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ABSTRACT

The detection of Acute Lymphoblastic (or Lymphocytic) Leukemia
(ALL) is being increasingly performed using Deep Learning models
(DL) that analyze each blood sample to detect the presence of lym-
phoblasts, possible indicators of the disease. However, images in-
cluded in current databases are either too large or already segmented.
In this paper, we introduce ALL-IDB Patches, a novel approach for
processing Whole Slide Images (WSI) of ALL to take advantage
of all the information available for ALL detection, by generating a
larger number of samples and making the images usable by current
DL models, without any pre-performed segmentation. To evaluate
the attainable classification accuracy, we consider the OrthoALLNet,
a Convolutional Neural Network (CNN) obtained by imposing an
additional orthogonality constraint on the learned filters. The exper-
imental results confirm the validity of our approach.

Index Terms— Deep Learning, CNN, ALL, XAI

1. INTRODUCTION

Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL) refers to a
disease that affects the blood cells and can, if not detected in a timely
manner, spread through the body and result in fatal consequences.
An important step in detecting the disease consists in inspecting the
White Blood Cells (WBC) in peripheral blood samples, looking for
WBCs with an altered morphology, namely lymphoblasts (Fig. 1).
In fact, an excessive number of lymphoblasts in peripheral blood is
one of the indicators of ALL [1, 2].

Traditionally, an experienced pathologist manually performs the
analysis of WBCs looking for lymphoblasts. However, such analysis
is a time consuming process that can lead to fatigue and may affect
the precision of the diagnosis. Hence, to help pathologists in per-
forming the analysis, there is a growing interest in Computer Aided
Diagnosis (CAD) systems that detect the presence of lymphoblasts
using image processing and Deep Learning (DL) [3]. In particular,
methods based on DL are being increasingly studied for pathology
analysis due to their high accuracy in medical imaging [4, 5], and
have been proven to detect lymphoblasts with a high accuracy [6–8],
using original learning procedures [7, 9–13], ad-hoc network archi-
tectures [14–16], or a DL-based preprocessing [6, 17].

To ensure an accurate detection of lymphoblasts using DL, it is
necessary to consider datasets of labeled samples to train the model
(e.g., a Convolutional Neural Network – CNN). In the case of ALL,
only few datasets are available in the literature: i) ALL-IDB1 in-
cludes 108 Whole Slide Images (WSI) with only the position of
probable lymphoblast annotated; ii) ALL-IDB2 includes 260 labeled
WBC images [1]; iii) C NMC 2019 contains 10, 661 labeled WBC
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Fig. 1. Examples of images containing White Blood Cells (WBC)
[1]: (a,b) normal WBCs; (c,d) lymphoblasts.

images [17]. All datasets contain images that are labeled as either
normal or lymphoblast. However, these databases present some im-
portant limitations: in the case of the ALL-IDB1 dataset, the anno-
tation does not include healthy WBCs and the images are too large
to be processed by DL models. In the case of C NMC 2019, the im-
ages have been previously segmented to only contain the area corre-
sponding to the WBC, removing any information on the background.
Moreover, both ALL-IDB2 and C NMC 2019 databases contain im-
ages that have been previously cropped to present the WBC in the
center of the image, thus influencing DL models to analyze only the
central part of the image, unless data augmentations are used.

To overcome the limitations of current datasets for ALL de-
tection, in this paper we propose the ALL-IDB Patches1 approach,
which consists in cropping portions of the WSIs contained in the
ALL-IDB1 dataset, with the purpose of making the WSIs usable for
DL-based algorithms and leveraging all the information contained
in WSIs. Our ALL-IDB Patches approach has the following advan-
tages with respect to current datasets available in the literature:

• It considers WSIs, by using the whole slide containing both
red blood cells, normal WBCs, and lymphoblasts, rather than
only the limited area centered around the WBC, thus taking
advantage of all the information available. All the WBCs are
associated with the coordinates within the WSI and the cor-
responding label. In particular, the WBCs are labeled in two
classes: a) WBCs that are probable lymphoblasts; b) Other
cases. The probable lymphoblasts have been labeled by ex-
pert oncologists in ALL-IDB1. However, some cells with a
particularly altered morphology, for which it was not possible
to reach a confident labeling, might have not been classified
by the oncologists. The other cases have been labeled by ex-
perts in computer vision and machine learning, by focusing
on stained areas not considered by the oncologists as proba-
ble lymphoblasts (Fig. 2a).

