
Anoma Research Topics | TECHNICAL REPORT

Anoma Resource Machine Specification
Yulia Khalniyazovaa and Christopher Goesa

aHeliax AG

* E-Mail: {yulia, cwgoes}@heliax.dev

Abstract
The article explores the Anoma Resource Machine (ARM) within the Anoma protocol, providing a comprehensive understand-
ing of its role in facilitating state updates based on user preferences. Drawing parallels with the Ethereum Virtual Machine,
the ARM introduces a flexible transaction model, diverging from traditional account and UTXO models. Key properties
such as atomic state transitions, information flow control, account abstraction, and an intent-centric architecture contribute
to the ARM’s robustness and versatility. Inspired by the Zcash protocol, the ARM leverages commitment accumulators
to ensure transaction privacy. The article outlines essential building blocks, computable components, and requirements for
constructing the ARM, highlighting its unique approach to resource-based state management.

Keywords: Anoma Resource Machine ; resource model ; virtual machine ; transaction privacy ;

(Received Nov 10, 2023; Revised Jan 25, 2024 ; Version: Jan 25, 2024)

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Notation . 3

3 Resource 3
3.1 Computable Components . 3

3.1.1 Resource Commitment . 4
3.1.2 Resource Nullifier . 5
3.1.3 Resource Kind . 5
3.1.4 Resource Delta . 5

4 Proving system 5

5 Roles and requirements 6
5.1 Reliable resource plaintext distribution . 7
5.2 Reliable nullifier key distribution . 7

6 Transaction 7
6.1 Transaction balance change . 7
6.2 Proofs . 7
6.3 Composition . 8
6.4 Validity . 9

7 Resource Machine 9
7.1 ARMs as intent machines . 9
7.2 Create . 9
7.3 Compose . 10
7.4 Verify . 10
7.5 Stored data format . 10

7.5.1 CMtree . 10

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 1–21

https://dx.doi.org/10.5281/zenodo.10498991

7.5.2 NFset . 10
7.5.3 Hierarchical index . 10
7.5.4 Data blob storage . 11

8 Program Formats 11
8.1 Transaction candidate . 11
8.2 Gas model . 11
8.3 Resource Logic . 11
8.4 Preference Function . 12
8.5 Nockma . 12

9 Examples 15
9.1 Two Party Exchange . 15

10 Future directions 17

References 17

A Three-party NFT exchange cycle 17

1. Introduction
In the Anoma protocol, users submit preferences about the system state and the system continuously
updates its state based on those preferences. The Anoma Resource Machine (ARM) is the part of
the Anoma protocol that defines and enforces the rules for valid state updates that satisfy users’
preferences. The new proposed state is then agreed on by the consensus participants. In that
sense the role of the Anoma Resource Machine in the Anoma protocol is similar to the role of the
Ethereum Virtual Machine in the Ethereum protocol.

The atomic unit of the ARM state is called a resource. Resources are immutable, they can be
created once and consumed once, which indicates the system state change. The resources that
were created but not consumed yet make the current state of the system.

The ARM transaction model is neither the account nor UTXO model. Unlike the Bitcoin UTXO
model, which sees UTXOs as currency units and is limited in expressivity, the resource model
is generalised and provides flexibility — resource logics can be defined in a way to construct
applications that operate in either transaction model (or both). For example, a token operating
in the account model would be represented by a single resource containing a map user : balance
(unlike the UTXO model, where the token would be represented by a collection of resources of
the token type, each of which would correspond to a portion of the token total supply and belong
to some user owning this portion). Only one resource of that kind can exist at a time. When a
user wants to perform a transfer, they consume the old balance table resource and produce a new
balance table resource.

The Anoma Resource Machine has the following properties:

• Atomic state transitions of unspecified complexity — the number of resources created and
consumed in every atomic state transition is not limited by the system.

• Information flow control — the parties involved in a transaction can decide how much of the
information about their state to reveal and to whom. From the resource machine perspective,
these states are treated equally (e.g., there is no difference between transparent and shielded
resources), but the amount of information revealed about the states differs. It is realised
with the help of shielded execution, in which the state transition is only visible to the parties
involved.

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 2

https://dx.doi.org/10.5281/zenodo.10498991

• Account abstraction — each resource is controlled by a resource logic — a custom predicate
that encodes constraints on valid state transitions for that kind of resource and determines
if a resource can be created or consumed. A valid state transition requires a resource logic
proof for every resource created or consumed in the proposed state transition.

• Intent-centric architecture — the ARM provides means to express intents and ensures their
correct and complete fulfilment and settlement.

The design of the Anoma Resource Machine was significantly inspired by the Zcash protocol
(Hopwood et al. (2023)).

The rest of the document contains the definitions of the ARM building blocks and the necessary
and sufficient requirements to build the Anoma Resource Machine.

2. Preliminaries
2.1. Notation. For a function h, we denote the output finite field of h as Fh. If a function h is
used to derive a component x, we refer to the function as hx, and the corresponding to h finite
field is denoted as Fhx , or, for simplicity, Fx.

3. Resource
A resource is a composite structure R = (l, label, q, v, eph, nonce, npk, rseed) : Resource where:

• Resource = Fl × Flabel × FQ × Fv × Fb × Fnonce × Fnpk × Frseed

• l : Fl is a succinct representation of the predicate associated with the resource (resource
logic)

• label : Flabel specifies the fungibility domain for the resource. Resources within the same
fungibility domain are seen as equivalent kinds of different quantities. Resources from different
fungibility domains are seen and treated as distinct asset kinds. This distinction comes into
play in the balance check described later.

