

©PREDICT-6G 2023-2025

D3.2
Implementation of selected release 1 AI-driven
inter-domain network control, management and
orchestration innovations
NXW

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 2 | 129

Revision v0.1

Work package WP3

Task T3.1, T3.2, T3.3, T3.4

Due date 31-12-2023

Submission date 31-12-2023

Deliverable lead NXW

Version V1.0

Authors

Pietro G. Giardina, Matteo Ravalli, Juan Brenes, Giada Landi (NXW)

Sebastian Robitzsch, Chathura Sarathchandra, Renan Krishna (IDE)

Salvatore Spadaro, Luis Velasco, Fernando Agraz, Marc Ruiz, Davide
Careglio, Albert Pagès (UPC)

Alejandro Calvillo, Constantine Ayimba (UC3M)

Roya Doostnejad, Rafael Rosales (INT)

Péter Szilágyi, Tamás Kárász, Szabolcs Nováczki, Zoltán Vincze, Csaba
Vulkán (NOK)

Carla Fabiana Chiasserini, Giuseppe Di Giacomo, Somreeta Pramanik
(POLITO)

José Luis Cárcel, Luis F. González (ATOS)

Reviewers

Otilia Bularca (SIM)

Luis Miguel Contreras (TID)

Antonio De La Oliva (UC3M)

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 3 | 129

Abstract

This document starts from AICP functional architecture and defines a methodology to select
those functional modules required for the implementation of an AICP prototype, aiming at
exposing a minimum set of functionalities (provisioning and decommissioning) for the
lifecycle management of E2E Deterministic services. SW design and development plans are
reported for the various component of the AICP, along with a general long-term
implementation roadmap.

Keywords

Control Plane, Cross-domain, Data Plane, SW architecture, DetNet, 3GPP, Time management

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 4 | 129

Document revision history

Version Date Description of change Contributor(s)

v0.1 12-09-2023 Initial ToC Pietro G. Giardina (NXW)

v0.2 06-12-2023 Draft for internal review Authors in initial table

v1.0 20-12-2023 Submission version
Authors and reviewers in
initial table

Disclaimer

The information, documentation and figures available in this deliverable are provided by the
PREDICT-6G project’s consortium under EC grant agreement 101095890 and do not
necessarily reflect the views of the European Commission. The European Commission is not
liable for any use that may be made of the information contained herein.

Copyright notice

©PREDICT-6G 2023-2025

Document information

Nature of the deliverable OTHER*

Dissemination level

PU Public, fully open. e.g., website ✔

CL Classified information as referred to in Commission Decision 2001/844/EC

SEN Confidential to PREDICT-6G project and Commission Services

* Deliverable types:

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 5 | 129

R: document, report (excluding periodic and final reports).

DEM: demonstrator, pilot, prototype, plan designs.

DEC: websites, patent filings, press and media actions, videos, etc.

OTHER: software, technical diagrams, etc.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 6 | 129

