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Abstract
With the advent of non-uniform folding schemes, generalised arithmetisations such as
CCS and the application of towers of binary fields to SNARKs, many of the existing as-
sumptions on SNARKs have been put into question, and the design space of zkVMs has
opened.
We explore the concept of a zkVM as an efficient alternative to the existing naive circuit-
building and proving approach to large computations. While there are different types
of zkVMs, we focus on the ones based on Incrementally Verifiable Computation, which
allow us to prove incrementally small steps and accumulate its proofs.
Lastly, we discuss the role of a compiler in optimising zkVMs, where the instruction set
is not fixed but determined at compile time and suggest different compilation pipelines
for future zkVMs.
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1. Introduction
1.1. Recursion
In zero-knowledge-proofs cryptography, recursion is a technique in proving
schemes in which the proof of every computation in a set of sequential com-
putations becomes the input or witness of the next NARK (not necessarily
succinct), and every proof created proves all the prior claims in the chain.

The two main properties recursion unlocks for SNARKs are compression
and composability. Instead of the property “a prover shows knowledge to a
verifier, without revealing the underlying fact” of a general proving system,
recursion enables a prover to show knowledge to a verifier without fully
knowing the underlying facts by taking the proof of a statement as input.
Also, a large proof can be compressed into a small one by composing two or
many provers. For example, a fast prover can be run for a large circuit and
then use another recursive prover to output a small proof for that smaller
circuit. Composing different proof systems, although theoretically possible,
is quite difficult in practice.

There are three axes that any proving system aims to optimise: proving
time (i.e., the cost of proof generation), proof size and verification time. Still,
the optimisation of each of these three axes seemingly comes at a cost to the
other two. For example, the trade-off for having a short proof is generally
having a slow prover.

Figure 1. SNARK trade-offs triangle.

Recursion enables having both small proofs with short proving times. This
is possible by using a fast SNARK with a large proof size for long computa-
tions and then using that large proof as a witness to another slow SNARK
with short proofs. Depending on the overhead of using two SNARKs, we can
potentially have a fast combined SNARK with short-proof sizes. This idea of
recursion lies at the heart of Incrementally Verifiable Computation (IVC).
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1.2. Schemes from recursive proof composition
As its name suggests, IVC allows us to verify a potentially long computa-
tion incrementally, in batches, without doing it all at once. Since 2008, re-
searchers have proposed different variants of IVC:

1. Full recursion,

2. Atomic accumulation,

3. Split accumulation, and

4. Folding schemes.

A useful organising framework of the different recursive techniques is the
position at which the prover defers recursive verification. Folding schemes
defer early expensive computation to the final verifier (also called decider).
The prover in these schemes has fewer computations and a smaller recursive
circuit. The techniques in the later stages only defer the instantiated poly-
nomial oracles, and they are more flexible to batch multiple instances with
different circuits.

Figure 2. Credit: KiloNova paper.

Folding schemes are recursive schemes that defer verification for instances
without instantiating polynomial oracles. Accumulation schemes are recur-
sive schemes that already instantiated oracles and batch them in their in-
stances. This is an essential difference because running recursive circuits
with non-native computation of commitments is expensive, and commit-
ments are carried along in accumulation schemes.

For example, the recursive circuit representing the folding algorithm in
HyperNova only computes one group operation when folding two instances,
whereas, in BCLMS21, this accumulation is linear to the size of the instances.

As a side note, both “Special Sound Protocol” and “Relaxed Relation” are
two different techniques to relax the constraints of the arithmetisations to
accommodate folding. We will discuss arithmetisations later in Section 3.
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1.3. Full recursion
This is the first and most obvious approach to recursion, sketched by Valiant
[Val08] in 2008. In this scheme, the full verifier algorithm of a SNARK is
turned into a circuit and appended to the circuit that represents each step in
the chain of computations. At every step 𝑖 , the proof 𝜋𝑖 asserts that all prior
computations were verified. For this scheme to be practical, the underlying
proof systemmust have a succinct verifier, that is, sublinear in time complex-
ity. We can find Groth16 [Gro16], Plonk [GWC19] and KZG [KZG10]. How-
ever, a practical scheme cannot be achieved for long computation chains,
even with a succinct verifier for each iteration. Ideally, we want the prover
to do linear work, with just a constant factor penalty over simply running
the computation.

Figure 3. Full recursion.

1.4. Atomic accumulation
In their paper “Recursive Proof Compositionwithout a Trusted Setup” [BGH19]
(also known as theHalo paper), the ZCash team noticed that the verifier algo-
rithm is composed of fast and slow sub algorithms and that for certain type
of SNARKs, the verification of the linear part can be accumulated in any IPA-
based SNARK. The sublinear part of the verifier algorithm is still turned into
a circuit and appended to each iteration of the recursive scheme.

Following this work, “Proof-Carrying Data from Accumulation Schemes”
[BCMS20] coined the term accumulation schemes to describe this particular
variant of IVC, and “Halo Infinite: Proof-CarryingData fromAdditively Poly-
nomial Commitments” [BDFG20] generalised the Halo construction to any
additively homomorphic polynomial commitment scheme.

A polynomial commitment scheme (PCS) allows the prover to convince
a verifier that, given a commitment to a polynomial 𝑓 , a challenge point
𝑥 and an evaluation 𝑦, we have that 𝑓 (𝑥) = 𝑦. In this recursion scheme,
whether it uses IPA or KZG as a PCS, the verifier accumulates the linear com-
putation and performs the sublinear check. A PCS is additively homomor-
phic if can take a random linear combination of polynomials {𝑓𝑖} and their
commitments {𝐶𝑖} separately and ensure with high probability that 𝐶 :=
𝐶1+𝛼𝐶2+𝛼2𝐶3+ . . .+𝛼𝑛𝐶𝑛 is a commitment of 𝑓 := 𝑓1+𝛼 𝑓2+𝛼2𝑓3+ . . .+𝛼𝑛 𝑓𝑛 .

It is important to note that this accumulation technique cannot be applied
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to STARKs since its polynomial commitment scheme FRI is based on hashing,
and hashes are not additively homomorphic.

1.4.1. Inner Product Argument (IPA)
In particular, in the inner product argument (IPA) of Halo, the linear compu-
tation is an inner product𝐶𝑖 = G, s = 𝐺1 ·𝑠1+· · ·+𝐺𝑛 ·𝑠𝑛 , where s is the round
of challenges {𝑢1, · · · , 𝑢𝑘} of that particular recursion step, and G is a vector
of random group elements𝐺𝑖 publicly given at the beginning of the protocol.
The verifier needs to compute 𝐶𝑖 = G, s, which is a linear-time multiscalar
multiplication, and 𝑏 = s, b = 𝑔(𝑥,𝑢1, · · · , 𝑢𝑘), which can be computed by the
verifier in logarithmic time. This latter one is the sublinear check.

Their key observation is that 𝐶𝑖 is a commitment. In the final step of this
PCS, the verifier performs a random linear combination of the accumulated
commitments, 𝐶 = 𝐶1 + 𝛼𝐶2 + · · · + 𝛼𝑚𝐶𝑚 and verifies the argument in
𝑂 (𝑚 · 𝑙𝑜𝑔(𝑑)). Since there is only one verifier check at the end, the cost
is amortised.

Figure 4. Halo2 IPA recursion.

1.4.2. Kate, Zaverucha, Goldberg (KZG)
In the KZG polynomial commitment scheme [KZG10], the verifier performs
two operations:

• Creating a pair of a polynomial and a commitment to it.

• Checking the polynomial-commitment pair.

The first part of creating a pair is fast (sublinear) and so extends the circuit
𝐹 in the accumulation scheme; the second part of checking the polynomial-
commitment pair is slow since it involves pairings and is accumulated until
the end of the scheme. As with IPA, accumulating the linear check is possi-
ble because this polynomial commitment scheme is additively homomorphic,
and the cost is also amortised.

1.4.3. Split accumulation
In the paper “Proof-Carrying Data without Succinct Arguments” [BCL+20]
(also known as BCLSM21), Bünz et al. realised that the expensive succinct
property of a SNARK is unnecessary for building accumulation schemes, i.e.,
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the proof of each iterative computation do not need to be succinct to get
the succinctness property of the overall scheme. They proposed a scheme in
which each iteration is simply a NARK and run a single SNARK at the end
of the scheme. This led to the so-called Split Accumulation technique. In this
scheme, the verifier and prover do not need to verify or prove each iteration
completely, respectively, and it generates a NARK instead of a SNARK.

1.5. Folding schemes
A natural continuation of the previous trends came with the work of “Nova:
Recursive Zero-Knowledge Arguments from Folding Schemes” [KST21], in
which the sublinear work of the verifier is also deferred.

From here, an explosion of works emerged, extending this construction
of Nova. Sangria extends this with the Plonkish arithmetisation and Hyper-
Nova [KS23b] with Customisable Constraint System (CCS) [STW23a]. Su-
perNova [KS22] extended Nova with a new technique called Non-uniform
IVC (NIVC) and Protostar [BC23] generalised the construction of Nova, in-
troducing a generic folding scheme.

1.5.1. Initial constructions
The fundamental concept behind folding schemes is batch verification, which
allows checking multiple proofs in a batch with almost the same cost as
checking just one proof.

The argument of folding schemes goes as follows: given a set of sequential
computations 𝐹 → 𝐹 → · · · → 𝐹 rather than computing a SNARK proof
𝜋𝑖 for each iteration, we fold them into a single instance 𝐹 ∗ for which we
produce a single SNARK proof 𝜋 .

That is, instead of providing evidence that each step function 𝐹 is com-
puted correctly, instances are “folded” into a compressed instance (i.e., an
instance that encapsulates all previous instances), and the prover outputs a
proof of correct folding. Practically, this only works because folding is much
cheaper (constant size) compared to verifying a SNARK.

As with accumulation schemes, folding schemes also require an additively
homomorphic PCS. Thus, STARKs cannot be folded either.

The main improvements of folding over other recursion or accumulation
techniques are the following.