• To favor the use of DL on the proposed database, we per-

1http://iebil.di.unimi.it/cnnALL/index.htm
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Fig. 2. The ALL-IDB Patches approach: (a) we consider Whole Slide Images (WSI) containing both red blood cells, normal White Blood
Cells (WBCs), and lymphoblasts, rather than only the limited area centered around the WBC, thus leveraging all the information available.
The position of WBCs is marked in all the WSIs, each associated with the corresponding label. The WBCs are labeled in two classes:
i) WBCs that are probable lymphoblasts (red circles); ii) Other cases (yellow crosses). The “probable lymphoblasts” have been labeled by
expert oncologists. The “other cases” have been labeled by experts in computer vision and machine learning, by focusing on stained areas not
considered by the oncologists as probable lymphoblasts; (b) we perform a subdivision of the WSIs into patches; (c–e) each patch is labeled
with a multi-labeling procedure, indicating whether the patch includes a WBC that is a “probable lymphoblast” (red circles) or an element
classified as “other cases” (yellow crosses).

form a subdivision of the WSIs into patches. Since resizing
a WSI would cause a severe loss of information (e.g., from
2592×1944 pixels to 224×224 pixels – ≈ 1/10 of the orig-
inal size), the division of WSIs into patches enables CNN to
process all the images separately. Moreover, in each patch,
the WBCs can be present in different positions and some-
times not entirely contained in the patch, thus not influenc-
ing DL models to analyze only the central part of the image
(Fig. 2b).

• Each patch is labeled with a multi-labeling procedure, indi-
cating whether the patch includes a WBC that is a probable
ALL lymphoblast or an element classified as “other cases”.
As each patch can contain both types of WBCs, the labels are
not mutually exclusive. Moreover, we include the centroids
for all WBCs in the patch (Fig. 2c–e).

Even though the ALL-IDB Patches method does not produce
new images with respect to ALL-IDB1, it represents a novel way of
processing the WSIs contained in ALL-IDB1, with potential interest
for the research communities working in ALL detection.

We also propose the first evaluation of the ALL detection accu-
racy on the ALL-IDB Patches images, by describing OrthoALLNet,
a novel DL methodology based on pretraining an orthogonal CNN
using a multi-task learning procedure, then fine-tuning it on the
ALL-IDB Patches dataset. It is the first approach in the literature
considering orthogonal CNNs for ALL detection.2

The remainder of the paper is structured as follows. Section 2
describes the ALL-IDB Patches approach. Section 3 introduces the

2We strongly discourage the use of the images obtained with the ALL-IDB Patches
approach for diagnostic or different activities than the purpose of this initiative. The
images must be considered only for image processing.

CNN-based methodology for ALL detection. Section 4 presents the
experimental results. Finally, Section 5 concludes the paper.

2. THE ALL-IDB PATCHES APPROACH
We create the images using the ALL-IDB Patches approach by
processing the WSIs of ALL-IDB1, which consist of 108 images
containing about 39, 000 blood elements, including both red blood
cells and WBCs. The position of WBCs is marked in all the WSIs,
each labeled in one of two classes: a) WBCs that are probable
lymphoblasts; b) Other cases.

The probable lymphoblasts have been labeled by expert oncol-
ogists. However, some cells with a particularly altered morphol-
ogy, for which it was not possible to reach a confident labeling,
might have not been classified by the oncologists. These anno-
tations are included in ALL-IDB1. The other cases have been
labeled by a team of computer vision and machine learning experts,
by focusing on stained areas not considered by the oncologists.
These annotations are included along with the images obtained us-
ing ALL-IDB Patches. The annotation of the WSIs is as follows
(Fig. 3).

• Image files ImXXX Y.jpg (from ALL-IDB1): The image files
are named with the notation ImXXX Y.jpg where XXX is a
3-digit integer counter and Y is a boolean digit equal to 0 if no
WBCs that are probable lymphoblasts cells are present, and
equal to 1 if at least one element classified as “other cases” is
present in the image. All images labeled with Y = 0 are from
for healthy individuals, and all images labeled with Y = 1 are
from ALL patients.

• Text files ImXXX Y.xyc: Each image file ImXXX Y.jpg is asso-
ciated with a text file ImXXX Y.xyc reporting the coordinates
of the centroids of WBCs that are “probable lymphoblasts”



(a) “Im006 1.jpg”
(From ALL-IDB1)

(b) “Im006 1.xyc”
(From ALL-IDB1)

WBC probable lymph.
446 62

164 279
...

(From ALL-IDB Patches)
Other cases
653 634

1400 1246
... ...

Fig. 3. Example of the WSIs annotation: (a) image Im006 1.jpg
(from ALL-IDB1); (b) the related classification file Im006 1.xyc re-
porting the coordinates of the centroids of WBCs that are “probable
lymphoblasts” (from ALL-IDB1) and the centroids of the elements
classified as “other cases” (from ALL-IDB Patches).