Table of contents
1	 Executive summary ... 17	

2	 Introduction ... 18	

3	 Methodology .. 19	

3.1	 Management Services Selection Process ... 20	

3.2	 Module implementation flavours and common ground .. 21	

3.3	 Development Time Management .. 21	

4	 Development of AICP ... 23	

4.1	 Time Sync .. 25	

4.1.1	 SW Design .. 26	

4.1.2	 Early Implementation and Release plan ... 28	

4.2	 Service Ingestions ... 28	

4.2.1	 SW Design .. 29	

4.2.2	 Early Implementation and Release Plan .. 31	

4.3	 Exposure Services – Topology, Capabilities and Resources .. 32	

4.3.1	 SW Design .. 33	

4.3.1.1	 Data types and domains’ considerations ... 34	

4.3.2	 Early Implementation and Release plan .. 37	

4.4	 Service Automation .. 38	

4.4.1	 SW Design .. 38	

4.4.1.1	 E2E Service Automation SW Submodule .. 39	

4.4.1.2	 MD Service Automation SW Submodule ... 46	

4.4.2	 Early Implementation and Release plan ... 52	

4.5	 Path Computation .. 53	

4.5.1	 SW Design .. 54	

4.5.2	 Early Implementation and Release plan ... 59	

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 7 | 129

4.6	 Digital Twin .. 59	

4.6.1	 SW Design .. 60	

4.6.2	 Early Implementation and Release plan ... 64	

4.7	 Resource Configuration .. 64	

4.7.1	 SW Design .. 64	

4.7.2	 Early Implementation and Release plan ... 68	

4.8	 Data collection and management ... 68	

4.8.1	 SW Design .. 68	

4.8.1.1	 Hierarchical intra-AICP data collection ... 70	

4.8.2	 Early Implementation and Release plan .. 72	

4.9	 AI/ML Algorithmic Frameworks .. 79	

4.9.1	 Orchestration of Machine Learning Tasks Execution ... 79	

4.9.1.1	 Algorithms for optimally distributing learning tasks .. 79	

4.9.1.1.1	 The PACT algorithmic framework ... 80	

4.9.1.1.2	 Performance results .. 84	

4.9.1.2	 Cooperative learning across multiple administrative domains 86	

4.9.1.1.3	 Architecture of the system .. 87	

4.9.1.1.4	 Interactions between administrative domains. Decentralized Learning. .. 88	

4.9.1.1.5	 Measuring data distributions ... 89	

4.9.1.1.6	 Modelling the system ... 89	

4.9.1.3	 Secure AI/ML Model Distribution within 3GPP Domain ... 91	

4.9.2	 Machine Learning-based Network Services ... 95	

4.9.2.1	 TWT settings in WiFi networks ... 95	

4.9.2.2	 ML-driven radio access slicing in cellular networks ... 97	

4.9.2.2.1	 Network Slicing .. 97	

4.9.2.2.2	 Constrained RL Algorithm ... 98	

4.9.2.2.3	 Lagrangian Duality and State-Augmentation ... 99	

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 8 | 129

4.9.2.2.4	 Network Traffic Model .. 99	

4.9.2.2.5	 Experiment Setup .. 100	

4.9.2.2.6	 Initial Simulation Results ... 101	

4.10	 ML Architectural Framework and Interfaces ... 104	

4.10.1	 SW Design ... 107	

4.10.2	 Early implementation and Release Plan .. 111	

5	 Implementation Roadmap ... 112	

6	 Conclusions ... 115	

7	 References ... 116	

8	 Appendixes ... 119	

8.1	 Appendix A - AICP Operational Workflows .. 119	

8.1.1	 E2E Deterministic Service Provisioning .. 119	

8.1.1	 E2E Deterministic Service Decommissioning ... 123	

8.2	 Appendix B – E2E Service lifecycle model ... 125	

8.3	 Appendix C – AICP information models ... 126	

8.3.1	 Deterministic Services ... 126	

8.3.1.1	 E2E Deterministic Service request ... 126	

8.3.1.2	 E2E Deterministic Service data model .. 126	

8.3.1.3	 Local Deterministic Service data model .. 128	

8.3.2	 Topology Exposure .. 129	

8.3.2.1	 E2E Topology Read request .. 129	

List of figures
Figure 3-1. PREDICT-6G AICP functional architecture .. 19	

Figure 3-2. Development Cycle composition ... 22	

Figure 3-3. Development Cycle composition variation ... 22	

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 9 | 129

Figure 3-4. Development Cycles in M10-M27 ... 22	

Figure 4-1. AICP MSs implementation coverage (green MSs) .. 25	

Figure 4-2. Time Sync software modules .. 26	

Figure 4-3. interaction of the time sync modules ... 28	

Figure 4-4. Service Ingestion module SW design .. 29	

Figure 4-5. Exposure service general behaviour ... 32	

Figure 4-6. MDP-AICP information exposure chain .. 33	

Figure 4-7. General Exposure Service SW architecture ... 33	

Figure 4-8. Example of abstract topology exposure at end-to-end and domain level 35	

Figure 4-9. Topology information updates 1) Notification based and 2) Request based 36	

Figure 4-10. Service Automation SW Module and Submodules .. 39	

Figure 4-11. E2E Service Automation Service provisioning .. 40	

Figure 4-12. E2E Service Automation service decommissioning .. 41	

Figure 4-13. E2E Service Automation Submodule – SW Design .. 43	

Figure 4-14. Path Request loop in MD Service Automation module ... 46	

Figure 4-15. MD Service Automation service provisioning .. 47	

Figure 4-16. MD Service Automation service decommissioning .. 48	

Figure 4-17. SA module SW design .. 49	

Figure 4-18. E2E path computation request and calculation .. 54	

Figure 4-19. Schematic of the internal functional architecture for the E2E Path Computation
MS ... 56	

Figure 4-20. Technological domain path computation request and calculation 57	

Figure 4-21. Schematic of the internal functional architecture for the E2E Path Computation
MS ... 58	

Figure 4-22. DT preliminary architecture .. 60	

Figure 4-23. TSN Interface model ... 61	

Figure 4-24. Example (a) and its modelling in the DT (b) ... 62	

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 10 | 129

Figure 4-25. Resource Configuration SW Module and Management Service .. 65	

Figure 4-26. Interaction among AICP the modules of the Resource Management for an ingested
service ... 66	

Figure 4-27. Resource Configuration interaction with other MS and the MDP 67	

Figure 4-28. Collection and management platform module SW design .. 69	

Figure 4-29. Hierarchical configuration of the multiple Data collection and Management
components for multi-domain data collection .. 71	