• The prover performs fewer Multi-Scalar Multiplications (MSMs) and,
in some folding schemes, also avoids doing Fast Fourier Transforms
(FFTs), which are generally a bottleneck.

• The circuit verifying the folding iteration has fewer MSMs and hashes,
leading to fewer constraints.
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1.5.2. Multi-folding
A folding scheme for a relation 𝑅 is a protocol between a prover and a verifier
that reduces the task of checking two instances in 𝑅 with the same structure
𝑆 into the task of checking a single folded instance in 𝑅 also with structure
𝑆 .

Introduced in the HyperNova paper, multi-folding is a generalisation of
folding that allows the folding of two collections of instances in relations 𝑅1
and 𝑅2 with the same structure 𝑆 . In layman’s terms, this means that we can
fold two different circuits as long as they have the same arithmetisation. In
HyperNova, this arithmetisation is CCS.

The main idea of multi-folding, as introduced in HyperNova, is to fold
a CCS instance into an augmented, more restricted variant of CCS (called
linearised CCS) that is carried throughout the long-running computation.
This instance is called a “running instance”. That is, 𝐹𝑖 : 𝐶𝐶𝑆×𝐶𝐶𝑆𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑠𝑒𝑑 →
𝐶𝐶𝑆𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑠𝑒𝑑 . The running instance is denoted by 𝑈 , and the CCS instance
representing the last step in the computation is denoted by 𝑢.

The work of “KiloNova: Non-Uniform PCD with Zero-Knowledge Prop-
erty from Generic Folding Schemes” [ZGGX23] extends multi-folding to al-
low folding two instances of different structures.

1.5.3. Non-uniform IVC
In IVC, the iterative function 𝐹 must always be the same for each iteration.
In this case, this function is said to be uniform or universal. For most use
cases of IVC, we may want 𝐹 to be different or non-uniform.

While it is possible to combine two or more different operations into one
single constraint (e.g., by using selector polynomials), the cost of proving a
program’s step in IVC is proportional to the size of the universal circuit, even
though the corresponding program step invokes only one of the supported
instructions. For NIVC to be a meaningful notion, the prover’s work at each
step scales only on the size of the function executed at that step.

Given the high costs imposed by universal circuits, designers of these ma-
chines aim to employ a minimal instruction set, to keep the size of the uni-
versal circuit, and thereby, the cost of proving a program step minimal. How-
ever, this do not work in practice. For real applications, one must execute
an enormous number of iterations of the minimal circuit (e.g., billions of
iterations), making the prover’s work largely untenable.

SuperNova introduced the Non-uniform IVC (NIVC) construction. The
subtitle of this paper reads: “Proving universal machine executions with-
out universal circuits”. This means that, instead of one universal circuit
𝐹 , we have a bunch of different step functions 𝐹𝜙 (𝑠𝑖−1,𝑤𝑖 ) parameterised by
𝜙 : some-program-data → {1, · · · , 𝑛} where only one step function 𝐹𝑖 is cho-
sen per iteration. The set of step functions {𝐹1, · · · , 𝐹𝑛} can be understood
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as an instruction set in the context of zkVMs.
In a traditional IVC setting, the function or circuit 𝐹 that we are iterating

over must always be the same, even if it comprises multiple functions. A
good analogy is a custom gate with selectors, and the cost is linear to the
number of functions {𝐹1, · · · 𝐹𝑙 } that compose 𝐹 . With NIVC, both the size
of the circuit and the cost of computation are only linear to the particular
𝐹𝜙 (𝑠𝑖−1,𝑤𝑖 ) that gets executed. The per-step proving cost is independent of the
sizes of circuits of “uninvoked” instructions.

Formally, for a specified ({𝐹1, · · · , 𝐹𝑙 }, 𝜙) and (𝑛, 𝑠0, 𝑠𝑛), the prover proves
the knowledge of a set of non-deterministic values {𝜔0, · · · , 𝜔𝑛−1} and {𝑠1, · · · , 𝑠𝑛−1}
such that ∀𝑖 ∈ 0, · · · , 𝑛 − 1, we have that 𝑠𝑖+1 = 𝐹𝜙 (𝑠𝑖 ,𝜔𝑖 ) (𝑠𝑖, 𝜔𝑖). This innova-
tion renders many applications based on folding schemes computationally
feasible, particularly zkVMs.

Compared to all the previous techniques, proving each iteration in NIVC
can be optimised to be only a multiplicative factor slower than evaluating
the iterated function.

1.6. Cycle of Curves
In IVC, (part of) the verification algorithm of the first SNARK (sometimes
called “the inner SNARK”) is embedded into the circuit of the second (“outer”)
SNARK. The proof of the inner SNARK becomes the witness of the outer
SNARK. For practical reasons, this construction usually requires a cycle of
curves (see this post for more details).

Thus, an IVC protocol is usually instantiated over a cycle of two curves.

Figure 5. IVC over a cycle of curves.

Any recursion scheme will likely need to be implemented over a cycle of
curves. This has consequences on which proving systems to use and which
curves work. Works like “CycleFold: Folding-scheme-based recursive argu-
ments over a cycle of elliptic curves” [KS23a] focus on which operations are
optimised on which curve. For example, in their scheme, only group opera-
tions are performed in the outer curve and then compressed.
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1.7. Remarks
In 2008, Paul Valiant proposed the first IVC scheme. Research on IVC was
mostly quiet until 2020. Since then, we have seen an explosion of IVC-related
papers.

Scheme Arithmetisation Non-uniform Multi-folding ZK
Nova R1CS No No No
SuperNova R1CS Yes No No
HyperNova CCS No Yes No
BCLMS21 R1CS Yes Yes Yes
Protostar Plonkish/CCS Yes No No
Protogalaxy Plonkish/CCS Yes Yes No

Table 1. Recursive schemes comparison.

While IVC supports machines with a single universal instruction, NIVC
supports machines with an arbitrary instruction set.

Recursion and, particularly, folding schemes are radically changing how
we design SNARKs by removing some artificial limitations of today’s popular
SNARKs. The importance of having an efficient recursive prover, even at the
expense of a large proof size or a slow verifier (which can later be folded),
has revamped proving systems such as “Brakedown: Linear-time and field-
agnostic SNARKs for R1CS” [GLS+21] that were neglected.

Thus, folding encourages IVC-based zkVM designers to aim for the fastest
possible prover, even if this means obtaining only slightly sublinear size
proofs or linear verifiers and then applying recursion to bring the proof
size down. Properties such as zero-knowledge, non-uniformity of circuits,
multi-folding and the arithmetisation used in a recursive scheme will all be
important in designing a zkVM.

2. zkVMs
2.1. Motivation
Zero-knowledge proof systems allow us to prove the validity of a statement
while hiding some desired information. This statement must be written as
an arithmetic circuit or, equivalently, as a set of polynomial equations. High-
level languages, such as Juvix, must compile to this low-level ZK-friendly
language before the validity of a statement can be proven in zero knowledge.
This is the role of a front-end. Finally, a SNARK for circuit-satisfiability is
applied to a circuit instance. This is what a SNARK backend does. The prover
costs of the SNARK backend grow with the size of the circuit. Keeping a
circuit small can be challenging because circuits are an extremely limited
format in which to express a computation. They consist of gates connected
by wires.
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There are two main approaches for compiling and proving the validity of
a statement written in a high-level language

• Monolithic: A whole program becomes a single (giant) circuit.

• Modular : A program is potentially divided into subprograms, and each
of these subsets of the program becomes a circuit. Other circuits are
used to prove relationships between these circuit subsets.

The monolithic approach is naive and is the current approach taken by
most SNARK compilers, such as Vamp-IR, until the advent of folding schemes.
In this monolithic approach, the prover’s memory and time requirements de-
riving from the circuit quickly exceed what is currently reasonable as pro-
grams get complex.

The modular approach can be seen as a state machine where every state
transition (or chunk of the program) outputs a proof of valid computation.
Ideally, at each step, in addition to proving that the state transition is correct,
it is proven that all state transitions are correct from genesis up to the current
state.

Figure 6. State machine.

This modular approach is what recursion and, more specifically, Incre-
mentally Verifiable Computation (IVC) offers, and the underlying computa-
tional paradigm of a certain type of zkVMs. The main advantage of a zkVM,
whether it is STARK-based or IVC-based, is that it allows for the verification
of computations that are too large to fit in memory.

2.2. Description
One way to think about a zkVM is as a proving system that generates a proof
of correct execution from an input program and data. Generally, they emu-
late the von Neumann architecture and prove relations between a program’s
execution and its use of Random Access Memory. These proving systems or
SNARKs are optimised for circuits that are decomposable into a given set of
instructions and target machine abstractions, also known as Instruction Set
Architectures (ISA). Thus, this instruction set is a fundamental component
of a zkVM.

The other main component of a zkVM is the Virtual Machine (VM). A
VM emulates physical hardware, but compared to physical hardware, the
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virtualised hardware in a zkVM can change as long as the prover and verifier
agree on it. This gives designers fewer constraints and more choices and
trade-offs.

2.3. STARK-based zkVMs
STARK zkVMs were the first type of zkVM that was of practical use due to:

• Fast provers: At the expense of large proof sizes and slower verifiers,
STARK provers are faster than other non-FRI-based SNARKs. These
zkVMs leverage full recursion to keep proof sizes and verifier times
low.

• Tailored provers: STARK-based zkVM comewith a fixed Instruction Set
(IS), that allows provers to be optimised to those specific instructions,
in contrast to general purpose provers, as in Halo2.

• Full recursion: In STARKs, a program is typically arithmetised as a
matrix, where every row is a constraint. The prover in a STARK zkVM
provides a proof for every row in a recursive manner.

A conventional STARK VM runs over a pre-defined IS or a set of fixed op-
codes given. Because of the generality of these instruction sets, the number
of opcodes in an ISA tends to be small (especially in CairoVM), and thus the
circuit size or number of constraints of each opcode is small, too. This im-
plies that the number of instructions that we need to prove and verify for a
given program is likely gigantic in such architectures. STARK zkVMs only
work with full recursion, that is, they need to run a full verifier circuit inside
each iteration, so the computational overhead of proving and verifying ev-
ery single small instruction render these zkVM designs suboptimal. Folding
schemes do not work with any non-homomorphic PCS, so they do not work
with STARKs since they use FRI, a hash-based PCS. We cannot apply any
proof batching in those zkVMs.