• q : FQ is an number representing the quantity of the resource

• v : Fv is the fungible data of the resource. It contains extra information but does not affect
the resource’s fungibility

• eph : Fb is a flag that reflects the resource’s ephemerality. Ephemeral resources do not get
checked for existence when being consumed

• nonce : Fnonce guarantees the uniqueness of the resource computable components

• npk : Fnpk is a nullifier public key. Corresponds to the nullifier key nk used to derive the
resource nullifier (nullifiers are further described in 3.1.2)

• rseed : Frseed: randomness seed used to derive whatever randomness needed

To distinguish between the resource data structure consisting of the resource components and
a resource as a unit of state identified by just one (or some) of the resource computed fields, we
sometimes refer to the former as a resource plaintext.

3.1. Computable Components. Resource computable components are the components that are
derivable from the resource components, other computed components, and possibly some secret
data by applying a function from class H.

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 3

https://dx.doi.org/10.5281/zenodo.10498991

3.1.1. Resource Commitment. Information flow control property implies working with flexible
privacy requirements, varying from transparent contexts, where almost everything is publicly known,
to contexts with stronger privacy guarantees, where as little information as possible is revealed.

From the resource model perspective, stronger privacy guarantees require operating on resources
that are not publicly known in a publicly verifiable way. Therefore, proving the resource’s existence
has to be done without revealing the resource’s plaintext.

One way to achieve this would be to publish a commitment to the resource plaintext. For a
resource r, the resource commitment is computed as r.cm = hcm(r). Resource commitment has
binding and hiding properties, meaning that the commitment is tied to the created resource but
does not reveal information about the resource beyond the fact of creation. From the moment the
resource is created, and until the moment it is consumed, the resource is a part of the system’s
state

Remark 1. The resource commitment is also used as the resource’s address r.addr in the content-
addressed storage.

All resource commitments are stored in an append-only data structure called a commitment
accumulator CMacc. Every time a resource is created, its commitment is added to the com-
mitment accumulator. The resource commitment accumulator CMacc is external to the resource
machine, but the resource machine can read from it. A commitment accumulator is a cryptographic
accumulator (Özçelik et al. (2021)) that allows to prove membership for elements accumulated in
it, provided a witness and the accumulated value.

Each time a commitment is added to the CMacc, the accumulator and all witnesses of the
already accumulated commitments are updated. For a commitment that existed in the accumulator
before a new one was added, both the old witness and the new witness (with the corresponding
accumulated value parameter) can be used to prove membership. However, the older the witness
(and, consequently, the accumulator) that is used in the proof, the more information about the
resource it reveals (the resource had to exist before it was consumed, and an older accumulator gives
more concrete boundaries on the resource’s creation time). For that reason, it is recommended to
use fresher parameters when proving membership.

The commitment accumulator must support the following functionality:

• WRITE(cm) adds an element to the accumulator, returning the witness used to prove
membership.

• WITNESS(cm) for a given element, returns the witness used to prove membership if the
element is present, otherwise returns nothing.

• V ERIFY (cm, w, acc) verifies the membership proof for an element cm with a membership
witness w in the accumulator acc.

• ACC() returns the accumulator.

Currently, the commitment accumulator is assumed to be a Merkle tree CMtree of depth
depthCMtree, where the leaves contain the resource commitments and the intermediate nodes’
values are computed using a hash function hCMtree.

Remark 2. The hash function hCMtree used to compute the nodes of the CMtree Merkle tree is
not necessarily the same as the function used to compute commitments stored in the tree hcm.

For a Merkle tree, the witness is the path to the resource commitment, and the tree root
represents the accumulated value. To support the systems with stronger privacy requirements, the
witness for such a proof must be a private input (4) when proving membership.

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 4

https://dx.doi.org/10.5281/zenodo.10498991

3.1.2. Resource Nullifier. A resource nullifier is a computed field, the publishing of which con-
sumes an existing resource. For a resource r, the nullifier is computed from the resource’s plaintext
and a key called a nullifier key: r.nf = hnf (nk, r). A resource can be consumed only once. Nulli-
fiers of consumed resources are stored in a public add-only structure called the resource nullifier set
(NFset). This structure is external to the resource machine, but the resource machine can read
from it.

Every time a resource is consumed, it has to be checked that the resource existed before (the
resource’s commitment is in the CMtree) and has not been consumed yet (the resource’s nullifier
is not in the NFset).

The nullifier set must support the following functionality:

• WRITE(nf) adds an element to the nullifier set.

• EXISTS(nf) checks if the element is present in the set, returning a boolean

3.1.3. Resource Kind. For a resource r, its kind is computed as r.kind = hkind(r.l, r.label).

3.1.4. Resource Delta. Resource deltas are used to reason about the total quantities of different
kinds of resources in transactions. For a resource r, its delta is computed as r.∆ = h∆(r.kind, r.q).

Remark 3. The function used to derive r.∆ must have the following properties:

• For resources of the same kind kind, h∆ should be additively homomorphic: r1.∆ + r2.∆ =
h∆(kind, r1.q + r2.q)

• For resources of different kinds, h∆ has to be kind-distinct: if there exists kind and q s.t.
h∆(r1.kind, r1.q) + h∆(r2.kind, r2.q) = h∆(kind, q), it is computationally infeasible to compute
kind and q.

An example of a function that satisfies these properties is the Pedersen commitment scheme:
it is additively homomorphic, and its kind-distinctness property comes from the discrete logarithm
assumption.

4. Proving system
A proving system allows proving statements about resources. Depending on the security require-
ments, a proving system might be instantiated, for example, by a signature scheme, a zk-SNARK,
or a trivial transparent system where the properties are proven by openly verifying the properties of
published data.

To support the intended spectrum of privacy requirements, varying from the strongest (where
the relationship between the published parameters does not allow an observer to infer any kind of
meaningful information about the state transition) to the weakest, where no privacy is required,
we divide the proving system inputs into public (instance) and private (witness). The inputs that
could potentially reveal the connection between components or other kinds of sensitive information
are usually considered private, and the components that have to be and can be safely published
regardless of the privacy guarantees of the system would be public inputs. Note that in the context
of a fully public system, this distinction is not meaningful because all inputs are public in such a
system.