Figure 4-30. Software Architecture of 5G Monitoring Platform ... 73	

Figure 4-31. REST APIs exposed by the Config Manager for the dynamic configuration of data
sources .. 74	

Figure 4-32. REST APIs exposed by the Config Manager for setup of authentication and
authorization of data consumers ... 75	

Figure 4-33. POST request for registering a new data consumer with the credentials provided
in the body. The returned value is the Authn-ID uniquely associated to the consumer. 75	

Figure 4-34. POST request for authorizing the data consumer with its Authn-ID provided as
path parameter and the permissions and the related resource provided in the body. The
returned value is the Authz-ID uniquely associated to the consumer ... 76	

Figure 4-35. GET request for listing all the current registered data consumers. 77	

Figure 4-36. GET request for listing the enabled permissions of all the current registered data
consumers ... 77	

Figure 4-37. DELETE request for removing the permissions of the data consumer with its
Authn-ID provided as path parameter. The returned value is the Authz-ID of the consumer 78	

Figure 4-38. DELETE request for removing the credentials of the data consumer with its Authn-
ID provided as path parameter. The returned value is the Authn-ID itself .. 78	

Figure 4-39. Distributed training process of an AI/ML model. Subsets of nodes sequentially
train compressed versions of an original DNN model. Nodes are categorized based on their
capability and data availability (gold, silver, bronze). .. 80	

Figure 4-40. PACT algorithmic framework. .. 82	

Figure 4-41. Loss (left) and total energy cost (right) as functions of the training time 85	

Figure 4-42. Scheme of the architecture of the system. .. 87	

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 11 | 129

Figure 4-43. Mapping of PREDICT-6G Management Services to an AI/ML-Enabled 3GPP
Technology Domain ... 93	

Figure 4-44. Message Sequence Chart for a AI/ML-Enabled 3GPP Domain Interacting with a
PREDICT-6G Management Services ... 94	

Figure 4-45. Network Enforcement of AI/ML Model Distribution Access Control 95	

Figure 4-46. Conceptual Framework ... 98	

Figure 4-47. The test performance of the state-augmented model in terms of min-rate
constraint and max-latency constraint for an average test network w.r.t. the number of training
iterations. Rate (left) and Latency (Right) Constraints, Red dashed lines with no markers
specify the QoS requirements. State-augmented slicing satisfies both QoS requirements for
an average network unlike the two baselines. ... 101	

Figure 4-48. The time/slice evolution of the min-rate constraint (left) and max-latency
constraint (right) for an example test network. For this network configuration, latency
constraint is the harder of the two which is only met by the state-augmented approach. 102	

Figure 4-49. From left to right, the time/slice evolution of the bandwidth allocations for HT, LL
and BE slices for a test network. .. 102	

Figure 4-50. The average rate of failures for min-rate constraint (left) and max-latency
constraint (right) for the same test network. The rate of failure metric captures what fraction
of the time a typical user does not meet their respective QoS requirements. 103	

Figure 4-51. Ergodic average of latencies of LL flows over time, RL algorithm (Left), Proportional
slicing (middle) and uniform slicing (right). .. 103	

Figure 4-52. Current AI/ML framework architecture and technologies .. 105	

Figure 4-53. AI/ML Framework interactions ... 108	

Figure 4-54. Proposed AI/ML framework architecture .. 110	

Figure 5-1. Initial roadmap towards AICP prototype .. 112	

Figure 8-1 E2E Deterministic Service provisioning - E2E Management Domain view 119	

Figure 8-2 E2E Deterministic Service provisioning – Loop 1, Local Management Domain view
 .. 121	

Figure 8-3 E2E Deterministic Service provisioning - Loop 2, Local Management Domain view
 ... 122	

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 12 | 129

Figure 8-4 E2E Deterministic Service decommissioning - Part 1, E2E Management Domain view
 ... 123	

Figure 8-5 E2E Deterministic Service decommissioning - Part 2, Local Management Domain
view ... 124	

Figure 8-6. E2E service administrative states and state transitions .. 125	

List of tables
Table 4-1. List of MSs selected for AIPC implementation .. 23	

Table 4-2. List of APIs exposed by the Service Ingestion NBI .. 31	

Table 4-3. List of APIs exposed by both Network Topology Exposure Services’ NBI (MDs and E2E
MD) .. 36	

Table 4-4. List of APIs exposed by the E2E Service Automation .. 44	

Table 4-5. List of APIs exposed by the MD Service Automation .. 51	

Table 4-6. Notations used in Algorithms 1, 2, and 3 of the PACT framework. ... 83	

Table 5-1. Implementation advancements expected at the end of each Development Cycle .. 112	