With over five years of engineering work, STARK-based zkVMs are still
the most widely deployed type of zkVM.

2.4. IVC-based zkVMs
This is the type of zkVM we are most interested in this report, both due to
its novelty and potential. It is a particular instance of IVC where the inputs
of a repeated step function 𝐹 are a state 𝑠𝑖−1 and some other private or public
data𝑤𝑖 .

An IVC-based zkVM will output a proof that asserts that all states from
𝑠0 to 𝑠𝑖−𝑖 reached in 𝑖 − 1 steps are correct and that the application of a state
transition 𝐹 to 𝑠𝑖−1 gives 𝑠𝑖 . For this to work, we must augment 𝐹 with the
verification circuit that verifies the proof of the previous step.
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Figure 7. IVC-based zkVMs.

In other words, there are several properties we need to ensure, each of
them encoded as a circuit:

• The previous state 𝑠𝑖−1 has been correctly recognised and the input 𝑠𝑖−1
to the state transition function 𝐹 is correct. This is known as memory
checking.

• The state transition 𝐹 process itself is correct.

In short, IVC allows us to obtain proofs for long computations with rela-
tively little memory by splitting them into iterative, verifiable, shorter com-
putations.

While this encapsulates the essence of an IVC-based zkVM, two impor-
tant factors render this original cryptographic primitive, as described in the
original construction of IVC, inefficient:

• The function 𝐹 representing a state transition is a fixed circuit that en-
codes all instructions. Moreover, if a circuit encodes different branches,
the proving time is also proportional to all branches, whether they are
used or not.

• The verifier circuit that extends 𝐹 is computationally expensive since
it involves checking openings in a polynomial commitment scheme.

Earlier in our discussion of recursive proof systems, we saw that Halo in-
troduced the notion of accumulation schemes to address the problem of hav-
ing an expensive verifier in the scheme, in which the computationally expen-
sive part of the verifier algorithm (i.e., the linear time polynomial commit-
ment opening checks) was deferred and later combined. This accumulation
of checks opened up the possibilities of suitable SNARKs in an IVC scheme
since the performance of the verifier is no longer required to be sublinear,
and thus, we can even choose an SNARK with an expensive verifier such
as in Bulletproofs [BBB+17]. Because of the Inner Product Argument (IPA)
polynomial commitment scheme introduced in Bulletproofs, Halo2 does not
need a trusted setup. But this was still not enough to construct a competitive
zkVM.
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While folding schemes improve the efficiency of IVC and accumulation
schemes by going a step further and deferring all verifying checks until all
proofs are generated, they still incur in some overhead and must be taken
into account for designing an optimal zkVM.

The original folding schemes (understood as a common single function
𝐹 that gets executed repeatedly, deferring all verification checks), such as
Nova, were not enough to instantiate an efficient SNARK derived from a
given program. In a zkVM with multiple instructions, these folding schemes
require the size of the circuit 𝐹 to be linear to the number of instructions.

2.5. NIVC-based zkVMs
Fortunately, SuperNova introduced the concept of Non-uniform IVC (NIVC).
This innovation renders IVC zkVMs based on folding schemes computation-
ally feasible. While it is common to think of these {𝐹1, · · · , 𝐹𝑛} as pre-determined
instructions (e.g., addition, equality, multiplication, range checks, etc.), they
do not have to be fixed. In fact, we can leverage the work of compilers to
tailor them to a given program.

NIVC-based zkVMs significantly reduce the hardware requirements for
provers, enhance parallel efficiency and reduce circuit sizes. Different in-
struction circuits can be written without the need to use switches to toggle
circuits, reducing circuit size and achieving a “à la carte cost profile”. Fur-
thermore, different circuit inputs can be folded together.

NIVC-based zkVMs can benefit from compiler passes. A compiler can
leverage the information it gathers from a given program to create these
step functions 𝐹𝑖 at compile time. They no longer need to be small instruc-
tions but subsets of the whole program created at compile time. Given some
design constraints, the compiler, acting as a front-end to a SNARK, can split
the program 𝐹 into a set of {𝐹1, · · · , 𝐹𝑛} subprograms.

The compiler must be given a heuristic of this desired optimal balance
between circuit size and the number of circuits. For example, an optimal
equilibrium might create bounded circuits of 212 gates with only one wit-
ness column. That is, a compiler must have an educated guess of how to
decompose larger circuits into smaller ones.

2.5.1. NIVC zkVMs are RAMmachines
Auseful conceptual framework for handling state in a zkVM is by thinking of
it as a RAM (Random Access Memory) machine that supports 𝑙 instructions,
𝑠 registers of width𝑤 bits and memory of size 2𝑤 .

Each of the step functions 𝐹𝑖 in {𝐹1, · · · , 𝐹𝑛} represents the instruction 𝑖
that the machine supports. The input of this state transition 𝐹𝑖 consists of
𝑠 + 1 field elements, where the first entry (the “program counter”) holds a
commitment to a memory (e.g., the root of a Merkle tree with 2𝑤 leaves) that
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stores both a program and its state, and the remaining entries are the values
of 𝑠 registers. The output of each 𝐹𝑖 consists of 𝑠 + 1 field elements that are
updated values of the provided input.

For step 𝑖 , state 𝑠𝑖−1 and non-deterministic witness 𝜔𝑖−1, the selector func-
tion 𝜙 (𝑠𝑖−1, 𝜔𝑖−1) picks the instruction in the memory (whose commitment
is at 𝑠𝑖−1 [1]) at address in the program counter register 𝑠𝑖−1 [2]. The initial
state 𝑠0 [1] holds a commitment to the verifier’s desired memory of size 2𝑤

with its program stored in it, and the rest of 𝑠0 contains the verifier’s desired
initial values of the machine’s registers.

Remark 1. Designing zkVMs is as much a cryptography problem (i.e., find-
ing the most efficient schemes or back-ends for a given arithmetisation) as it
is a compiler problem (i.e., designing the right transformations of a program
that we want to efficiently prove its computation).

3. Arithmetisations
An arithmetisation describes how computation is structured to make it eas-
ier to prove properties about that computation. While the simplest way of
expressing a computation using fields is with arithmetic circuits, circuits
are unstructured. This lack of structure makes it challenging to implement
SNARKS and motivates the quest for a suitable abstraction or arithmetisa-
tion.

When designing circuits, knowing which types of operations are required
and how many times they are used in the circuit guides the design of the
prover for most proving systems. In other words, the performance of a proof
system may be constrained by the chosen arithmetisation. Some represen-
tations such as R1CS are more fixed, others like Plonkish are more granular.
This granularity offers control and potential optimisation at the expense of
the overall complexity of the proving system as a whole.

Figure 8. Arithmetisations.

In contrast to a general-purpose proving system, a zkVM with a fixed set
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of instructions allows us to tune the proving system to a particular circuit or
set of circuits. This restriction opens the door for further optimisation, as we
have seen with STARK zkVMs, where each prover is tailored to a particular
zkVM.

Recursive schemes offer a much larger room for optimising their provers.
Two factors must be taken into account when choosing an arithmetisation
for a recursive scheme: flexibility and complexity.

Since we are designing a compiler to zkVMs, this compiler must under-
stand the constraints of the IR or arithmetisation to optimise the prover’s
efficiency.

3.1. R1CS
Rank-One Constraint System (R1CS) uses constraints of the form𝐴𝑧×𝐵𝑧 = 𝐶𝑧
where𝐴, 𝐵, and𝐶 are linear combinations of variables and constants encoded
in witness 𝑧.

Folding schemes such as Nova (and its successor SuperNova) only work
over R1CS instances, while the HyperNova scheme is defined over CCS. As
we will see, CCS is a generalisation of both R1CS and Plonkish. The folding
scheme ProtoStar is itself a generalisation of Nova defined over CCS and thus
over Plonkish and R1CS.

Compared to other arithmetisations, the main property of R1CS is that it
is simple. R1CS-based folding schemes such as Nova achieve most of the
benefits of folding, but they cannot have gates. Custom gates are powerful
but complex. However, lookups can arguably be used as an alternative to
custom gates.

The simplicity of these folding schemes on top of R1CS derives from the
simplicity of R1CS. From an engineering perspective, they are likely to be
more efficient than Plonkish-based folding schemes on the get-go in a naive
implementation, but they have less room for optimisation.

3.2. AIR
Algebraic Intermediate Representation (AIR) is a particularly structured kind
of Plonkish circuit, generally associated with STARKs.

AIR is depicted by an execution trace, i.e., a matrix of field elements where
each column represents a register and each row denotes a moment in time.
The values of registers over time are recorded in the execution trace. To
ensure that a computation has been performed correctly, it is necessary to
prove that the execution trace satisfies certain properties.

The main two constraints in AIR are transition and boundary constraints.
Transition constraints represent the evolution of the trace, that is, that a each
time step, a certain relation holds between the current state and the next state.
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Boundary constraints assert that a register takes on a certain value at some
point in time.

While AIR is the intermediate representation that STARKWAREuses, most
SNARKs can be easily tweaked to support both Plonkish and AIR.

3.3. Plonkish
Plonkish is a generalisation of AIR that includes a new column type of selec-
tors.

Figure 9. Plonkish arithmetisation.

Both, Plonkish and AIR are conceptualised over the idea of an execution
trace. However, Plonkish circuits have selectors, i.e., columns of boolean val-
ues that allow the proving system to merge several constraints into a single
one, while AIR arithmetisation does not. This makes Plonkish circuits more
general.

A Plonkish circuit-satisfiability relation consists of three modular rela-
tions, namely:

• A high-degree gate relation checking that each custom gate is satisfied.

• A permutation relation checking that different gate values are consis-
tent if the same wire connects them.