Fig. 4. The OrthoALLNet follows a multi-task learning structure,
with three fully-connected layers (FC1, FC2, FC3).

(from ALL-IDB1) and the centroids of the elements classified
as “other cases” (from ALL-IDB Patches).

The images obtained using the ALL-IDB Patches approach are
created by cropping portions of the WSIs in ALL-IDB1, creating
patches with size 256× 256 pixels. To avoid any possible loss of in-
formation, we consider a 64 pixels (1/4 of the patch size) overlap be-
tween patches.3 As a result, we obtain 10, 260 images. Each patch is
associated with the corresponding label, indicating whether the patch
includes a WBC that is a “probable lymphoblast” or an element clas-
sified as “other cases”. As each patch can contain both types of
WBCs, the labels are not mutually exclusive. Each patch is also as-
sociated with the centroids of the WBCs, if any. All the coordinates
of the centroids are in the form (x1, y1, x2, y2, ..., xN , yN ), where
N is the number of WBCs. Table 1 shows examples of patches and
the corresponding annotations.

3. THE ALL DETECTION METHOD
This section describes the proposed method for the ALL detec-
tion using the images created using the ALL-IDB Patches ap-
proach. Our method is based on creating the OrthoALLNet, a
CNN in which the filters are learned by imposing an additional
loss that maximizes the orthogonality of the filters, thus reduc-
ing feature redundancy [18]. We create the OrthoALLNet by
imposing the orthogonality loss on an existing architecture (e.g.,
ResNet). After creating the OrthoALLNet, we perform a multi-
task histopathological transfer learning [7], by pretraining the CNN
on a histopathological database considering multiple labels at the
same time, then fine tuning it on the images obtained using the
ALL-IDB Patches technique. The ALL detection method consists
of two steps: i) multi-task histopathological pretraining; ii) ALL
detection using OrthoALLNet.

3.1. Multi-Task Histopathological Pretraining
The multi-task histopathological pretraining consists of two steps.
First, we create the OrthoALLNet by considering an existing

3ALL-IDB Patches can create patches with different sizes and overlaps.

ResNet, since it represents a widely used architecture with high
accuracy in several application fields [19]. We modify the last fully-
connected (FC) layer to add a multi-task learning (MTL) structure
consisting in three FC layers (Fig. 4).

Second, we perform the histopathological pretraining by train-
ing the OrthoALLNet on a histopathological database, composed of
image patches extracted from WSIs describing several different his-
tological tissues, such as epithelial, skeletal, adipose, or nervous.
Each patch has its own label indicating which histological tissue is
present in the patch, with the labels being non mutually exclusive.
In particular, each patch has three different labels, organized in a
hierarchical way, and each label contains a more precise indication
of the kind of histological tissues present in the patch [20]. As an
example, a patch pi is associated with the following set of labels
L(p) = {l1, l2, l3}:

l1 = Epithelial (E) ;
l2 = Simple Epithelial (E.M) ;
l3 = Simple Squamous Epithelial (E.M.S) . (1)

We train the OrthoALLNet using the Lpretrain loss, computed by
aggregating the Lj losses for each FC layer and adding the Lorth

orthogonality constraint.

1. We compute the Lj loss for the j-th FC layer by considering
the corresponding lj label. Since the labels are not mutually
exclusive, we consider a multi-label soft margin loss.

2. We add the orthogonality loss Lorth, resulting in the follow-
ing global loss Lpretrain:

Lpretrain =

(
1

3

3∑
j=1

Lj

)
+ λLorth , (2)

where 0 < λ < 1 is the weight for the orthogonality loss [18].

3.2. ALL Detection using OrthoALLNet
The ALL detection consists of three steps. First, we replace the
FC1, FC2, FC3 layers with a single FC layer with 2 neurons, with
the dimension chosen in accordance to the cardinality of the classes
in ALL-IDB Patches, in which each patch can be associated with
two classes: (“probable lymphoblasts”; “Other cases”).

Second, we train the OrthoALLNet by performing a deep tuning
on the training subset of the images obtained using ALL-IDB Patches,
using the Ltuning loss. Since the classes are not mutually exclusive,
we compute Ltuning by considering a multi-label soft margin loss
Lall, in addition to the orthogonality loss Lorth:

Ltuning = Lall + λLorth . (3)
During training, we augment the data by randomly flipping or rotat-
ing each image.

Third, we apply the trained OrthoALLNet on the testing subset
of the ALL-IDB Patches images. For each patch, the output is a
binary vector indicating the absence/presence of each kind of WBCs
in the image.