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 13 | 129

Acronyms and definitions

3GPP Third Generation Partnership Project

AI Artificial Intelligence

ADRF Analytics Data Repository Function

AICP AI-driven Multi-stakeholder Inter-domain Control-Plane

AI/ML Artificial Intelligence/ Machine Learning

API Application Programming Interface

BE Best Effort

CBRM Constant Bit Rate Model

DetNet Deterministic Networking

DB Data Base

DL Decentralized Learning

DT Digital Twin / Digital Twinning

E2E End-to-End

FDS Federated Domain Set

FL Federated Learning

FO Federating Orchestrator

HT High Throughput

IAM Identity and Access Management

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 14 | 129

JSON JavaScript Object Notation

KPI Key Performance Indicator

LL Low Latency

MD Managed Domain

MDP Multi-domain Data-Plane

ML Machine Learning

MS Management Service

MTLF Model Training Logical Function

NBI North Bound Interface

NWDAF Network Data Analytics Function

PACT Performance-Aware Compression and Training

PC Path Computation

PCE Path Computation Element

POP Pipeline Orchestration Platform

QoS Quality of Service

REST Representational State Transfer

RL Reinforcement Learning

SBI South Bound Interface

SLA Service Level Agreement

SW Software

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 15 | 129

TD Technological Domains

TFS TensorFlow Serving

TO Training Orchestrator

TSN Time Sensitive Networking

TWT Target Wake Time

UC Use Case

WP Work Package

XML Extensible Markup Language

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 16 | 129

Table of partners

Short Name Partner

UC3M Universidad Carlos III de Madrid

NOK Nokia Solutions and Networks KFT

ERC Ericsson Espana SA

INT Intel Deutschland GMBH

TID Telefonica Investigacion y Desarrollo SA

ATOS ATOS IT Solutions and Services Iberia SL

GES Gestamp Servicios SA

NXW Nextworks

COG Cognitive Innovations Private Company

SIM Software Imagination & Vision SRL

POLITO Politecnico di Torino

UPC Universitat Politecnica de Catalunya

CNR Consiglio Nazionale delle Ricerche

UNIPD Universita degli Studi di Padova

IDE Interdigital Europe LTD

https://www.uc3m.es/Inicio
https://www.nokia.com/es_int/
https://www.ericsson.com/en
https://www.intel.co.uk/content/www/uk/en/homepage.html
https://www.telefonica.com/es/
https://atos.net/en/
https://www.gestamp.com/en/home
https://www.nextworks.it/it/home
https://cogninn.com/
https://www.simavi.ro/
https://www.polito.it/
https://www.upc.edu/ca
https://www.cnr.it/
https://www.unipd.it/
https://www.interdigital.com/

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 17 | 129

1 Executive summary
The document discusses several aspects related to the software implementation of PREDICT-
6G’s Control plane, the AICP (AI-driven multi-stakeholder Inter-domain Control-Plane). Starting
from AICP’s functional architecture, a subset of the different Management Services (MS)
previously defined have been selected for implementation, with the aim at implementing a
prototype able to provide a minimum set of functionalities for the lifecycle management of
E2E deterministic services: provisioning and decommissioning. To achieve this objective, a
specific development methodology has been defined, taking into account 3 main aspects: the
selection of MSs, the technology constraints from the MDP (PREDICT-6G Data Plane), and time
available to release the prototype.

The selection process represents the first part of the development methodology and is based
on specific criteria that considers two main sources of information: i) the operation workflows,
defined together with the AICP’s functional architecture, and ii) the set of use cases defined in
the project. Additional refinements allowed to select MSs initially not considered by the main
selection criteria but crucial for a deterministic service control plane i.e., time synchronisation
MSs.

The AICP aims at being as much as possible technology-agnostic. Nevertheless, some modules
interacting with the MDP are directly affected by the network technology. For those specific
cases, a technology-driven implementation is considered: an AICP SW module may encompass
one or more MSs, characterized by different implementation flavours based on the MDP
technologies they must support.

The available time up to the AICP prototype release is organized into Development Cycles,
lasting 3 months, at the end of which feedback is collected from the implementation activities,
being used to i) tune the AICP functional and SW design and ii) organize integration activities,
internal to AICP and with MDP modules.

The application of the proposed development methodology led so far to two key results
reported in the document:

• Initial AICP SW design and early implementation. A set of software modules covering
all the required functions to realize the AICP prototype. Each module reports a SW
design, a high-level release plan and, where available, an early implementation
description.

• Initial implementation roadmap. A roadmap that provides the expected
advancements per each development cycle up to the AICP prototype.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 18 | 129

2 Introduction
Deliverable D3.1 (PREDICT-6G/D3.1/ 2023) presented the AICP functional architecture aiming at
design a control-plane based solution for the management and control of E2E Deterministic
services across a multi-administrative multi-technology data plane. The result of such a
theoretical work is a set of Management Services (MS, i.e., the AICP functionalities) residing in
the different Management Domains (MD) characterizing the hierarchical architecture of the
AICP. From a practical point of view, the final achievement of the PREDICT-6G control plane
implementation path is the release of an AICP prototype that offer the minimum set of
functionalities for the lifecycle management of an E2E deterministic service (i.e., at least
provisioning and decommissioning) across the various technological domains supported by
the project’s data plane (MDP). Given such a limited set of service management
functionalities, the implication is that not all the MSs defined for the AICP need to be targeted
for implementation (or can be partially targeted).