• A lookup relation checking that a subset of gate values belongs to a
pre-processed table.

Unlike R1CS, which has a fixed structure, Plonkish circuits are a family of
circuits defined in terms of a rectangular matrix of values. We refer to rows,
columns, and cells of this matrix with the conventional meanings.

Among other proving systems, Halo2 uses this arithmetisation, although it
provides a higher-level API with abstractions such as gates and chips. A gate
in Halo2 is a collection of linearly independent constraints which must all be
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satisfied in a given row. A chip may apply multiple gates to a region of the
trace matrix, and the gates may have been defined with the assumption that
they will always be applied in a certain order. This is achieved by using the
“rotation” of columns to reference values from neighbouring rows. This level
of abstraction unfortunately discards a lot of valuable information about the
potential relationship between different gates.

ProtoStar was also designed with Plonk as a target backend. Due to their
modular architecture, their folding scheme proved to be flexible enough to
be implementable over CCS when it came out.

3.3.1. Formal description
Formally, a Plonkish structure 𝑆 , 𝑆𝑃𝑙𝑜𝑛𝑘𝑖𝑠ℎ = (𝑚,𝑛, 𝑙, 𝑡, 𝑞, 𝑑, 𝑒, 𝑔,𝑇 , 𝑠), consists
of:

• a multivariate polynomial 𝑔 in 𝑡 variables where 𝑔 is expressed as a
sum of 𝑞 monomials and each monomial has a total degree at most 𝑑 .
That is,

𝑔(𝑋1, · · · , 𝑋𝑡 ) =
𝑞∑
𝑖=0

𝑘𝑖 · 𝑋 𝑖1
1 · · ·𝑋 𝑖𝑡

𝑡 ,

where 𝑖1 + · · · + 𝑖𝑡 ≤ 𝑑 for all 𝑖 .

• a vector of constants called selectors 𝑠 ∈ F𝑒 .

• a set of𝑚 constraints. Each constraint 𝑖 is specified via a vector 𝑇𝑖 of
length 𝑡 , with entries in the range {0, · · · , 𝑛 + 𝑒 − 1}.

𝑇𝑖 := [𝑇𝑖0, · · · ,𝑇𝑖𝑡−1] (constraint)

That is, if 𝑗 < 𝑛 − 𝑙 , then 𝑇𝑖 [ 𝑗] will be a private input 𝑤 𝑗 . If 𝑗 ≥ 𝑛 − 𝑙
and 𝑗 < 𝑛, then 𝑇𝑖 [ 𝑗] will be a private input 𝑥 𝑗 . Otherwise, 𝑇𝑖 [ 𝑗] will
be a selector.

• size bounds𝑚,𝑛, 𝑙, 𝑡, 𝑞, 𝑑, 𝑒 ∈ N:

– 𝑚 is the number of constraints (i.e., rows in the Plonkish matrix
representation).

– 𝑛 is the number of private and public inputs (i.e., columns in the
Plonkish matrix representation, excluding selectors).

– 𝑙 is the number of public inputs (𝑛 − 𝑙 is the number of private
inputs).

– 𝑡 is the number of variables in the polynomial 𝑔.
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– 𝑞 is the number of monomials that compose 𝑔.

– 𝑑 is the maximum degree of 𝑔.

– 𝑒 is the number of selectors.

A Plonkish instance consists of public input 𝑥 ∈ F𝑙 . A Plonkish witness
consists of a vector 𝑤 ∈ F𝑛−𝑙 . A Plonkish structure-instance tuple (𝑆, 𝑥) is
satisfied by a Plonkish witness𝑤 if

𝑔(𝑧 [𝑇𝑖 [1]], · · · , 𝑧 [𝑇𝑖 [𝑡]]) = 0 (1)

for all 𝑖 ∈ {0, · · · ,𝑚 − 1}, where 𝑧 = (𝑤, 𝑥, 𝑠) ∈ F𝑛+𝑒 .

3.4. CCS
Customisable Constraint System (CCS) [STW23a] is a generalisation of R1CS
and Plonkish that enables the use of high-degree gates while not requir-
ing permutation arguments. There are costless reductions from instances
of R1CS and Plonkish instances to equivalent CCS instances.

There has recently been a steady effort of abstracting out components in
proving systems and thus enabling the decoupling between arithmetisation
and backend. CCS is a consequence of these efforts.

However, there is no practical implementation of the CCS arithmetisation.
This renders folding schemes such as HyperNova only theoretical.

3.4.1. Formal description
Formally, a CCS instance consists of public input 𝑥 ∈ F𝑙 . A CCS witness
consists of a vector 𝑤 ∈ F𝑛−𝑙−1. A CCS structure-instance tuple (𝑆, 𝑥) is
satisfied by a CCS witness𝑤 if

𝑞−1∑
𝑖=0

𝑐𝑖 · ◦ 𝑗∈𝑆𝑖𝑀 𝑗 · 𝑧 = 0 (2)

where 𝑧 = (𝑤, 1, 𝑥) ∈ F𝑛 .
𝑀 𝑗 ·𝑧 denotesmatrix-vectormultiplication, ◦ denotes theHadamard (entry-

wise) product between vectors, and 0 is an𝑚-sized vector with entries equal
to the additive identity in F.

Expanded, this equation looks like:

𝑐0 ·

𝑗𝑖∈𝑆0︷                           ︸︸                           ︷
(𝑀 𝑗0 · 𝑧 ◦ · · · ◦𝑀 𝑗 |𝑆0 |−1

· 𝑧) + · · · + 𝑐𝑞−1 ·

𝑗𝑖∈𝑆𝑞−1︷                              ︸︸                              ︷
(𝑀 𝑗0 · 𝑧 ◦ · · · ◦𝑀 𝑗 |𝑆𝑞−1 |−1

· 𝑧) = 0

A CCS structure 𝑆 consists of:
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• a sequence ofmatrices𝑀0, · · · , 𝑀𝑡−1 ∈ F𝑚×𝑛 with atmostΩ(𝑚𝑎𝑥 (𝑚,𝑛))
non-zero entries in total (think of these matrices as a generalisation of
the 𝐴, 𝐵, and 𝐶 matrices in R1CS that encode the constraints).

• a sequence of q multisets [𝑆0, · · · , 𝑆𝑞−1], where an element in eachmul-
tiset is from the domain 0, · · · , 𝑡 − 1 and the cardinality of each multi-
set is at most d (think of 𝑆𝑖 as containing the pointers to the matrices
𝑀𝑖 for each of the addends in the CCS equation).

• a sequence of q constants [𝑐0, · · · , 𝑐𝑞−1], where each constant is from
F

• size bounds𝑚,𝑛, 𝑁, 𝑙, 𝑡, 𝑞, 𝑑 ∈ 𝑁 where 𝑛 ≥ 𝑙

– 𝑚 is the number of constraints (i.e., rows in the Plonkish matrix
representation)

– 𝑛 is the number of private and public inputs (i.e., columns in the
Plonkish matrix representation, excluding selectors)

– 𝑁 is the total number of non-zero entries in 𝑀0, · · · , 𝑀𝑡−1

– 𝑙 is the number of public inputs (thus 𝑛 − 𝑙 is the number of
private inputs)

– 𝑡 is the number of𝑀 matrices. (e.g., in R1CS, which can be seen
as an instance of CCS, there are 3 𝑀 matrices: 𝐴, 𝐵 and 𝐶)

– 𝑞 is the number of addends in the CCS equation (i.e., 𝑞 = |{𝑆𝑖}|)

– 𝑑 is the upper bound of the cardinality of each 𝑆𝑖

3.4.2. Representing R1CS in CCS
As an example, the R1CS equation, (𝐴 ·𝑧)◦(𝐵 ·𝑧)−𝐶 ·𝑧 = 0 can be represented
with CCS as 𝑆𝐶𝐶𝑆 = (𝑛,𝑚, 𝑁, 𝑙, 𝑡, 𝑞, 𝑑, [𝑀0, 𝑀1, 𝑀2], [𝑆1, 𝑆2], [𝑐1, 𝑐2]), where
𝑚,𝑛, 𝑁, 𝑙 are from R1CS and 𝑡 = 3, 𝑞 = 2, 𝑑 = 2, 𝑀0 = 𝐴, 𝑀1 = 𝐵, 𝑀2 = 𝐶 ,
𝑆1 = {0, 1}, 𝑆2 = {2}, 𝑐0 = 1, 𝑐1 = −1. The relation then becomes:

1 ·

𝑆0={0,1}︷          ︸︸          ︷
(𝐴 · 𝑧 ◦ 𝐵 · 𝑧) +(−1) ·

𝑆1={2}︷ ︸︸ ︷
(𝐶 · 𝑧) = 0
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3.4.3. Representing Plonkish in CCS
How does the structure of CCS compare to Plonkish?
𝑆𝑃𝑙𝑜𝑛𝑘𝑖𝑠ℎ = (𝑚,𝑛, 𝑙, 𝑡, 𝑞, 𝑑, 𝑒, 𝑔,𝑇 , 𝑠)
𝑆𝐶𝐶𝑆 = (𝑚,𝑛, 𝑁, 𝑙, 𝑡, 𝑞, 𝑑, [𝑀0, · · · , 𝑀𝑡−1], [𝑆0, · · · , 𝑆𝑞−1], [𝑐0, · · · , 𝑐𝑞−1])
To derive 𝑀0, · · · , 𝑀𝑡−1 in 𝑆𝐶𝐶𝑆 from 𝑆𝑃𝑙𝑜𝑛𝑘𝑖𝑠ℎ , each polynomial constraint

in 𝑆𝑃𝑙𝑜𝑛𝑘𝑖𝑠ℎ corresponds to some row in 𝑀𝑖 , so, it suffices to specify how the
𝑖-th row of these matrices is set.

For all 𝑗 ∈ {0, 1, · · · , 𝑡 − 1}, let 𝑘 𝑗 = 𝑇𝑖 [ 𝑗] (recall that 𝑡 is the number of
variables in 𝑔 and 𝑇𝑖 represents a constraint in vector form). So 𝑘 𝑗 is one of
the values in a constraint.