We define a set of structures required to define a proving system PS as follows:

• Proof π : PS.Proof

• Instance x : PS.Instance is the public input used to produce a proof.

• Witness w : PS.Witness is the private input used to produce a proof.

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 5

https://dx.doi.org/10.5281/zenodo.10498991

• Proving key pk : PS.ProvingKey contains the secret data required to produce a proof for
a pair (x, w).

• Verifying key vk : PS.V erifyingKey contains the data required, along with the witness x,
to verify a proof π.

A proof record carries the components required to verify a proof. It is defined as a composite
structure PR = (π, x, vk) : ProofRecord, where:

• ProofRecord = PS.V erifyingKey × PS.Instance × PS.Proof

• vk : PS.V erifyingKey

• x : PS.Instance

• π : PS.Proof is the proof of the desired statement.

A proving system PS consists of a pair of algorithms, (Prove, V erify):

• Prove(pk, x, w) : PS.ProvingKey × PS.Instance × PS.Witness → PS.Proof

• V erify(pr) : PS.ProofRecord → Fb

A proving system used to produce ARM proofs should have the following properties (as defined
in Thaler (2023)):

• Completeness. This property states that any true statement should have a convincing proof
of its validity.

• Soundness. This property states that no false statement should have a convincing proof.

• Proving systems used to provide privacy should additionally be zero-knowledge, meaning that
the produced proofs reveal no information other than their own validity.

A proof π for which V erify(pr) = 1 is considered valid.
The party responsible for creating proofs is also responsible for providing the input to the proving

system. Public inputs are required to verify the proof and must be available to any party that verifies
the proof; private inputs do not have to be available and can be stored locally by the proof creator.
The same rule applies to custom (inputs not specified by the ARM) public and private inputs.

5. Roles and requirements
The table below contains a list of resource-related roles. In the Anoma protocol, the role of the
resource creator will often be taken by a solver, which creates additional security requirements
compared to the case when protocol users solve their own intents. Because of that, extra measures
are required to ensure reliable distribution of the information about the created resource to the
resource receiver.

Role Description
Authorizer approves the resource consumption on the application level. The resource logic encodes the mechanism that

connects the authorizer’s external identity (public key) to the decision-making process
Annuler knows the data required to nullify a resource
Creator creates the resource and shares the data with the receiver
Owner can both authorize and annul a resource
Sender owns the resources that were consumed to create the created resource
Receiver owns the created resource

Table 1: Resource-related roles.

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 6

https://dx.doi.org/10.5281/zenodo.10498991

5.1. Reliable resource plaintext distribution. In the case of in-band distribution of created re-
sources in contexts with higher security requirements, the resource creator is responsible for en-
crypting the resource plaintext. Verifiable encryption must be used to ensure the correctness of the
encrypted data: the encrypted plaintext must be proven to correspond to the resource plaintext,
passed as a private input.

5.2. Reliable nullifier key distribution. Knowing the resource’s nullifier reveals information about
when the resource is consumed, as the nullifier will be published when it happens. For that reason,
it is advised to keep the number of parties who can compute the resource’s nullifier as low as
possible.

In particular, the resource creator should not be able to compute the resource nullifier, and as
the nullifier key allows to compute the resource’s nullifier, it shouldn’t be known to the resource
creator. At the same time, the resource plaintext must contain some information about the nullifier
key. One way to ensure both requirements is, instead of sharing the nullifier key itself with the
resource creator, to share some parameter derived from the nullifier key, but that does not allow
computing the nullifier key or any meaningful information about it. This parameter is called a
nullifier public key and is computed as npk = hnpk(nk).

6. Transaction
A transaction is a composite structure TX = (rts, cms, nfs, Π, ∆, extra, Φ), where:

• rts ⊆ Frt is a set of roots of CMtree

• cms ⊆ Fcm is a set of created resources’ commitments.

• nfs ⊆ Fnf is a set of consumed resources’ nullifiers.

• Π : {π : ProofRecord} is a set of proof records.

• ∆tx : F∆ is computed from ∆ parameters of created and consumed resources. It represents
the total delta change induced by the transaction.

• extra : {(k, d) : k ∈ Fkey, d ⊆ Fd} contains extra information requested by the logics of
created and consumed resources.

• Φ : PREF where PREF = TX → [0, 1] is a preference function that takes a transaction as
input and outputs a normalised value in the interval [0, 1] that reflects the users’ satisfaction
with the produced transaction. For example, a user who wants to receive at least q = 5 of
resource of kind A for a fixed amount of resource of kind B might set the preference function
to implement a linear function that returns 0 at q = 5 and returns 1 at q = qmax = |Fq| − 1.

6.1. Transaction balance change. ∆tx of a transaction is computed from the delta parameters
of the resources (3.1.4) consumed and created in the transaction. It represents the total quantity
change per resource kind induced by the transaction. From the homomorphic properties of h∆,
for the resources of the same kind kind: ∑

j h∆(kind, rij .q) −
∑

j h∆(kind, roj .q) =
∑

j rij .∆ −∑
j roj .∆ = h∆(kind, qkind). The kind-distinctness property of h∆ allows to compute ∆tx =∑
j rij .∆−

∑
j roj .∆ adding resources of all kinds together without the need to explicitly distinguish

between the resource kinds: ∑
j rij .∆ −

∑
j roj .∆ =

∑
j h∆(kindj , qkindj

)

6.2. Proofs. Each transaction refers to a set of resources to be consumed and a set of resources
to be created. Creation and consumption of a resource requires a set of proofs that attest to
the correctness of the underlying state transition. There are three proof types associated with a
transaction:

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 7

https://dx.doi.org/10.5281/zenodo.10498991

• Resource logic proof πRL. For each resource consumed or created in a transaction, it is
required to provide a proof that the logic of the resource evaluates to 1 given the input
parameters that describe the state transition (the resource machine instantiation defines the
exact parameters).