The scope of this document is to report on the SW modules composing the AICP both in terms
of design and early implementation, on the methodology used to select their functionalities
from the AICP functional architecture, and on the roadmap toward an AICP prototype.

The methodology defined for the selection of the MSs candidate for implementation is
described in Section 3 which includes plans how to organize the time for the development of
the different SW artifacts and their storage and consideration concerning the different data
plane technologies to be supported. Section 4 reports the design of the different SW modules
that build the AICP functionalities, complemented with high-level discussion on which tools,
frameworks and SW libraries could be exploited for the implementation of the given module.
Early implementations are reported when available. The release plans of the different modules
are reflected in the long-term roadmap discussed in Section 5.

Finally, the document is complemented with information related to the service information
and lifecycle modelling, which are described in dedicated Appendixes, where the operation
workflows from D3.1 are also reported as reference for the reader.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 19 | 129

3 Methodology
In D3.1, the functional AICP architecture has been presented as a set of Management Services
deployed in a hierarchical control plane architecture, as depicted in Figure 3-1.

Figure 3-1. PREDICT-6G AICP functional architecture

This section discusses the general methodology used for the selection of the MSs to be
implemented for developing the AICP prototype. It is important to highlight that such a
selection process is dynamic, and the outcomes may vary as the project moves forward. In
particular, the following factors have been identified as the ones that can affect the AICP
implementation:

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 20 | 129

• Use Cases tuning. The set of UCs reported in D1.1 (PREDICT-6G/D1.1/4-5, 2023) could be
subject to refinements and this may lead to an update of the requirements that need
to be fulfilled by the AICP.

• MDP implementation choices. The features for the programmability of the data plane
provided by each domain and the way they are exposed impact the implementation of
those MSs that should exploit them for e.g., topology management, characteristic
exposure (services, resources, capabilities).

• PREDICT-6G E2E Architecture considerations. AICP is just a part of a project aiming
to create and maintain determinism across multiple and heterogenous network
domains. This implies that some affecting AICP decision could be taken based on
aspects that goes beyond the scope of AICP itself.

• Feedback from AICP implementation. As the implementation activities proceed, some
MSs or part of them could become obsolete and/or no longer required. This can also
imply a refinement of the AICP functional design, to be reported in D3.3.

Handling of those factors requires a meaningful collaboration effort from different work
packages in the project that complement and refine both the selection process and
implementation approach described in the following sub-sections.

3.1 Management Services Selection Process
The MSs selection process relies on 2 main sources of information:

1. Operational workflows reported in D3.1 (PREDICT-6G/D3.1/9, 2023)
2. Use Cases, as defined in D1.1

The source (1) provides an overview of the interactions between the different MSs i.e., who
interacts with whom. In addition, such workflows provide hints on the minimum set of
functionalities, exposed by each MS, that should be implemented to build the workflows
themselves. In this process the workflows considered are related to the E2E deterministic
service provisioning and decommissioning, i.e., the minimum set of operations required for
the lifecycle management of any service. Both workflows and related sequence diagrams are
reported in Appendix, Section 8.1.

The Use Cases, source (2), determine the technological domain to be targeted thus directly
affecting the implementation of the MSs resides in technology specific MDs in terms of
interfaces to be implemented, KPIs to be monitored, etc.

The combination of these 2 sources of information leads to the selection of a minimum set of
MSs and related functionalities to be implemented to build the prototype of AICP.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 21 | 129

3.2 Module implementation flavours and common ground
The implementation of MSs directly interacting with the data plane would require supporting
multiple network technologies, due to the heterogeneous nature of the MDP. To simplify their
design and related implementation, one idea is to create technology-driven implementation
of a certain MS (or group of MSs), e.g., a Resource Exposure MS for DetNet and one dedicated
to 3GPP, same for Topology Exposure, Resource Configuration, etc. This requires that the
implementation of the AICP must be flexible enough to adapt to any change of the MDP, by
offering the possibility of dynamically plugging in the specific technology software modules.
From a practical point of view, an implementation approach based on microservice paradigm
can provide that degree of flexibility, extensible to all the targeted MDs, including the E2E one.

Such dynamic plug-in of different SW module would be assisted, by design, by a set of MSs
dedicated to the management of the other MSs designed for the control of the deterministic
services. Such MSs reside in a dedicated MD, called Inter-domain Integration MD (Figure 3-1),
whose role is detailed in dedicated section of deliverable D1.2 (PREDICT-6G/D1.2/5.3.3, 2023).
Since the Inter-domain Integration MD does not play a direct role in the control and
management of deterministic service, its implementation is considered optional and is not
discussed in this document.