If 𝑘 𝑗 ≥ 𝑛 (i.e., if 𝑘 𝑗 is greater than the number of public and private inputs
- it points to a selector), then we set 𝑀 𝑗 [𝑖] [0] = 𝑠 [𝑘 𝑗 − 𝑛]. Otherwise, we set
𝑀 𝑗 [𝑖] [𝑘 𝑗 ] = 1. We set 𝑆𝐶𝐶𝑆 .𝑁 to be the total number of non-zero entries in
𝑀0, · · · , 𝑀𝑡−1.

Each 𝑐𝑖 in [𝑐0, · · · , 𝑐𝑞−1] is the coefficient of the 𝑖-th monomial of 𝑔. For
𝑖 ∈ {0, 1, · · · , 𝑞 − 1}, if the 𝑖-th monomial contains a variable 𝑗 , where 𝑗 ∈
{0, 1, · · · , 𝑡 − 1}, add 𝑗 to multiset 𝑆𝑖 with multiplicity equal to the degree of
the variable.

4. zkVM Compilers
4.1. Motivation
While a zkVM is not a compiler, any end-to-end architecture for proving com-
putation of a program likely involves the design of a compiler with that of a
zkVM. A zkVM is often regarded as “something” that can prove the compu-
tation of a generic CPU program. Since a program is written in a high-level
language, this seems to imply that a compiler is a component in a zkVM, but
it is not. For a given program, a compiler may output different circuits for
the same instruction set of a zkVM or, more interestingly, generate different
instruction sets or zkVMs that are optimised for that compiled program.

What is a program? One very common abstraction used in compilers is
that of a control flow graph, which splits a program into a series of blocks
and arrows of blocks based on jumps. A compiler takes a program written
in a high-level language and outputs a circuit. The inputs and outputs of a
circuit are finite field elements. A compiler should be able to decide which
circuits or blocks are derived from a program and a prover would aim to
minimise the cost of computing such subset of circuits that gets executed
from a given input.

For example, given a program 𝐶 = {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺} and inputs 𝑥,𝑤 for
which the path 𝑃 = [𝐴,𝐶, 𝐹 ] is taken, a compiler will output the set of circuits
while the prover’s costs will only depend on this path 𝑃 , not on the blocks
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Figure 10. Control Flow Graph.

not taken. With folding schemes, each path in 𝑃 can be folded into a single
instance.

Different back-ends provide different trade-offs that will affect how the
output of the compiler. This dance between compilers and proving systems
will be the focus of this report.

In fact, we are not designing a zkVM, but a compiler to a zkVM. Whatever
zkVMwill be suitable for a given programwill be determined at compile time.
Another way of seeing this, is that the set of instructions {𝐹1, · · · , 𝐹𝑁 } of the
zkVM will be set dynamically at compile time. A question may arise: what
is really a zkVM? Does a different instruction set render a different zkVM, or
can the same zkVM hold different instruction sets?

Figure 11. Dynamic Instruction Set.

We want to design a compiler that leverages the state-of-the-art work on
folding schemes, thus outputting a NIVC-based zkVM.
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Figure 12. Compiling to zkVMs.

In the design of a zkVM compiler, it is important to strike a balance be-
tween the size of each step function 𝐹 and the overhead induced by recursion,
accumulation or folding. On one end of this spectrum, we have the whole
program being one big circuit; on the other end, we fold of all primitive oper-
ations such as addition, equality or multiplication. There is no folding in the
former case, rendering in the majority of cases a circuit that exceeds the cur-
rent memory limits that a prover generally has access to. The base overhead
of folding in the latter case may be comparable to the cost of proving due
to having such small circuits (and there are many of them!). Adding a small
folding overhead to many small circuits removes almost all the advantages
of folding. So, where is the balance?

NIVC-based zkVMs can benefit from compiler passes. While it is common
to fix the set of functions {𝐹1, · · · , 𝐹𝑛} to a basic instruction set, it does not
have to be so. A compiler can leverage the information it gathers from a
given program to create these step functions 𝐹𝑖 at compile time. They no
longer need to be small instructions, but subsets of the whole program cre-
ated at compile time. Given some design constraints, the compiler, acting as
a front-end to a SNARK, can split the program 𝐹 into a set of {𝐹1, · · · , 𝐹𝑛}
subprograms. The compiler must be given a heuristic of this desired balance
between circuit size and number of circuits. For example, equilibrium might
be found by creating bounded circuits of 212 gates with only one witness
column. The compiler must have an educated guess of how to decompose
larger circuits into smaller ones.

This holistic zkVM compiler approach is not commonly seen, since most
projects are focused on building on top of fixed instruction sets (IS) such as
RISC-V or one that is compatible with the EVM. However, we do find this
integral frontend-backend approach in projects like “Jolt: SNARKs for Vir-
tual Machines via Lookups” [AST23] and “Unlocking the lookup singularity
with Lasso” [STW23b].
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4.2. Example
Let us use an example to highlight the different ways of compiling a program.
Let multi_algorithms be a program that serves as a database of algorithms:
given a program identifier, it proves knowledge of the outcome of that algo-
rithm. We have mixed some algorithms together to illustrate how real-world
applications tend to be assembled.

For example, in the first program (i.e., program_id=0), we prove both knowl-
edge of the n-th Fibonnacci number and that it is a prime number.

Figure 13. The multi_algorithms example.

Let us revisit the three different compiling and proving approaches studied
so far:

4.2.1. Monolithic circuits
This would be a direct compilation into a circuit for an arithmetisation (e.g.,
Halo2 Plonkish).

Figure 14. Monolithic circuits.
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The circuit derived from this approach contains all the unused branches,
since the compiler does not know the inputs of the program. For a complex
application, this turns to be a large circuit with high memory requirements.
Since, proving time is at least𝑂 (𝑛), where𝑛 is the number of gates (including
all the unused branches), and memory consumption is also often linear, this
approach turns out to be inefficient for large applications.

4.2.2. Fixed instruction sets
This is the approach taken by STARK zkVMs: the set of (primitive) instruc-
tions is pre-determined, that is, it is independent of the program. Underly-
ing any computation on finite fields, there are primitives operations such
as addition or multiplication, as well as other common and more complex
operations such as range checks.

The prover do not prove the whole program at once, but proves each of
these primitive operations, one at a time. In the case of STARKs, they use
full recursion.

Figure 15. Fixed instruction sets.

Having a set of fixed instructions for any possible program turns out to be
quite inefficient when the prover provides a proof for each of these opcodes,
since these opcodes happen to be too small to justify the overhead of proving.

4.2.3. Dynamic instruction sets
Fixed-instruction-set zkVMs do not have knowledge of the *program* (so
they include instructions that a particular program might never use).

In contrast, using some heuristic, a compiler may determine the set of in-
structions for a given program. For our example, a possible instruction set
is depicted below. The aim of such compiler is to choose blocks of computa-
tion that are big enough to justify the overhead of folding and small enough
to avoid blowing up memory resources and other issues derived from large
circuits.
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Figure 16. Dynamic instruction set.

This set must be crafted with some considerations. Notice that functions
such as range_check, which checks that a value is between 0 and 2𝑛 , or is_-
prime are independent of the rest of the computation. This means they can
be treated as separate “opcodes” in this dynamic set of instructions. They
are not too complex but not too small, and are used multiple times.

The different ways of splitting a program into subprograms that serve as
an instruction set for an NIVC zkVM is more an art than it is a science.

4.3. Design Goals
When designing an end-to-end compiler for zkVMs, these are our desiderata:

• Smart Block Generation: We want a compiler that decomposes any
program into a set of circuit blocks that can be proven efficiently, using
folding schemes or otherwise. The Instruction Set (IS) of the generated
zkVM consists of these circuit blocks.

• Fast Provers, Small Proofs, Fast Verifiers: We want short proof
generation time and fast verification, both in terms of asymptotic per-
formance and overheads. Aswewill see, the advent of folding schemes
and other works have reframed some assumptions of existing SNARKs,
where slow verifiers and large proofs can be overcome with folding.

• Modularity: We want to reason about a specific proving system with-
out tying ourselves to a concrete Intermediate Representation (IR), spe-
cific arithmetisation or fixed finite field. Most novel proving systems
such as ProtoStar are agnostic to their arithmetisation, and others such
as Jolt and Lasso also allow us to be flexible with the field of choice.

• Function privacy: We want a proving system that proves that some
program is satisfied, without knowing which program, by only pub-
lishing its commitment. This is not strictly a property of the compiler
but of an operating system such as Taiga.

DOI: 10.5281/zenodo.10498995 Anoma Research Topics | April 2, 2024 | 26

https://dx.doi.org/10.5281/zenodo.10498995
http://art.anoma.net


4.4. Smart Block Generation
4.4.1. Circuits as lookup tables (Jolt and Lasso)
Just One Lookup Table (Jolt) [AST23] is an exciting theoretical innovation
in the zkVM space, despite it not having a stable open-source implementa-
tion yet. It springs from the realisation that the key property that makes
an instruction “SNARK-friendly” is decomposability, that is, that an instruc-
tion can be evaluated on a given pair of inputs (𝑥,𝑦) by breaking 𝑥 and 𝑦 up
into smaller chunks by evaluating first a small number of functions on each
chunk and then combining the results.

They claim that the other zkVMs are wrongly designed from focusing on
artificial limitations of existing SNARKs . That is, all other proving systems
have been hand-designing VMs to be friendly to the limitations of today’s
popular SNARKs, but these assumed limitations are not real.

Jolt eliminates the need to hand-design instruction sets for zkVMs or to
hand-optimise circuits implementing those instruction sets because it re-
places those circuits with a simple evaluation table of each primitive instruc-
tion. This modular and generic architecture makes it easier to swap out fields
and polynomial commitment schemes and implement recursion, and gener-
ally reduces the surface area for bugs and the amount of code that needs to
be maintained and audited.