• A delta proof (balance proof) π∆ makes sure that ∆tx is correctly derived from ∆ parameters
of the resources created and consumed in the transaction and commits to the expected
publicly known value, called a balancing value.

• A resource machine compliance proof πcompl is required to ensure that the provided transac-
tion is well-formed. The resource machine compliance proof must check that each consumed
resource was consumed strictly after it was created, that the resource commitments and
nullifiers are derived according to the commitment and nullifier derivation rules, and that the
resource logics of created and consumed resources are satisfied.

Remark 4. It must also be checked that the created resource was created exactly once and the
consumed resource was consumed exactly once. These checks can be performed separately, with
read access to the CMtree and NFset.

Remark 5. Every proof is created with a proving system PS and has the type PS.Proof . The
proving system might differ for different proof types.

Remark 6. For privacy-preserving contexts, all proving systems in use should support data privacy,
and the proving system used to create resource logic proofs should provide function privacy in
addition to data privacy: provided proofs of two different circuits, an observer should not be able
to tell which proof corresponds to which circuit. It is a stronger requirement than data privacy,
which implies that an observer does not know the private input used to produce the proof.

6.3. Composition. Having two transactions tx1 and tx2, their composition tx1 ◦ tx2 is defined as
a transaction tx, where:

• rtstx = rts1 ∪ rts2

• cmstx = cms1 t cms2

• nfstx = nfs1 t nfs2

• Proofs:

– delta proof: Π∆
tx = AGG(Π∆

1 , Π∆
2), where AGG is an aggregation function s.t. for bv1

being the balancing value of the first delta proof, bv2 being the balancing value of the
second delta proof, and bvtx being the balancing value of the composed delta proof, it
satisfies bvtx = bv1 + bv2. The aggregation function takes two delta proofs as input
and outputs a delta proof.

– resource logic proofs: ΠRL
tx = ΠRL

1 t ΠRL
2

– compliance proofs: Πcompl
tx = Πcompl

1 t Πcompl
2

• ∆tx = ∆1 + ∆2

• extratx = extra1 ∪ extra2

• Φtx = G(Φ1, Φ2), where G : PREF × PREF → PREF , and G is a preference function
composition function

Remark 7. Composing sets with disjoint union operator t, it has to be checked that those sets do
not have any elements in common. Otherwise, the transactions are not composable.

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 8

https://dx.doi.org/10.5281/zenodo.10498991

6.4. Validity. A transaction is considered valid if the following statements hold:

• rts contains valid CMtree roots that are correct inputs for the membership proofs

• input resources have valid resource logic proofs and the compliance proofs associated with
them

• output resources have valid resource logic proofs and the compliance proofs associated with
them

• ∆ is computed correctly and its opening is equal to the balancing value for that transaction

7. Resource Machine
A resource machine is a deterministic stateless machine that creates, composes, and verifies trans-
action candidates.

It has read-only access to the external global state, which includes the content-addressed storage
system (which in particular stores resources), global commitment accumulator, and the global
nullifier set, and can produce writes to the external local state that will later be applied to the
system state by another entity.

The resource machine has two layers: the outer layer, the resource machine shell, that creates
and processes transaction candidates, and the inner layer, the resource machine core, that creates
and processes transactions. We assume the shell is simple in this version: it only validates the
transaction candidate without any verification steps. The result is a transaction that is then passed
to the core. The distribution of responsibilities between the shell and the core is expected to change.

To support the shell layer, the resource machine must have the functionality to produce, compose,
and evaluate transaction candidates. Assuming the shell is otherwise trivial in the current version
of the specification, the following description of the resource machine functionality describes the
functionality of the resource machine core.

7.1. ARMs as intent machines. Together with (CMtree, NFset), the Anoma Resource Machine
forms an instantiation of the intent machine, where the state S = (CMtree, NFset), a batch
B = Transaction, and the transaction verification function of the resource machine corresponds
to the state transition function of the intent machine as described in Hart and Reusche (2024). To
formally satisfy the intent machine’s signature, the resource machine’s verify function may return
the processed transaction along with the new state.

7.2. Create. Given a set of components required to produce a transaction, the create function
produces a transaction data structure, which includes computing the nullifiers of the consumed
resources, commitments of the created resources, transaction ∆ and all of the required proofs.

We assume that the produced transaction induces a state change consuming resources ri1 , · · · , rin

and creating resources ro1 , · · · , rom .
Input:

• a set of CMtree roots {rtik
, k ≤ n}

• a set of resources {ri1 , ..., rin , ro1 , ..., rom}

• a set of nullifier secret keys {nki1 , ..., nkin}

• extra data extra

• preference function Φ

• custom inputs required for resource logic proofs

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 9

https://dx.doi.org/10.5281/zenodo.10498991

Output: a transaction tx = (rtscms, nfs, Π, ∆tx, extra, Φ), where:

• rts = {rti1 , .., rtin}

• nfs = {nfik
= hnf (nkil

, ril
), k = 1..n}

• cms = {cmo1 = hcm(rol
), k = 1..m}

• Π = {π∆tx , πcompl1 , ..., πcomplc , πi1 , ..., πin , πo1 , ..., πom}, where 1 ≤ c ≤ m + n

• ∆tx =
∑

k ∆ik
−

∑
l ∆ol

• extra

• Φ

7.3. Compose. Taking two transactions tx1 and tx2 as input produces a new transaction tx =
tx1 ◦ tx2 according to the transaction composition rules (6.3).

7.4. Verify. Taking a transaction as input verifies its validity according to the transaction validity
rules (6.4). If the transaction is valid, the resource machine outputs a state update. Otherwise,
the output is empty.