In terms of SW artifact management, WP3 exploits the GitLab facility provided by UC3M that
offers a dedicated space for PREDICT-6G. All the open-source components of the control plane
will be stored in specific repositories under the AICP group, available at the following URL:

https://gitlab.netcom.it.uc3m.es/predict-6g/aicp

Modules whose source code is not open and/or public will be stored in repositories maintained
by the respective owners.

3.3 Development Time Management
It is important to note that the implementation of a prototype for the AICP must be considered
in the long term and will be reported in D3.4 at M27. In this regard, a roadmap is reported in
Section 5 while this section explains how such a roadmap has been derived.

The base idea is to organize the development activities in cycles lasting 3 months, in a “loosely
agile” manner. The release of the modules building the AICP is aligned with the end of a
development cycle with the aim to realize an integrated prototype at the end of the last cycle.
Each development cycle consists of 2 timeframe called Implementation Time and
Synchronisation Time, as shown in Figure 3-2.

https://gitlab.netcom.it.uc3m.es/predict-6g/aicp

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 22 | 129

Figure 3-2. Development Cycle composition

The Implementation Time is dedicated to design, coding and testing activities of the software
modules. Owner of multiple modules can also perform integration activities where possible.
The Synchronization Time is dedicated to test and integration activities between modules
belonging to different owners (intra-AICP integration) and with the functionalities exposed by
the MDP for the different data plane technologies. The duration of this time interval is 2-4
weeks that may increase (as shown in Figure 3-3) since as the project proceed, it is expected
to have more integration than implementation activities.

Figure 3-3. Development Cycle composition variation

At the end of Synchronization Time, the Development Cycle terminates, an AICP software
release is provided and the feedback for enhance the function design of the control plane is
collected.

As depicted in Figure 3-4, given the duration of the cycle, a total of 4 Development Cycles is
considered form M13 to M24. The period in M10-M12 is dedicated to the early implementation
activities, reported in this deliverable, while in M25-M27 it is expected the release of first
integrated AICP prototype.

Figure 3-4. Development Cycles in M10-M27

Section 5 describes a more detailed version of the implementation roadmap, providing the
expected advancements per each SW module at the end of which development cycle.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 23 | 129

4 Development of AICP
Following the selection criteria described in Section 3.1, it can be noted that 3 MSs are not
explicitly involved in any operational workflow defined for the AICP:

• Time Sync
• Time Sync Management
• E2E Resource Management

Proceeding with a more detailed analysis, it can be noted that the only MS that can be
considered not mandatory for implementing the minimum set of service lifecycle
functionalities is the E2E Resource Management MS. It is worth noting, indeed, that the time
synchronisation is a key concept for managing time-sensitive services and achieving
determinism while the functionalities exposed by the E2E Resource Management are not
crucial for the AICP and, when required, can be covered by some other MSs. For that reason, the
E2E Resource Management can be considered a complementary element of AICP functional
architecture and not targeted for the implementation. This does not prevent that feedback
collected during the implementation cycles and future refinements of the operation workflows
will involve the E2E Resource Management or part of its own functionalities, making its
implementation necessary for AICP objectives.

In Table 4-1 is reported the list of MSs selected for the implementation, aggregated by
Development Area.

Table 4-1. List of MSs selected for AIPC implementation

Development
Area

Description AICP Coverage (MSs)

Time Sync Time synchronisation service across the whole AICP
infrastructure.

• Time Sync
• Time Sync

Management

Service Ingestion Deterministic service request parser and requestor
privileges checker

• E2E Service
Ingestion

Exposure Services Exposure of information set (capability, resources,
etc.) from TDs to MDs and intra-AICP i.e., from MDs to
E2E MD.

• Topology
Exposure

• Capability
Exposure

• Resource
Exposure

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 24 | 129

• E2E Topology
Exposure

Service
Automation

Ensures the correct deployment and maintenance of
deterministic E2E services across multiple
heterogeneous infrastructures. Exposure of
information related to E2E and MD deterministic
services

• Service
Automation

• E2E Service
Automation

• Service
Exposure

• E2E Service
Exposure

Path Computation Computes best paths intra and inter-domain for
deterministic services

• Path
Computation

• E2E Path
Computation

Digital Twin Network modelling for KPI estimation and synthetic
data generation

• DT Predictive
Analytics

• E2E DT
Predictive
Analytics

Resource
Configuration

Configuration enforcements at TDs for deterministic
service provisioning

• Resource
Configuration

Data Collection
and Management

Deterministic Service KPI monitoring service at both
MD and E2E MD level

• Measurement
Collection

• E2E Monitoring

AI/ML Algorithmic
Frameworks

Centralized/distributed execution of AI/ML tasks • Learning
Orchestrator

• E2E Learning
Orchestrator

ML Architectural
Framework and
Interfaces

Manage the lifecycle of AI/ML models, from design
and training to deployment in production
environments.