Jolt’s companion work and backend, Lasso [STW23b], is a new family of
sum-check-based lookup arguments that supports gigantic (decomposable)
tables. As we mentioned, Jolt is a zkVM technique that avoids the complex-
ity of implementing each instruction’s logic with a tailored circuit. Instead,
primitive instructions are implemented via one lookup into the entire evalu-
ation table of the instruction. The key contribution of Jolt is to design these
enormous tables with a certain structure that allows for efficient lookup ar-
guments using Lasso. Lasso differs from other lookup arguments in that it
explicitly exploits the cheapness of committing to small-valued elements.

In their paper, Jolt demonstrates that all operations in a complex instruc-
tion set such as Risc-V are decomposable, thus efficiently convertible into
lookup tables. So, already in their paper, Jolt and Lasso theoretically provide
a better alternative to existing STARK zkVMs. With an MSM-based poly-
nomial commitment, Jolt prover costs are roughly that of committing to 6
arbitrary field elements (256-bit) per CPU step. This compares to RISC-Zero,
where prover costs are roughly equivalent to 35 (256-bit) field elements per
CPU step, and Cairo VM, where prover commits to over 50 field elements
per step of the Cairo CPU.

If a compiler wants to generate a suitable instruction set for a program to
be proved in Lasso, it must ensure that two things occur. First, all generated
circuit blocks are decomposable. Second, the generated blocks or instruc-
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tions are lookup tables.

Figure 17. Compiler + Jolt pipeline.

The line between such a compiler and Jolt is blurry. Jolt is already a fron-
tend that converts computer programs into a lower-level representation and
then uses Lasso to generate a SNARK for circuit-satisfiability. In their pa-
per, they adapt a program to a given set of decomposable instructions, and
they prove it a la STARK zkVMs. A compiler can leverage the understanding
of decomposable functions and replace Jolt in some sense, while using the
techniques in Jolt to improve the overall performance.

Note that unlike STARKs implementations, Lasso’s is not yet optimised.
So a detailed experimental comparison of Jolt to existing zkVMs will have to
wait until a full implementation is complete.

(Optional). Below is a summary of the main ideas of this work:

• Lookup singularity. Jolt uses lookups instead of tailored circuits. It
can represent any opcode or instruction in a separate table, and these
tables can be gigantic. That is, for each instruction, the table stores
the entire evaluation table of the instruction. Then, Lasso is applied
to prove these lookups. The key insight here is that most instructions
can be computed by composing lookups from a handful of small tables.
For example, if an instruction operates on a 64-bit input (and a 64-bit
output), the table representing this function has size 2128.

• Decomposability. The purpose of Jolt is to design gigantic tables with
a certain structure that allows for efficient lookup arguments using
Lasso. Decomposability roughly means that a single lookup into the
table can be answered by performing a handful of lookups into much
smaller tables. One lookup into an evaluation table, which has size 𝑁 ,
can be answered with a small number of lookups into much smaller
tables 𝑡1, . . . , 𝑡𝑙 , each of size 𝑁 1/𝑐 . For most instructions, 𝑙 will equal
one or two, and about 𝑐 lookups are performed into each table.
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• LDE-structure. LDE is short for a technical notion called a Low-Degree
Extension polynomial. A Multilinear Extension (MLE) is a specific
low-degree extension of a polynomial. For each of the small tables,
the multilinear extension can be evaluated at any point, using just
𝑂 (𝑙𝑜𝑔(𝑁 )/𝑐) field operations. If the table is structured, no party needs
to commit to all of the values in the table. This contrasts with other
lookup arguments since Lasso pays only for the table elements it actu-
ally accesses.

• Sum-check protocol. The cost of committing to data is a key bottleneck
for SNARK prover performance. The sum-check protocol minimises
the amount of data (and size of each piece of data) that the prover has
to commit to. Lasso is a lookup argument where the prover commits
to few and small values, compared to other proving systems. That is,
all committed values are small.

• Auditing. Jolt encourages zkVM designers to simply specify the evalu-
ation table of each instruction. It is easier to audit lookup arguments
than many lines of hand-coded constraints.

• Offline memory checking. Lasso’s core contribution is, arguably, its
single-table lookup procedure: a virtual polynomial protocol which
uses offline memory-checking. Any zkVM has to perform memory-
checking. This means that the prover must be able to commit to an
execution trace for the VM (that is, a step-by-step record of what the
VM did over the course of its execution), and the verifier has to find a
way to confirm that the prover maintained memory correctly through-
out the entire execution trace. In other words, the value purportedly
returned by any read operation in the execution trace must equal the
value most recently written to the appropriate memory cell.

4.5. Fast Provers, Small Proofs, Fast Verifiers
4.5.1. Small fields (Plonky2)
STARKs pioneered in 2018 an alternative design of proving systems, based
on linear error-correcting codes and collision-resistant hash functions, and
characterised by the use of smaller fields (specifically of 64-bit-sized prime
fields instead of the usual 128, 192 or 256 bits). They were able to use a
smaller field because the Polynomial Commitment Scheme (PCS) they use,
FRI, does not require a large-characteristic field (in fact, FRI was originally
designed to work over towers of binary fields).

Plonky2 claims to achieve the performance benefits of both SNARKs and
STARKs, although the difference between Succinct Non-interactive ARgu-
ment of Knowledge (SNARKs) and Scalable Transparent ARgument of Knowl-
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edge (STARKs) is blurry. Most modern SNARKs do not require trusted setup
and their proving time is quasilinear (i.e., linear up to logarithmic factors),
so they are Scalable and Transparent. On the other hand, STARKs today are
deployed Non-interactively and thus they are SNARKs.

Instead, we define a STARK as the specific construction from the STARK-
WARE team. We define a STARKish protocol as a SNARK from linear codes
and hash functions, in contrast to elliptic-curve-based SNARKs. FRI-based
or Brakedown-based SNARKs are STARKish protocols. Thus Plonky2 is a
STARKish protocol.

Elliptic Curve SNARKs STARKish Protocols
Smaller proofs ( 1 Kb) Larger proofs ( 100 Kb)
Fast verifier Slower verifier
Slow prover Faster prover
Aggregation & Folding friendly Native-field full recursion friendly
Big fields (256 bits) Small fields support (32 bits)
Compute-bound Bandwidth-bound

Table 2. Comparison of Elliptic Curve SNARKs and STARKish Protocols.

The main mathematical idea behind using arithmetic over smaller fields in
a SNARK is field extensions or towers of fields. That is, using smaller fields
operations while employing their field extensions when necessary (e.g., for
elliptic curve operations) promises to improve performance and maintain
security assumptions.

However, elliptic curves based on extension fields are likely suffer from
specific attacks that do not apply to common elliptic curves constructed over
large prime fields [SSS22].

STARKish protocols leverage the relative efficiency of small-field arith-
metic and achieve state-of-the-art proving performance for naive proving,
mainly because collision-resistant hash functions are much faster than ellip-
tic curve primitives.

In other words, for any sort of uniform computation, the prover’s time
of STARKish protocols seems unbeatable by elliptic curve SNARKs. At this
time, the benefits of elliptic curve SNARKs are mainly their smaller proofs
and efficient verifiers. Folding schemes seem like they can bridge this gap in
prover performance for long computations, as we have seen above.

Plonky2 and its successor, Plonky3, can be seen as implementations of
PLONK with FRI. That is, they take the Interactive Oracle Proof (IOP) from
PLONK and mix it with the FRI Polynomial Commitment Scheme (PCS) to
construct their SNARK.

The polynomial commitment scheme FRI has a very fast prover and this
allows Plonky to play with the spectrum between fast proving and large
proofs and slow proving and small proofs. Plonky2 use smaller field than in
other elliptic-curve-based SNARKs, called the Goldilocks field, which is of

DOI: 10.5281/zenodo.10498995 Anoma Research Topics | April 2, 2024 | 30

https://dx.doi.org/10.5281/zenodo.10498995
http://art.anoma.net


size 264, making native arithmetic in 64-bit CPUs efficient. Plonky3 utilises
an even smaller prime field 𝐹𝑝 called Mersenne31, where 𝑝 is 231 − 1, thus
suitable for 32-bit CPUs (it fits within a 32-bit word).

Despite being one of the most performant implementations of a SNARK,
it is unclear how Plonky3 will benefit from folding schemes, since FRI is not
an additively homomorphic PCS.

Research on combining operations in small fields with other operations in
their extension fields for SNARK protocols is currently very active.

In summary, Plonky3 promises a very performant STARKish zkVM based
on full recursion. Thus it is not folding friendly. While still in progress, the
Valida zkVM is an implementation of a Plonky3 zkVM.

4.5.2. Smallest Fields (Binius)

Plonky2 Plonky3 Binius
𝑝 = 264 − 232 + 1 (Goldilocks) 𝑝 = 231 − 1 (Mersenne31) 𝑝 = 2 (Binary)
Table 3. Comparison of Prime Fields in Plonky2, Plonky3, and Binius.

As we have seen, one of the main disadvantages of SNARKs over ellip-
tic curves compared to STARKish protocols is that elliptic-curve-SNARKs
require a bigger field in their circuits, which affects negatively the perfor-
mance of their provers.

In the case of a SNARK, an element of their field of choice generally de-
composes into 256 bits, whereas STARKish protocols leverage the fact that
the characteristic of a field F𝑝 is equal to the characteristic of any of its ex-
tension fields F𝑝𝑛 , allowing to have small overheads for certain operations
and then using extension fields to achieve the desired cryptographic security.
The most widely used field in STARKs is F𝑝 where 𝑝 = 264−232+1. This field
is called the Goldilocks field. Among other properties, every element in this
field fits in 64 bits, allowing for more efficient arithmetic on CPUs working
on 64-bit integers

The question that “Succinct Arguments over Towers of Binary Fields” (also
known as Binius) [DP23] raised and addressed was: “what is the optimal field
to use in any arithmetisation?”. The obvious answer is binary fields, since
arithmetic circuits are essentially additions and multiplications, and these
operations over binary fields are ideal. They propose using towers of binary
fields to overcome the overhead of embedding F2 ↩→ F𝑝 that are a waste
of resources specially in SNARKs (compared to STARKs), since they require
256-bit prime fields and many gates take 0 or 1 values.