7.5. Stored data format. The ARM output state data that needs to be stored includes resource
plaintexts, the commitment accumulator and the nullifier set. The table below defines the format
for that data assumed by the ARM.

Name Structure Key Type Value Type
Commitment accumulator (node) Cryptographic accumulator timestamp F
Commitment accumulator (leaf) - (timestamp, F) F

Nullifier set Set F F
Hierarchical index Chained Hash sets Tree path F
Data blob storage Key-value store with deletion criteria F (variable length byte array, deletion_criteria)

Table 2: Stored Data Format.

7.5.1. CMtree. Each commitment tree node has a timestamp associated with it, such that a
lower depth tree node corresponds to a less specified timestamp: a parent node timestamp is a
prefix of the child node timestamp, and only the leaves of the tree have fully specified timestamps
(i.e. they are only prefixes of themselves). For a commitment tree of depth d, a timestamp for a
commitment cm would look like tcm = t1 : t2 : .. : td, with the parent node corresponding to it
having a timestamp t1 : t2 : .. : ∗. The timestamps are used as keys for the key-value store. For the
tree leaves, commitments are used along with the timestamps as keys. Merkle paths to resource
commitments can be computed from the hierarchy of the timestamps.

7.5.2. NF set. Storing a nullifier set, nullifiers are used as keys in the key-value store. In future
versions, a more complex structure that supports efficient non-membership proofs might be used
for storing the nullifier set.

7.5.3. Hierarchical index. The hierarchical index is organised as a tree where the leaves refer to the
resources, and the intermediate nodes refer to resource subkinds that form a hierarchy. The label
of a resource r stored in the hierarchical index tree is interpreted as an array of sublabels: r.label =
[label1, label2, label3, ...], and the i-th subkind is computed as r.subkindi = Hkind(r.l, r.labeli).

Remark 8. In the current version, only the subkinds derived from the same resource logic can be
organized in the same hierarchical index path.

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 10

https://dx.doi.org/10.5281/zenodo.10498991

The interface of the tree enables efficient querying of all children of a specific path and verifying
that the returned children are the requested nodes. Permissions to add data to the hierarchical
index are enforced by the resource logics and do not require additional checks.

7.5.4. Data blob storage. Data blob storage stores data without preserving any structure. The
data is represented as a variable length byte array and comes with a deletion criterion that de-
termines for how long the data will be stored. The deletion criteria, in principle, is an arbitrary
predicate, which in practice currently is assumed to be instantiated by one of the following options:

• delete after block

• delete after timestamp

• delete after sig over data

• delete after either predicate p1 or p2 is true; the predicates are instantiated by options from
this list

• store forever

8. Program Formats
8.1. Transaction candidate. The system used to represent and interpret transaction candidates
must have a deterministic computation model; each operation should have a fixed cost of space
and time (for total cost computation). To support content addressing, it must have memory and
support memory operations (read, write, allocate).

The system must support the following I/O operations:

• READ_STORAGE(address : Fcm): read the global content-addressed storage at the
specified address and return the value stored at the address. If the value is not found, the
operation should return an error. Storage not accessible to the machine accessing it will be
treated as non-existent.

• RESOURCES_BY _INDEX(index_function): read resources in the history at execu-
tion time by the specified index function. If the index function output is invalid or uncom-
putable, or the resources cannot be located, the operation should return an error. Typically,
the index functions allowed will be very restricted, e.g. an index function returning current
unspent resources of a particular kind.

8.2. Gas model. To compute and bound the total cost of computation, the transaction candidate
system must support a gas model. Each evaluation would have a gas limit glimit, and the evaluation
would start with gcount = 0. Evaluating an operation, the system would add the cost of the
operation to the counter gcount and compare it to glimit. When making recursive calls, gcount is
incremented before the recursion occurs. If the value of gcount is greater than glimit, the execution
is terminated with an error message indicating that the gas limit has been surpassed.

8.3. Resource Logic. A resource logic is a predicate associated with a resource that checks that the
input data satisfies a set of constraints. It does not require I/O communication and is represented
by or can feasibly be turned into a zk-SNARK circuit.

Each resource logic has a set of public and private input values to support zk-SNARK representa-
tion. Resource logics are customizable on both implementation of the ARM (different instantiations
might have different requirements for all resource logics compatible with this instantiation) and
resource logic creation level (each instantiation supports arbitrary resource logics as long as they
satisfy the requirements). A concrete implementation of the ARM can specify more mandatory
inputs and checks (e.g., if the resources are distributed in-band, resource logics have to check that

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 11

https://dx.doi.org/10.5281/zenodo.10498991

the distributed encrypted value indeed encrypts the resources created/consumed in the transaction),
but the option of custom inputs and constraints must be supported to enable different resource
logic instances existing on the application level.

The proving system used to interpret resource logics must satisfy the following properties:

• Verifiability. It must be possible to produce and verify a proof of type PS.Proof that given
a certain set of inputs, the resource logic output is true value.

• The system PS used to interpret resource logics must be zero-knowledge and function-privacy-
friendly (support recursion, accumulation, or some other way to provide function privacy).

Resource logics take as input a subset of resources created and consumed in the transaction:

Resource Logic Public Inputs:

• nfs ⊂ nfstx

• cms ⊂ cmstx

• custom inputs

Resource Logic Private Inputs:

• input resources corresponding to the elements of nfs

• output resource corresponding to the elements of cms

• tag : Ftag — identifies the resources being checked

• custom inputs

Resource Logic Constraints:

• for each output resource, check that the corresponding cm value is derived according to the
rules specified by the resource machine instance

• for each input resource, check that the corresponding nf value is derived according to the
rules specified by the resource machine instantiation

• custom checks

8.4. Preference Function. Preference functions do not require I/O communication or have any
other special requirements. They are stateless. It may make sense to interpret them using the same
system used for transaction candidates.