• AI/ML Model
Registry

• Dataset
Registry

• Model
Repository

• Dataset
Repository

• Resource
Orchestrator

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 25 | 129

• Learning
Manager

Figure 4-1 shows the how the implementations cover (in green) the AICP MSs in the functional
architecture.

Figure 4-1. AICP MSs implementation coverage (green MSs)

4.1 Time Sync
The role of the time sync module is to set up and maintain consistent time synchronization in
the P6G system spanning over multiple technology domains that is crucial for the
deterministic operation. To achieve this, a two-level time synchronization management
service was defined in D3.1 (PREDICT-6G/D3.1/7.2.1.1-7.2.2.1, 2023) consisting of E2E Time Sync

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 26 | 129

Management Service and technology domain specific Time Sync Management Service. The
design and implementation of the time sync component follows this principle.

4.1.1 SW Design

The Time Sync software component consists of two modules as shown in Figure 4-2

Figure 4-2. Time Sync software modules

The three main tasks of the E2E Time sync MS are as follows:

• Collection of per domain time sync capabilities: the E2E Time sync MS shall be able to
communicate with each domain of the P6G network to collect the time sync
capabilities of the respective domains. The E2E Time Sync MS performs this by querying
the domain’s TS MS and processing the information provided by the domain TS MS.

• Decide and configure GM/Leader and Follower roles: based on the information collected
from the domain TS MSs, the E2E TS MS carries out an analysis to determine the best
configuration for the Grand Master Leader and Follower roles. After the analysis is
finished and the configuration is determined, the E2E MS TS configures the
Leader/Follower roles in the domains via sending the necessary configuration to the TS
MS of the domains.

• Monitor and assure per domain and E2E time sync state: After the configuration is
finished, the E2E TS MS must monitor the operation of the time sync service in the P6G
system. To achieve this, the E2E TS MS either periodically queries the TS status from
the domain TS MS or subscribes for getting notification from the domain TS MS about
TS status changes. The E2E TS MS continuously evaluates the status changes and once

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 27 | 129

it determines that the TS service’s quality is not appropriate it re-evaluates the TS
service configuration and determines the right configuration matching the
requirements. In the next step, it carries out the necessary configuration changes via
the domain TS MS.

The technology domain specific time sync MSs’ tasks are as follows:

• Upon the request of the E2E Time Sync MS collect time sync capabilities in the
respective domain: once the domain TS MS receives a query from the E2E TS MS
regarding the TS capabilities of the technology domain, the TS MS collects the required
information via the interface provided by the technology domain and sends the
collected information to the E2E TS MS.

• Based on the configuration received from the E2E Time Sync MS, configure the required
TS settings in the technology domain: the TS MS provides interface for the E2E TS MS
to send time sync configuration regarding the Leader/Follower roles of the domain.
Once the TS MS receives a configuration command from the E2E TS MS, it sends the
relevant configuration commands to the technology domain via the domain’s relevant
interface.

• Continuously monitor and report time synchronization status in the respective
technology domain: the TS MS shall continuously monitor the status of the time
synchronization in the technology domain. TS MS performs this via the methods
provided by the technology domain, i.e., either periodically querying the technology
domain for the time sync status and/or subscribing for time sync status updates in
the technology domain. The status update/changes in configuration shall be reported
to the E2E TS MS immediately by the TS MS.

The interaction between the time synchronization MS modules implements the time sync
system procedure defined in D1.2 (PREDICT-6G/D1.2/5.3.3.1, 2023) and are shown in Figure 4-3.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 28 | 129

Figure 4-3. interaction of the time sync modules

4.1.2 Early Implementation and Release plan

Currently there is no implementation of the Time Synch Service module available, the
implementation work is planned according to the roadmap reported in Section 5. The
implementation is planned to be done using Python and OpenJDK.

4.2 Service Ingestions
The Service Ingestion module is in charge of handing lifecycle management requests for E2E
deterministic services (Provisioning, Decommissioning) and represent the E2E service
management interfaces for AICP external users. With respect to the E2E lifecycle model,
reported in Appendix (Section 8.2), the modules perform the operations required when the E2E
deterministic service is in the first administrative state: Ingestion.

According with D3.1 (PREDICT-6G/D3.1/7.2.2.2, 2023), the description of the corresponded MS
provides a single functionality called “Validate service requests” that implied several sub-
functionalities:

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 29 | 129

1. Request syntax check
2. Requestor privileges check
3. E2E Resource availability check
4. Domain selections

Nevertheless, (3) and (4) are no longer required since (3) is not used (see explanation at the
beginning of Section 4) and (4) is performed at the level of E2E path computation by the
specific PCE implementation (see Section 4.5). With respect to (2), the check of the privileges
will happen with the support of an external centralised Identity and Access Management (IAM)
Platform e.g., Keycloak1, since it can be considered a functionality that involves multiple
elements in the AICP, such as the administrative operation, access to the data e.g., monitoring,
service status, domains and resources involved, etc.