They remark that the FRI polynomial commitment scheme that lies at the
heart of STARKs was designed to work over binary fields. They apply tech-
niques from other works such as Lasso and Hyperplonk [CBBZ22]. In par-
ticular, they leverage the sum-check protocol and “small” values protocols,
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where the prover commits only to small values. They revive the polynomial
commitment scheme Brakedown [GLS+21], which was mainly discarded be-
cause of its slow verifier and the large proofs it produces, despite having
an incredibly efficient prover 𝑂 (𝑁 ). Their SNARK, based on HyperPlonk,
makes Plonkish constraint systems a natural target.

The main consequences of using towers of binary fields are:

• Efficient bitwise operations like XOR or logical shifts, which are heav-
ily used in symmetric cryptography primitives like SHA-256. This
turns “SNARK-unfriendly” operations into friendly.

• Small memory usage from working with small fields.

• Hardware-friendly implementations. This means they can fit more
arithmetic and hashing accelerators on the same silicon area, and run
them at a higher clock frequency.

This work on towers on binary fields advocate hash-based polynomial
commitment schemes such as FRI or Brakedown because they allow using
smaller fields, which in turn reduces storage requirements and more effi-
cient CPU operations, flexibility of fields that enables modular reduction,
and cheaper cryptographic primitives (hash functions are faster than elliptic
curve primitives).

In particular, Binius adapts HyperPlonk to the multivariate setting and is
not fixed to a single finite field. They partition the representative Plonkish
trace matrix into columns, each corresponding to different subfields in the
tower (e.g., some columns will be defined over F2, others over F⊭↚ , etc.), and
the gate constraints may express polynomial relations defined over particu-
lar subfields of the tower.

In summary, like Plonky3, Binius is also a STARKish protocol, thus not
folding friendly. It has re-configured the way we understand SNARKs per-
formance andwe are likely to see significant improvements inmany schemes
from applying the techniques stated in this work, as they did on hash func-
tions (they yield faster SNARKs for these hash functions than anything previ-
ously done). For example, this work has already improved the performance
of other works such as Lasso.

4.5.3. Large fields, but non-uniform folding (SuperNova, HyperNova,
ProtoStar)

Despite the benefits of using small fields, the commitment schemes used in
STARKish protocols are not additively homomorphic. In contrast, elliptic-
curves-based polynomial commitment schemes such as KZG or IPA are ad-
ditively homomorphic and thus folding is possible. Not only that, but the
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work on Non-Uniform Incrementally Verifiable Computation (NIVC) intro-
duced by SuperNova renders these folding schemes as a promising alterna-
tive to construct zkVMs.

PROTOSTAR HyperNova SuperNova
Language Degree 𝑑 Plonk/CCS Degree 𝑑 CCS R1CS (degree 2)
Non-uniform yes no yes
P native |𝑤 |𝐺 |𝑤 |𝐺 |𝑤 |𝐺

𝑂 (|𝑤 |𝑑 log2 𝑑)𝐹 𝑂 (|𝑤 | log2 𝑑)𝐹
extra P native 𝑂 ( |ℓ𝑘 |)𝐺 𝑂 (𝑇 )𝐹 N/A
w/ lookup
P recursive 3𝐺 1𝐺 2𝐺

(𝑑 +𝑂 (1))𝐻 + 𝐻𝑖𝑛 𝑑 log𝑛𝐻 + 𝐻𝑖𝑛 𝐻𝑖𝑛 +𝑂𝜆 (1)𝐻 ) + 1𝐻𝐺

(𝑑 +𝑂 (1))𝐹 𝑂 (𝑑 log𝑛)𝐹
extra P recursive 1𝐻 𝑂 (log𝑇 )𝐻 N/A
w/ lookup 𝑂 (ℓ𝑘 log𝑇 )𝐹

Table 4. Comparison among IVCs (credit: Protostar paper).

As we have seen, NIVC enables us to select any specific “instruction” (or
generated block) 𝐹𝑖 at runtime without having a circuit whose computation
is linear in the entire instruction set. NIVC reduces the cost of recursion from
𝑂 (𝑁 ·𝐶 · 𝐿) to𝑂 (𝑁 (𝐶 + 𝐿)), where 𝑁 is the number of instructions actually
called in a given program,𝐶 is the number of constraints or size of the circuit
(upper bound) and 𝐿 is the number of sub-circuits or size of the instruction
set {𝐹1, · · · , 𝐹𝐿}. Generally, the size of the circuit 𝐶 is much bigger than 𝐿,
so effectively the number of sub-circuits or instructions {𝐹1, · · · , 𝐹𝐿} do not
come at any cost to the prover.

4.6. Modularity
4.6.1. Generic accumulation (Protostar)
ProtoStar is a folding scheme built with a generic accumulation compiler. In
their paper, they show the performance of an instance of this protocol that
uses Plonk as a backend. As ProtosStar was conceived, the work of Cus-
tomisable Constraint Systems (CCS), providing an alternative, more generic
arithmetisation capable of expressing high-degree gates. In an appendix, Pro-
toStar took the opportunity to show how their general compiler can adopt
a different arithmesation such as CCS while remaining the most efficient
folding scheme to date.

So, modularity means that each step in the workflow below for building
an IVC can be implemented in different ways, that is, one could change any
component, from the arithmetisation to the commitment scheme in isolation,
as long as they preserve certain properties.

For example, the commitment scheme in this recipe requires the commit-
ment function to be additively homomorphic. As we’ve seen above, this
renders the works around STARKish protocols not directly applicable here.
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Figure 18. ProtoStar progressive blocks.

The diagram above can be read as follows:

• We start from a special-sound protocol Π𝑠𝑝𝑠 for a relation R. A special-
sound protocol is a simple type of interactive protocol where the ver-
ifier checks that all of equations evaluate to 0. The inputs to these
equations are the public inputs, the prover’s messages and the veri-
fier’s random challenge.

• Then, we transform Π𝑠𝑝𝑠 into a compressed verification version of it
(𝐶𝑉 [Π𝑠𝑝𝑠]), i.e., a special-sound protocol for the same relation R that
compresses the 𝑙 degree-𝑑 equations checked by the verifier into a sin-
gle degree-(𝑑 + 2) equation using random linear combinations and 2

√
𝑙

degree-2 equations.

• We construct a commit-and-open scheme from this sound-protocol
𝐶𝑉 [Π𝑠𝑝𝑠] that renders another special-sound protocolΠ𝑐𝑚 for the same
given relation.

• A special-sound protocol is an interactive protocol. Thus we can ap-
ply the Fiat-Shamir transform to make it non-interactive, and 𝐹𝑆 [Π𝑐𝑚]
becomes a NARK.

• Next, we accumulate the verification predicate𝑉𝑠𝑝𝑠 of theNARK scheme
𝐹𝑆 [Π𝑐𝑚] and so we have an accumulation scheme 𝑎𝑐𝑐 [𝐹𝑆 [Π𝑐𝑚]].

• From a given accumulation scheme 𝑎𝑐𝑐 [𝐹𝑆 [Π𝑐𝑚]], there exists an ef-
ficient transformation that outputs an IVC scheme, assuming that the
circuit complexity of the accumulation verifier 𝑉𝑎𝑐𝑐 is sub-linear in its
inputs.

4.7. Function privacy
4.7.1. Universal Circuits + Full Recursion (Taiga, Zexe, VeriZexe)
Function privacy is a property of some execution environments such as Taiga
or Zexe [BCG+18] of hiding which function or application is called at any
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Figure 19. Full recursion in Taiga

given time from some parties; function privacy is always defined with re-
spect to a specific verifier. This verifier does not learn anything about a
particular function, other than that (a) It is commitment (hiding + binding)
and (b) that the function was satisfied over some inputs.

In broad terms, one of the main ideas behind achieving function privacy
consists of fixing a single universal function that takes user-defined func-
tions as inputs. The other main idea behind function privacy is using a fully
recursive scheme to hide a function, or in particular a verifying key of a
circuit, via a commitment to that verifying key.

The architecture of Taiga comprises three circuits:

• Resource logic circuits: They represent the application-specific circuits,
that is, the encoding of an application into a circuit

• Verifier circuit: An instance of full recursion, this circuit encodes the
verifier algorithm and represents the recursive step that achieves func-
tion privacy. It takes both the proof 𝜋 and the verifying key 𝑣𝑘 or a
resource logic as private inputs, and the commitment of this verify-
ing key 𝐶𝑚(𝑣𝑘) as a public input. On the one hand, it verifies that
the resource logic proof is correct. On the other hand, it hashes the
verifying key and checks that the commitment to the verifying key
is correctly computed. It outputs another proof 𝜋 ′ that states that “I
know of a valid proof of a resource logic whose verifying key is hidden
under this commitment 𝐶𝑚”. So, the resource that gets included in a
transaction do not contain the verifying key of the resource logic, but
its commitment and a proof that the logic is satisfied, hence achieving
function privacy. It is very important to note that the verifier circuit
is run by the prover to blind the verifying key 𝑣𝑘 .

• Compliance circuit: This circuit proves that some resources are created
and some are consumed correctly in a transaction (i.e., the proposed
state transitions follow the Taiga rules) with regards to the commit-
ment of the verifying key 𝐶𝑚(𝑣𝑘) of a certain resource logic.

Both verifier and compliance circuit are fixed (i.e., they do not depend
on resource logics), and the resource logic commitments are both blinding
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and binding, so we do not reveal any information about the resource logics
involved, and achieve function privacy.

5. Conclusion
zkVMs are great to prove large computations but they are not perfect. In
particular, zkVMs don’t have knowledge of the program, so they include
instructions that a particular program might never use and the instructions
used may not be optimal; for any given program and backend, there is a most
suitable set of instructions.