8.5. Nockma. Nockma (Nock-Anoma) is a modification of the Nock4K specification (Urbit) and a
Nock standard library altered and extended for use with Anoma. Nockma is designed to support the
transaction candidate interpreter requirements (8.1), namely, global storage read and deterministic
bounded computation costs.

Nockma is parameterized over a specific finite field Fh and function h. The function h takes an
arbitrary noun (a data unit in Nockma) as input and returns an element of Fh. This function is
used for verifying reads from content-addressed storage.

A scry (inspired by Urbit’s concept of the same name) is a read-only request to Anoma’s global
content-addressed namespace or indexes computed over values stored in this namespace. Scrying
is used to read data that would be inefficient to store in the noun, to read indexes whose value
might only be known at execution time, or to read data that may not be accessible to the author
of the noun.

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 12

https://dx.doi.org/10.5281/zenodo.10498991

Scrying comes in two types: “direct” or “index”. A direct lookup simply returns the value stored
at the address (integrity can be checked using h), or an error if a value is not found. An index lookup
uses the value stored at the address as an index function and returns the results of computing that
index or an error if the index is not found, invalid, or uncomputable. The lookup type is the only
parameter required apart from the content address (which must be an element of Fh).

Typically, the index functions allowed will be very restricted, e.g. current unspent resources of a
particular kind. Gas costs of scrying will depend on the index function and the size of the results
returned.

Scrying may be used to avoid unnecessary, redundant transmission of common Nockma subex-
pressions, such as the standard library.

Nockma is a combinator interpreter defined as a set of reduction rules over nouns. A noun is an
atom or a cell, where an atom is a natural number and a cell is an ordered pair of nouns.

Table 3 is an ordered list of reduction rules. The rules are applied from top to bottom, the
first rule from the top matches. Variables match any noun. As in regular Nock4K, a formula that
reduces to itself is an infinite loop, which we define as a crash (“bottom” in formal logic). A real
interpreter can detect this crash and produce an out-of-band value instead.

The only difference between Nockma and Nock4K reduction rules is that instruction 12 is defined
for scrying.

Pattern Reduces to
nock(a) ∗a
[a b c] [a [b c]]
?[a b] 0

?a 1
+[a b] +[a b]

+a 1 + a

= [a a] 0
= [a b] 1
/[1 a] a

/[2 a b] a

/[3 a b] b

/[(a + a) b] /[2 /[a b]]
/[(a + a + 1) b] /[3 /[a b]]

/a /a

#[1 a b] a

#[(a + a) b c] #[a [b /[(a + a + 1) c]] c]
#[(a + a + 1) b c] #[a [/[(a + a) c] b] c]

#a #a

∗[a [b c] d] [∗[a b c] ∗ [a d]]
∗[a 0 b] /[b a]
∗[a 1 b] b

∗[a 2 b c] ∗[∗[a b] ∗ [a c]]
∗[a 3 b] ? ∗ [a b]
∗[a 4 b] + ∗ [a b]
∗[a 5 b c] = [∗[a b] ∗ [a c]]
∗[a 6 b c d] ∗[a ∗ [[c d] 0 ∗ [[2 3] 0 ∗ [a 4 4 b]]]]
∗[a 7 b c] ∗[∗[a b] c]
∗[a 8 b c] ∗[[∗[a b] a] c]
∗[a 9 b c] ∗[∗[a c] 2 [0 1] 0 b]
∗[a 10 [b c] d] #[b ∗ [a c] ∗ [a d]]
∗[a 11 [b c] d] ∗[[∗[a c] ∗ [a d]] 0 3]
∗[a 11 b c] ∗[a c]
∗[a 12 b c d] result ← SCRY b c; ∗[a result d]

∗a ∗a
Table 3: Nockma reduction rules.

Used with the resource machine, Nockma should return a set of modifications to the state
transition expressed by the input transaction:

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 13

https://dx.doi.org/10.5281/zenodo.10498991

• a set of resources to additionally create (resource plaintexts)

• a set of resources to additionally consume (addresses)

• a set of storage writes (in the format specified in 7.5)

The Nockma standard library must include the following functions.
For a finite field Fn of order n, it should support:

• additive identity of type Fn

• addition operation Fn × Fn → Fn

• additive inversion Fn → Fn

• multiplicative identity of type Fn

• multiplication operation Fn × Fn → Fn

• multiplicative inversion Fn → Fn

• equality operation Fn × Fn → F2

• comparison operation based on canonical ordering Fn × Fn → F2

For a ring Zn of unsigned integers mod n, it should support:

• additive identity of type Zn

• addition operation Zn × Zn → Zn × F2 (with overflow indicator)

• subtraction operation Zn × Zn → Zn × F2 (with overflow indicator)

• multiplicative identity of type Zn

• multiplication operation Zn × Zn → Zn × F2 (with overflow indicator)

• division operation (floor division) Zn × Zn → Zn

• equality Zn × Zn → F2

• comparison Zn × Zn → F2

Additionally, it should provide a parametrized conversion function convi,j,k,l, where

• i is a flag that defines the input type: i = 0 corresponds to a finite field, i = 1 corresponds
to a ring of unsigned integers

• j is the input structure order

• k is a flag that defines the output type: k = 0 corresponds to a finite field, k = 1 corresponds
to a ring of unsigned integers

• l is the output structure order

If the order of the input structure is bigger than the order of the output structure (j > l), the
conversion function would return a flag (of type F2) indicating if overflow happened in addition to
the converted value.

The conversion function must use canonical ordering and respect the inversion laws.

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 14

https://dx.doi.org/10.5281/zenodo.10498991

9. Examples
In the examples below, the superscript parameter indicates the party associated with the resource,
e.g., a resource RAlice is associated with Alice. In the case of proofs, it indicates the party created
the proof.

