed by some parent in the
DAG. The easiest way to verify SRH of a resource or set of resources is to get
a recent state root from each of the controller ids in their controller DAGs
(and creating controllers), as well as all of their corresponding endorsed state
roots for all the controller ids in the DAGs (and creating controllers), and then
prove that for each controller: the “recent” state root is provably after all of
the endorsed state roots or state roots in the DAG. This would prove that no
one has endorsed any fork contrary to the state roots in the DAG, and so the
history is consistent.

To understand why this holds, consider that a node with no parents can-
not be removed (its send must have removable=false), and if a node with an
honest parent has forked, both sides cannot be removed without the honest
parent endorsing one. The honest parent then cannot be removed from the
other side, as it cannot endorse the contradictory send.

To ensure this information is always available would require each resource
to carry an awful lot of information. This is another case where a little trust
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goes a long way: if you trust that all the controllers in a resource’s controller
DAG haven’t forked, then CCL (with CRH) implies SRH. If you want to check,
you can, but it requires acquiring more data.

4. Future Work

There are several directions for future work. For instance, although all the
techniques we have found for preserving SRH are expensive (Appendix A),
we have not proven that preserving SRH is inherently expensive. There may
yet be some technique that is satisfactory.

Likewise, we have not proven that it is crucial for controllers to retain
resource-specific records to allow endorsement-based reduction (e.g. sends
and receives). There are almost certainly ways to batch and amortize these
costs. Perhaps there is even a system that only requires endorsement maps,
like Appendix C, while preserving the local “only neighbors in the controller
DAG need to participate in a reduce operation” property.

Furthermore, we make no claims about data availability, which is crucial
for liveness. Despite ordering transactions, controllers do not necessarily
need to be able to calculate their state: zero-knowledge proofs can show that
a transaction is valid without revealing much of what happened in it [KST22,
KG24]. We leave the difficult task of tracking what data needs to be available
(e.g. current state of send and receive records), and to whom, to future work.

5. Concluding remarks

We detail a technique for maintaining efficient controller labels with endorsement-
based reduction. Our technique keeps each transaction simple and inexpen-
sive, and allows resources to carry relatively small labels, while simultane-
ously ensuring Causal Resource Histories and Consistent Controller Labels.
Fully Serializable Resource History remains check-able, although we show
how a trust can improve performance, allowing CCL to be sufficient. As part

of a larger cross-domain architecture, our technique will allow more secure,
more flexible cross-domain applications.
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A. Resource Vector Clocks: a Technique for SRH

One approach to maintain SRH (no “double-consumes” in the history of one
resource) would be for each resource label to carry a vector-clock: a map
from controller ids to state roots. Resource labels also designate a creating
controller (which must be in the vector-clock) and a terminal controller. The
“affecting controllers” in this technique are the keys of the vector-clock.
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When a transaction creates a new resource, the new resource’s vector-
clock must feature all the controllers from all of the input resources’ vector
clocks, each mapped to a state root that is provably after (or equal to) the
corresponding state roots from each of the input resources. This ensures the
history of each resource cannot include a fork from any controller. The state
root for the controller creating the resource must be that controller’s current
state root.

A.1. Problem: Cost

Every transaction now has to do “state root is after” proofs for an unlimited
number of controllers.

A.2. Problem: Can’t Remove Controllers

There is no “endorse” mechanism that would allow a controller that appears
in an ancestor to be absent from a descendant’s vector-clock. This could lead
to very large vector clocks in every resource, which result in lots of proofs
with each transaction.

A fairly common pattern in the blockchain industry is to transfer resources
from a more trustworthy “base chain” to a “side-chain,” or “L2” chain, do
some transactions, and then transfer them back to the base chain, which
somehow “endorses” the side-chain changes, so it doesn’t matter where they
happened. Fundamentally, such an endorsement technique requires that the
“base chain” remembers what it has endorsed, and doesn’t endorse any con-
flicting histories. We have not encoded this in our vector clock model. Fur-
thermore, it is difficult to add: it is not clear which controllers should be
empowered to endorse and remove which other controllers.

B. Consistent Controller State: Even Stronger than SRH

One property we might want would be for each correct controller’s state
(the set of resources it can use as input for valid transactions) to reflect some
fully serializable history featuring only correct transactions (and no forks).
In Fig. 2, for instance, controllers C and D have Consistent Controller State.
This would mean that, for example, if another controller has forked and pro-
duced resources representing a double-spend, no correct controller’s state
will contain resources affected by “both sides” of this double-spend. In Fig. 2,
controller A does not maintain consistent controller state, because its state
contains resources 11 and 9, which descend from conflicting sides of a fork
(B).

Consistent controller state is equivalent to requiring that all the resources
on a controller together have SRH. Likewise, SRH would be equivalent to
consistent controller state if each controller had only one resource.
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The techniques we have found to maintain consistent controller state are
incredibly strict, which is why we generally use weaker properties.