4. EXPERIMENTAL RESULTS
To perform the histopathological pretraining, we considered the At-
las of Digital Pathology (ADP) [20] that contains 17, 668 RGB im-
age patches {pi}, each with size 272 × 272 pixels. Each patch is
associated with 3 labels, with increasing labeling precision. Each
label can describe the presence of multiple histological tissues, not
mutually exclusive. We train the OrthoALLNet using the procedure
described in Section 3.1, with the parameters indicated in [20]. In
particular, we consider λ = 0.1.



Table 1. Example of images obtained using the ALL-IDB Patches approach and the corresponding annotations: each patch is associated
with the corresponding label, indicating whether the patch includes a WBC that is a “probable lymphoblast” according to the ALL-IDB1
classification or an element classified as “other cases”, and the corresponding centroids, if any. All the coordinates of the centroids are in the
form (x1, y1, x2, y2, ..., xN , yN ).

Filename Image Probable
lymphoblast

Other cases Centroids of “probable
lymphoblasts” (x,y)

Centroids of “other
cases” (x,y)

Im001 1 patch 21.jpg 1 0 (125, 226) (251, 220) N/A

Im001 1 patch 29.jpg 1 1 (117, 149) (27, 76) (125,
34) (195, 104) (251, 28)

(30, 192)

Im001 1 patch 41.jpg 0 1 N/A (241, 76) (15, 180)

Table 2. Accuracy results on the images obtained using the
ALL-IDB Patches approach.

Ref. CNN Classification Accuracy
(%) (MeanStd)

[7] HistoTNetResNet18 95.730.96
HistoTNetResNet34 95.731.08

[8] ALLNetResNet18 95.591.00
ALLNetResNet34 95.461.04

- OrthoALLNetResNet18 95.910.81
OrthoALLNetResNet34 96.060.78

Image Grad-CAM Image Grad-CAM

Fig. 5. Examples of the Grad-CAM applied on the results obtained
with OrthoALLNetResNet34. The heatmaps are mostly overlapping
with the areas of WBCs.

To perform the ALL detection, we considered a n-fold cross-
validation, with n = 5, thus at each iteration 3/5 of the images cre-
ated using ALL-IDB Patches are for training, 1/5 for validation, 1/5
for testing. After the 5 iterations, we average the results. We trained
the OrthoALLNet using the Stochastic Gradient Descent (SGD) al-
gorithm with a batch size 8, for 80 epochs, with a learning rate lr
cycling in the range [0.001, 0.02] every 4 epochs. Every 20 epochs,
the learning rates are halved lr′ = lr/2. After the last epoch, we use
the validation subset to select the weights for which we obtained the
highest classification accuracy.

Table 2 reports the classification accuracy using the proposed
OrthoALLNet on the images created using the ALL-IDB Patches

technique, using both ResNet18 and ResNet34 as architectures. As
comparison, we considered the HistoTNet [7], and the ALLNet [8],
since they exhibit high accuracy on the ALL-IDB2 database. All
CNNs are trained using the proposed multi-task histopathological
pretraining. It is possible to observe that the OrthoALLNet ob-
tains consistently better results, in particular OrthoALLNetResNet34

achieves the best accuracy. The ALLNet, while exhibiting slightly
inferior performance, features a reduced number of learnable param-
eters and could be considered in application scenarios demanding
an optimized architecture, for example when performing a privacy-
aware learning in edge computing [21], also in combination with
neural optimization tools (e.g., OpenVino [22]). The results ob-
tained using the methods listed in Table 2 indicate the validity of our
proposed ALL-IDB Patches approach in creating images and corre-
sponding labels that can be used to perform an effective detection of
ALL.

Fig. 5 presents the application of the Grad-CAM technique [23]
on the results obtained with OrthoALLNetResNet34, showing how the
heatmaps are mostly overlapping with the areas of WBCs, indicating
the validity of our proposed methodology in learning features related
to cell itself to discriminate between WBCs that are probable ALL
lymphoblasts and other cases.

5. CONCLUSION

We proposed the ALL-IDB Patches technique, which represents a
novel way of processing the existing ALL-IDB1 database to make
the images usable by current DL models and leverage all the in-
formation contained in Whole Slide Images (WSI) for the purpose
of ALL detection. We create the images by cropping the WSIs
into patches and associating each patch with labels indicating either
the presence of WBCs that are “probable lymphoblasts” or “other
cases”. To evaluate the classification accuracy that can be obtained
on the patches created using the ALL-IDB Patches method, we con-
sider OrthoALLNet, a CNN obtained by imposing an additional or-
thogonality constraint on the learned filters. The results show the
validity of the proposed method in classifying the patches, establish-
ing a baseline for future developments in the field of ALL detection.
Future works will consider emerging models such as vision trans-
formers and other histopathological transfer learning procedures.
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