9.1. Two Party Exchange. Let us consider an example of a two-party exchange. One party’s
intent is precise, and the other party’s intent implies options (the requested NFT’s exact properties
may also vary). We assume that the resources parties initially consume were already created at
some point in the past.

Step 1: specify intents

• Alice’s intent: exchange either a resource R1A of kind A and quantity 1 or a resource R2B

of kind B and quantity 2 for a blue dolphin NFT resource RNF T . The intent is contained in
the resource logic of a resource RI of kind I.

• Bob’s intent: exchange a blue dolphin NFT resource for a resource of kind A and quantity
1. The intent is referred to in a transaction.

Remark 9. For simplicity, in the examples in this paper, the set of compliance proofs for initial
transactions (the transactions that were not composed of other transactions) is assumed to contain
all the necessary compliance proofs, but the proofs themselves are not specified. Additionally, the
delta proof aggregation function can take an arbitrary number of arguments. AGG(X, Y, Z) in
practice would be implemented as AGG(AGG(X, Y), Z), similarly defined for any number of
proofs.

Step 2: create initial transactions
Alice creates a transaction TXA creating RA

I , and consuming RA
1A and RA

2B:

• rts = {rtRA
1A

, rtRA
2B

}

• cms = {cmRA
I

}

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 15

https://dx.doi.org/10.5281/zenodo.10498991

• nfs = {nfRA
1A

, nfRA
2B

}

• Proofs:

– ΠA
∆

– ΠA
compl

– ΠA
rl = {πA

A, πA
B, πA

I }

• ∆ 7→ {I : 1, A : −1, B : −2}. For simplicity, represent ∆ as a dictionary

• extra = extraA

• Φ = ΦA

Bob creates a transaction TXB creating RB
1A and consuming RB

NF T :

• rts = {rtRB
NF T

}

• cms = {cmRB
1A

}

• nfs = {nfRB
NF T

}

• Proofs:

– ΠB
∆

– ΠB
compl

– ΠB
rl = {πB

A , πB
NF T }

• ∆ 7→ {NFT : −1, A : 1}

• extra = extraB

• Φ = ΦB

Step 3: solve
A solver S, having TXA and TXB, creates a transaction TXS :

• rts = {rtRA
I

}

• cms = {cmRA
2B

, cmRA
NF T

}

• nfs = {nfRA
I

}

• Proofs:

– ΠS
∆

– ΠS
compl

– ΠS
rl = {πS

B, πS
NF T , πS

I }

• ∆ 7→ {NFT : 1, B : 2, I : −1}

• extra = extraS

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 16

https://dx.doi.org/10.5281/zenodo.10498991

• Φ = ΦS

and composes all three transactions together, producing a balanced transaction TX:

• rts = {rtRA
I

, rtRA
2B

, rtRA
1A

, rtRB
NF T

}

• cms = cmsA t cmsB t cmsS = {cmRA
I

, cmRA
2B

, cmRA
NF T

, cmRB
1A

}

• nfs = nfsA t nfsB t nfsS = {nfRA
I

, nfRA
2B

, nfRA
1A

, nfRB
NF T

}

• Proofs:

– Π∆ = AGG(ΠA
∆, ΠB

∆, ΠS
∆)

– Πcompl = ΠA
compl t ΠB

compl t ΠS
compl

– Πrl = ΠA
rl t ΠB

rl t ΠS
rl

• ∆ 7→ {A : 0, B : 0, I : 0, NFT : 0}

• extra = extraA ∪ extraB ∪ extraS

• Φ = G(ΦA, ΦB, ΦS)

In practice, the step of creation of the transaction TXS1 can be merged with the composing
step, but we separate the steps for clarity.

10. Future directions
This report contains the necessary information to build a resource machine that has the desired
properties, but there are more properties we might want and more questions worth investigating.
One such question would be whether resource logics should be able to see all resources in a
transaction. This would allow us to perform “for all” checks — for example, a resource logic
might want to enforce a non-inclusion of resources of a certain type in this transaction. However,
enforcing such a feature is a non-trivial task, and it is not clear if it is as beneficial as it seems:
for example, if there is a valid way to escape such checks (e.g., by wrapping a resource in another
resource kind), it won’t be helpful to have a mechanism for checking.

References
Daira Emma Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol specification, 2023. URL https://zips.z.cash/protocol/protocol.pdf. (cit. on

p. 3.)
Ilker Özçelik, Sai Medury, Justin T. Broaddus, and Anthony Skjellum. An overview of cryptographic accumulators. CoRR, abs/2103.04330, 2021. URL https://arxiv.

org/abs/2103.04330. (cit. on p. 4.)
Justin Thaler. Proofs, Arguments, and Zero-Knowledge. 2023. URL https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf. (cit. on p. 6.)
Anthony Hart and D Reusche. Abstract Intent Machines. Anoma Research Topics, February 2024. doi:10.5281/zenodo.10498993. URL https://doi.org/10.5281/zenodo.

10118865. (cit. on p. 9.)
Urbit. Nock definition. URL https://docs.urbit.org/language/nock/reference/definition. (cit. on p. 12.)

A. Three-party NFT exchange cycle
Another example is a three-party exchange cycle. Each party uses ephemeral resource logics to
express their intents.