B.1. Recursive Endorsement: a Technique for Consistent Controller
State

The idea with this technique is to have each controller fully endorse, or check,
the entire history of other controllers, including the history of controllers
they’ve endorsed. This ensures that the state each controller recognizes is
fully consistent.

B.1.1. Controller State

Suppose that each controller has a unique controller id. Suppose also that
each controller’s entire state (including representations of resources created,
consumed, and everything else) can be uniquely identified with a digest or
hash called a state root. Each controller’s state also includes a recursive en-
dorsement map, which is a map from controller ids to state roots. Its entry for
itself is, in effect, its own state root. At any time, (as a valid transaction), it
can update the entry for any set of controllers, provided:

« the new state root for all the controllers is proven after the old state
root for all the controllers (or genesis, if there isn’t one)

« The new recursive endorsement map includes state roots for all the
controllers in all the recursive endorsement maps of the controllers
updated.

« For pairs of elements ((C,, R;), (Cp, Rp)) in the recursive endorsement
map, if R,’s recursive endorsement map includes an entry <Cb, R;),
then Ry, is provably after R;.

Basically, each update includes a recursive history check for all the controllers
on which it depends. This makes recursive endorsement map updates much
more expensive than regular endorsement map updates (Section 3).

B.1.2. Resource Labels

Each resource label only specifies a terminal controller id, a creating controller
id, and a creating controller state root. The creating controller state root is
the state of the controller just after creating the resource. One possible type
of transaction consumes a resource, and replaces it with a similar resource
featuring a different terminal controller id. This represents “transferring” the
resource to a different controller. This can be constrained by the resource
logic.

In general (not only for transfers), a resource cannot be used in a transac-
tion unless:
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« the transaction is ordered and executed on the resource’s terminal con-
troller.

« the terminal controller’s recursive endorsement map state root for the
resource’s creating controller is proven after (or equal to) the resource’s
creating controller state root.

« allresources created by this transaction have a creating controller equal
to the terminal controller of the inputs.

« all resources created by this transaction have a creating controller state
root representing the state of the creating controller after this transac-
tion.

In other words, a resource can’t be used on a controller until its history is
fully endorsed.

The nice thing is that transactions using resources created on the terminal
controller are cheap, and resources each carry a constant amount of infor-
mation about their controllers: they do not have to carry a set of “affecting
controllers” A resource is “as trustworthy” as its creating controller, and any
controller that has endorsed that creating controller’s state root (equal to or
after this resource).

B.1.3. Problem: Forks Split the World

Suppose controller B forks, and A updates its recursive endorsement vector
with one side of the fork, and D updates its recursive endorsement vector
with the other side. (This is what would happen in our Fig. 2 example.) This
means that hereafter, any resources A creates cannot be used on D, and vice-
versa. (The Fig. 2 transfer of resource 8 on D to resource 9 on A would be
impossible.) In fact, all controllers (if they ever use any resource from B),
divide into 2 groups (one for each side of the fork), which can never interact
again.

This problem doesn’t happen (or is less bad) if we only have to preserve
SRH, because transactions only depends on input resources’ history, so, in
our Fig. 2 example, the transfer of resource 8 on D to resource 9 on A would
be ok. Furthermore, resources on A that weren’t actually affected by any-
thing after the B fork could still transfer to D (which they can’t in consistent
controller state).

C. Ancestral Endorsement Reduction

In Section 3.4, we discuss a technique for removing nodes from the controller
DAG that requires controllers to keep send and receive records, in addition to
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an endorsement map. This technique does not require such records. Unfor-
tunately, this technique is not local: it involves participation from controllers
beyond just the neighbors of the nodes to be removed, or the terminal con-
troller.

Each resource’s label contains a DAG of state roots. The resource’s af-
fecting controllers are the controllers of all the state roots in its DAG. Each
created resource’s DAG contains the DAGs from all of their dependencies,
with a new state root as a sink, representing the state of the creating con-
troller upon completion of this transaction. We also allow transactions to
update any state root to a state root provably after the old one.

We allow a transaction to remove a node from a resource DAG if:

« the node has parents (it is not a source in the DAG)
« all of the node’s ancestors endorse the node

This preserves CCL, because we cannot remove sources, and if a controller
forks, its parent cannot endorse both sides of the fork (without forking them-
selves). Intuitively, if there is a double-spend, at least one side of the spend
will never be able to remove all the forked controllers from its controller
DAG.

The problem is that this is very expensive. It involves activity from an arbi-
trarily large set of controllers for every removal. What’s more, sources in the
controller DAG essentially have to endorse every removal, so they can end
up doing a lot of work (although this can be batched and amortized), with
no way to offload that responsibility to anyone else. If, for example, a cryp-
tocurrency issuer moves tokens to other controllers and then becomes inac-
tive for a long time (perhaps because it doesn’t want to issue new currency
for a while), then none of those tokens can do any ancestral endorsement
reduction during that time.

Unfortunately, resources cannot allow both Ancestral Endorsement Re-
duction and reduction as we’ve outlined above: we have not found a CCL-
preserving system that does both.
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