While it is common to fix a set of functions {𝐹1, · · · , 𝐹𝑛} to a basic instruc-
tion set (like STARKish zkVMs do), it doesn’t have to be so. A compiler can
use the information it gathers from a program to create tailored step func-
tions or instruction set (IS) {𝐹𝑖} at compile time. These fundamental instruc-
tions no longer need to be small enough opcodes that satisfy all programs,
but subsets of the compiled program.

Given some design constraints and using some heuristics, a compiler (act-
ing as a front-end to a SNARK)may split a program into a set of subprograms
and strike a balance between circuit size and number of circuits for a specific
backend.

In recent zkVMs, this backend can either be a folding scheme, a fully recur-
sive scheme or a giant lookup table, each providing very different properties
and in turn affecting the design of the zkVM compiler.

Some of the main questions we want to answer are:

• What is the right approach of designing a zkVM?

• How different is the work of the compiler for each of these types of
backends?

• How much do these schemes benefit from such a compiler?

• How will existing research potentially influence these zkVMs?

After analysing the state-of-the-art works on IVC, arithmetisation, recur-
sion schemes, finite field arithmetic, lookups, etc. we have identified three
distinct, promising directions in future zkVMs: STARKish, NIVC and Jolt. In
the sections below, we also hint the role of a compiler in such constructions.

5.1. Compiling to STARKish zkVMs
STARKish zkVMs use full recursion. Their polynomial commitment schemes
are based on hash functions and error-correcting codes. Since these SNARKs
are not based on elliptic curves, they are able to use smaller fields. This
makes the prover much faster since the polynomial commitment scheme is
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generally the bottleneck for any SNARK and committing to small fields is
more efficient. The work on towers of binary fields pioneered by Binius
promises to improve dramatically the efficiency of these STARKish proto-
cols. In a recent presentation, they run a benchmark for committing to a
polynomial with 228 coefficients.

1-bit elements 8-bit elements 32-bit elements 64-bit elements
Hyrax BN254 (Lasso) 85.02 s 118.6 s 286.9 s 605.5 s
FRI, Poseidon (Plonky2) 98.718 s 98.718 s 98.817 s 98.817 s
FRI, Keccak (Plonky2) 29.36 s 29.36 s 29.36 s 29.36 s
Binius 0.586 s 5.173 s 29.36 s 58.62 s

Table 5. Your caption here.

Binius benefits from using towers of binary fields in the sense that 1-bit el-
ement operations are much cheaper than 64-bit operations. They can extend
their binary field as their wish for certain operations. In contrast, Plonky2
uses a 64-bit prime field, so any element must be embedded into this field, no
matter how small the element is. Elliptic-curve-based SNARKs use a 256-bit
so every operand must be embedded in this large prime field, no matter how
small its value is.

Thework of Binius in particular is redefining some of the (mis)-conceptions
of SNARK friendliness, and traditional hash functions such as SHA-3 are now
“SNARK-friendly”.

However, STARKish protocols cannot be folded, since the sum of their
commitments is not homomorphic. Since a zkVM is an instance of IVC, any
STARKish protocol is limited to full recursion. On one hand, they offer a
much faster prover. On the other hand, they cannot accumulate or delay
any verification.

A compiler such as the one described in this report can still improve greatly
the performance of these zkVMs. Fewer but larger operations means that the
overhead of having a full verifier on every operation (i.e., full recursion) can
be made potentially negligible, relative to the cost of proving such operation.

5.2. Compiling to NIVC zkVMs
On the other hand, the polynomial commitment schemes of elliptic-curve-
based SNARKs are generally additively homomorphic and thus these SNARKs
can be folded, i.e., 𝐶𝑜𝑚(𝑥) +𝐶𝑜𝑚(𝑦) = 𝐶𝑜𝑚(𝑥 + 𝑦).

Folding was impractical until SuperNova because the prover time of such
a zkVM or IVC instance (which already is more expensive than the prover
is a STARKish protocol) was linear to the number of instructions in its in-
struction set. SuperNova introduced Non-uniform IVC, which removes this
limitation and renders such an IVC-based zkVM practical.
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Elliptic-curve-based SNARKs allow for both full recursion and folding.
KZG is the polynomial commitment scheme that outputs the smallest proof,
but it requires a trusted setup. IPA, though less efficient (technically is not
succinct), removes this limitation. SNARKs that use HyperPlonk avoid FFT
during proof generation, which brings downmemory requirements andmakes
them more parallelisable.

Although the recursive overhead is much less for folding than for full re-
cursion, even a small folding overhead. such as in Protostar (500 constraints)
or in HyperNova (10.000 constraints), is expensive if the operation is as small
as an addition.

A compiler that generates an ideal set of instructions for a NIVC zkVM
renders this approach not only practical, but the most promising one.

However, some of these works are still merely theoretical. Works built
solely on CCS such as HyperNova do not have an implementation, which
makes them hard to consider from an engineering perspective. Others, such
as ProtoStar, are not only the state-of-the-art performance-wise, but are also
the most generic and have already Plonkish implementations and adapta-
tions on other systems such as Halo2. In particular, ProtoStar is a generic
folding scheme. This means that future works in arithmetisations, polyno-
mial commitment schemes or even folding techniques promise to be easily
adopted in ProtoStar with ease.

5.3. Compiling to Jolt zkVMs
(J)ust - (O)ne - (L)ookup -(T)able (i.e., Jolt) is simply a compiler that, given
a set of decomposable instructions, generates a zkVM that is solely based on
lookups. A Jolt zkVM is just a giant lookup table. The proving system that
performs these lookups is Lasso.

One of the costs in Lasso is proportional to the number of permutations
of the lookup table. If the lookup table is 64-bits this would be 264. This is
too big. If instead we chunk that 4 times, this costs goes down to 216. Which
is entirely practical. The reduction is exponential.

If a compiler is able to provide a set of decomposable instructions to Jolt,
then Jolt can do the remaining work and use Lasso for proving. Decom-
posable means that one lookup into the evaluation table 𝑡 of an instruction,
which has size 𝑁 , can be answered with a small number of lookups into
much smaller tables 𝑡1, · · · , 𝑡𝑙 , each of size 𝑁 1/𝑐 .

What is promising about this approach is its simplicity. Performing lookups
is conceptually much simpler than designing circuits by hand and arguably
less error-prone and easier to audit. Because the prover’s algorithm is sim-
ple (most of the prover’s work is pushed to a lookup), R1CS turns out to be
suitable for Lasso.

In the future, Binius PCS can and likely will work with Jolt and Lasso.
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There will be folding with Lasso like lookups possibly aggregating hyper
efficient Binius proofs.

As of today, Lasso is stable1, Jolt is in development2.

5.4. Final Remarks
2023 was a great year for multivariate, sum-check based zero-knowledge
proofs. These innovations led to the works described in this article.

Pros Cons
STARKish zkVMs Performance of a single instance Performance of the scheme as a

(fast prover). Maturity whole (no folding)
NIVC zkVMs Performance of the scheme as a Large fields

whole (folding). Small proofs
Jolt zkVMs Conceptually simple. Benefits from small fields Experimental

Table 6. Comparison of zkVMs.

Arguably, the “STARKish” approach is not separate from Jolt. Jolt can
use any multilinear polynomial commitment scheme. Once the initial imple-
mentation of Jolt is done (using curve-based commitments) they will likely
replace the commitment schemewith Binius-commitment, expecting at least
a 5x speedup from that.

One of the main criticisms of IVC schemes is that doing everything in-
crementally is limiting. They require to break big computations into tiny
chunks, handle each chunk separately and then efficiently combine the re-
sults. For example, lookup arguments like Lasso have a non-trivial “fixed
cost” that gets amortized over many lookups, and that kind of amortization
is not possible unless one operates on a decent-sized chunk “all at once”. So
IVC schemes currently use different, less efficient lookup arguments than
Jolt.

On the other hand, zkVMs based on IVC are poised to be much more space
efficient for the prover than Jolt (at least in the short-to-medium-term) be-
cause they can break big computations up into much smaller pieces than
non-IVC schemes, without recursion overhead being a bottleneck.

As this report suggests, a compiler may overcome the IVC limitation of
IVC schemes by generating an instruction set of bigger chunks, tailored to a
given program. This will in turn proportionately increase the prover mem-
ory requirement. Since IVC naturally supports iterative computations (i.e.,
computing 𝐹 (𝐹 (𝐹 (· · · (𝐹 (𝐹 (𝑥)))))) for a function 𝐹 ), for computations natu-
rally expressed that way it’s hard to beat IVC. Thus a compiler may leverage
this property to provide a circuit abstraction of pure functions, moving away
from a fully-fledged VM abstraction.

1https://github.com/a16z/Lasso.
2https://github.com/a16z/Lasso/tree/jolt/jolt-core/src/jolt.
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Currently, there are some gaps tomake the combination of Jolt and folding
schemes fully work but we expect it will be resolved in the near future. There
are intermediate design points between the high-developer-friendliness-but-
high-overhead of a VM abstraction and hand-optimising a circuit for a par-
ticular particular step function 𝐹 .

So, given the current state of research and engineering, NIVC seems to be
the most promising approach to building a zkVM. By avoiding full recursion
and uniform circuits, proving each iteration in NIVC can be optimised to be-
ing only a multiplicative factor slower than actually evaluating the iterated
function. This is a great advantage over the other approaches. Folding, espe-
cially for long computations, offers a unique advantage, and the final proof
will also be small.

Existing efforts to integrate ProtoStar in Halo2 make this NIVC approach
more tractable engineering-wise for systems already implemented in Halo2,
such as Taiga. Elliptic-curve-based IVC can also apply full recursion for func-
tion privacy (as Taiga requires).

A continuation to this work would be to determine exactly what work
a compiler needs to do in order to optimise the chosen type of zkVM. For
example, blocks in STARKish zkVMs are likely to be larger than in NIVC
zkVMs since full recursion is more expensive than folding. As mentioned, a
compiler may want to have a purely functional abstraction to leverage the
properties of NIVC. In contrast, Jolt zkVMs requires decomposable blocks,
independently of the size, since they will compose a giant table in the end.
A simple heuristic, such as a fixed number of constraints, would be a good
starting point.
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