Step 1: specify intents

• Alice’s intent: Alice wants to exchange her star NFT resource RA
star for a blue dolphin NFT

resource Rdolphin

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 17

https://zips.z.cash/protocol/protocol.pdf
https://arxiv.org/abs/2103.04330
https://arxiv.org/abs/2103.04330
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://doi.org/10.5281/zenodo.10498993
https://doi.org/10.5281/zenodo.10118865
https://doi.org/10.5281/zenodo.10118865
https://docs.urbit.org/language/nock/reference/definition
https://dx.doi.org/10.5281/zenodo.10498991

• Bob’s intent: Bob wants to exchange his blue dolphin NFT RB
dolphin for a tree NFT resource

Rtree

• Charlie’s intent: Charlie wants to exchange his tree NFT RC
tree for a star NFT resource

Rstar

Step 2: create initial transactions
Alice’s initial transaction:

• rts = {rtRA
star

}

• cms = {cmRA
IA

}

• nfs = {nfRA
star

}

• Proofs:

– ΠA
∆

– ΠA
compl

– ΠA
rl = {πA

star, πA
I }

• ∆ 7→ {IA : 1, star : −1, } – for simplicity, represent ∆ as a dictionary

• extra = extraA

• Φ = ΦA

Bob’s initial transaction:

• rts = {rtRB
dolphin

}

• cms = {cmRB
IB

}

• nfs = {nfRB
doplhin

}

• Proofs:

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 18

https://dx.doi.org/10.5281/zenodo.10498991

– ΠB
∆

– ΠB
compl

– ΠB
rl = {πB

dolphin, πB
I }

• ∆ 7→ {IB : 1, dolphin : −1}

• extra = extraB

• Φ = ΦB

Charlie’s initial transaction:

• rts = {rtRC
tree

}

• cms = {cmRC
IC

}

• nfs = {nfRC
tree

}

• Proofs:

– ΠC
∆

– ΠC
compl

– ΠC
rl = {πC

tree, πC
I }

• ∆ 7→ {IC : 1, tree : −1, }

• extra = extraC

• Φ = ΦC

Step 3: solve
A solver S1, seeing TXA and TXB, creates a transaction TXS1 (on the diagram: TX3.1, green

arrows):

• rts = {rtRA
IA

}

• cms = {cmRA
dolphin

}

• nfs = {nfRA
IA

}

• Proofs:

– ΠS1
∆

– ΠS1
compl

– ΠS1
rl = {πS1

dolphin, πS1
IA

}

• ∆ 7→ {dolphin : 1, IA : −1}

• extra = extraS1

• Φ = ΦS1

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 19

https://dx.doi.org/10.5281/zenodo.10498991

and composes all three transactions together, producing a transaction TX3.1:

• rts = {rtRA
star

, rtRB
dolphin

, rtRA
IA

}

• cms = cmsA t cmsB t cmsS1 = {cmRA
IA

, cmRB
IB

, cmRA
dolphin

}

• nfs = nfsA t nfsB t nfsS1 = {nfRA
star

, nfRB
dolphin

, nfRA
IA

}

• Proofs:

– Π3.1
∆ = AGG(ΠA

∆, ΠB
∆, ΠS1

∆)

– Π3.1
compl = ΠA

compl t ΠB
compl t ΠS1

compl

– Π3.1
rl = ΠA

rl t ΠB
rl t ΠS1

rl

• ∆ 7→ {IA : 0, IB : 1, star : −1, dolphin : 0}

• extra = extraA ∪ extraB ∪ extraS1

• Φ = G(ΦA, ΦB, ΦS1)

Step 4: continue solving
Seeing TXC and TX3.1, a solver S2 creates a transaction TXS2 (on the diagram: TX4.1, green

arrows):

• rts = {rtRC
IC

, rtRB
IB

}

• cms = {cmRC
star

, cmRB
tree

}

• nfs = {nfRC
IC

, nfRB
IB

}

• Proofs:

– ΠS2
∆

– ΠS2
compl

– ΠS2
rl = {πS2

star, πS2
IC

πS2
tree, πS2

IB
}

• ∆ 7→ {IC : −1, IB : −1, star : 1, tree : 1}

• extra = extraS2

• Φ = ΦS2

and composes all three into a balanced transaction TX4.1:

• rts = {rtRA
star

, rtRB
dolphin

, rtRC
tree

, rtRA
IA

, rtRB
IB

, rtRC
IC

}

• cms = cmsT X3.1 t cmsS2 = {cmRA
dolphin

, cmRB
tree

, cmRC
star

, cmRA
IA

, cmRB
IB

, cmRC
IC

}

• nfs = nfsT X3.1 t nfsS2 = {nfRA
star

, nfRB
dolphin

, nfRC
tree

, nfRA
IA

, nfRB
IB

, nfRC
IC

}

• Proofs:

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 20

https://dx.doi.org/10.5281/zenodo.10498991

– Π4.1
∆ = AGG(Π3.1

∆ , ΠC
∆, ΠS2

∆)

– Π4.1
compl = ΠC

compl t Π3.1
compl t ΠS2

compl

– Π4.1
rl = ΠC

rl t Π3.1
rl t ΠS2

rl

• ∆ 7→ {IA : 0, IB : 0, IC : 0, star : 0, dolphin : 0, tree : 0}

• extra = extraA ∪ extraB ∪ extraC ∪ extraS1 ∪ extraS2

• Φ = G(ΦA, ΦB, ΦS1 , ΦC , ΦS2)

In practice, the step of creation of the transactions TXS1 and TXS2 can be merged with the
composing step, but we separate the steps for clarity.

DOI: 10.5281/zenodo.10498991 Anoma Research Topics | January 25, 2024 | 21

https://dx.doi.org/10.5281/zenodo.10498991

	Introduction
	Preliminaries
	Notation

	Resource
	Computable Components
	Resource Commitment
	Resource Nullifier
	Resource Kind
	Resource Delta

	Proving system
	Roles and requirements
	Reliable resource plaintext distribution
	Reliable nullifier key distribution

	Transaction
	Transaction balance change
	Proofs
	Composition
	Validity

	Resource Machine
	ARMs as intent machines
	Create
	Compose
	Verify
	Stored data format
	CMtree
	NFset
	Hierarchical index
	Data blob storage

	Program Formats
	Transaction candidate
	Gas model
	Resource Logic
	Preference Function
	Nockma

	Examples
	Two Party Exchange

	Future directions
	References
	Three-party NFT exchange cycle