Without the Service Ingestion module, it would be impossible for a requestor to provision an
E2E deterministic service in a centralized manner. This implies that the Service Ingestion is a
core AICP module, involved in all the UCs aiming at demonstrating E2E deterministic services.

4.2.1 SW Design

The module exists at the E2E MD and exposes an interface for requestion and terminating E2E
deterministic service. As depicted in Figure 4-4, the initial SW design considers a REST-based
North-Bound interface (NBI).

Figure 4-4. Service Ingestion module SW design

1 https://www.keycloak.org/

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 30 | 129

The other internal components are:

• Pre-Validation logic (or Request Pre-validator). Analise the requests against the NBI
and split them in two sub-requests: one directed to the Authentication Logic, to
validate the requestor privileges and one to the Service Information parsing logic. It is
also in charge of assembling messages with the result of the request that is notified to
the requestor and of store this results in specific internal DB, the Request Status
Register

• Authentication Logic. Verifies the credential and the level of privileges of the user. As
discussed above, this task is fulfilled with the support of an IAM properly configured to
provide this kind of service in a centralized manner.

• Request Parsing Logic. It is in charge of validating the syntax and the form of the
request part related to the service. In the case of decommissioning, this validation is
minimal since, in that case, the only parameter requested is the E2E service identifier.
In the case of provisioning request, the logic must analyze a more complex data
structure (JSON or XML) representing the model of the E2E service. This model is
defined by using the YANG language and is available in Appendix C, Section 8.3.1.1.

• Request Status Register. Maintains the status of each service request in the format:

<Request_ID>, <Request_type>, <Requestor_ID>, <Status>, <Information>

Where:

o Request_ID/Requestor_ID are the unique identifiers of request and requestor
respectively;

o Request_type can be PROVISION or DECOMMISSION. Other type can be added in
as the AICP evolves;

o Status is the status of the request: Accepted, In_Progress, Failed
o Information is a field that can contain the reasons in the case of failing “no

e2e path found” and/or the ID of the E2E service in the case of success.
• Clients. Build the South-Bound interfaces (SBI) of the Service Ingestion module. The

IAM client is specific for the platform while the Service Automation client is REST,
according to the E2E Service Automation design.

With respect to the NBI, Table 4-2 reports the initial set of APIs to be exposed.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 31 | 129

Table 4-2. List of APIs exposed by the Service Ingestion NBI

Name Description HTTP
Method Input/Output

Service
Provision

Request the provision of an
E2E service with certain
characteristics

POST I: Service description according to the
model reported in Appendix C, Section
8.3.1.1

O: A body that follows the model of the
items stored in the Request Status
Register. A proper HTTP code is also
returned e.g., 201 CREATED, 401
UNATHORIZED, etc.

Service
Decommission

Request the
decommissioning of an E2E
service

DELETE I: ID of the E2E Service

O: a proper HTTP code e.g., 200 OK, 404
NOT_FOUND, etc.

Request
Status

Request the status of a
given requests

GET I: Request ID (Optional).

O: An entry in the format described for
the Request Status Register.

If the Requets_ID is not provided, all the
entries in the registry are returned.
Proper HTTP codes are also returned: 200
OK, 404 NOT_FOUND, etc.

4.2.2 Early Implementation and Release Plan

Currently there is no implementation of the Service Ingestion module available, nevertheless,
a repository in the project’s GitLab is already available:

https://gitlab.netcom.it.uc3m.es/predict-6g/aicp/service-ingestion

The plan is to have this module stable in two releases at M18 and M24, according to the
roadmap reported in Section 5. Progressively covering the “Validate service requests”
functionality exposed by the corresponded MS in deliverable D3.1.

With respect to the code, tool and framework that can be employed, the idea is to use Python
as main programming language. FastAPI2 is targeted as framework for the implementation of

2 https://fastapi.tiangolo.com/

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 32 | 129

the NBI, whose API will be also defined by following the OpenAPI3 specification. As mentioned,
Keycloak is a potential candidate as IAM platform: Python modules already exist and can be
used to implement the IAM Client. The Request Status Register can be implemented with a
timeseries DB, due to its structure.

4.3 Exposure Services – Topology, Capabilities and Resources
From a general point of view, an Exposure Service can be described as an entity that collects
information codified with a given information model and translates them by using another
information model, as shown in Figure 4-5. It is worth noting that the relationship between
the input and output models is not necessarily 1:1 but could be N:1, N:N, N:M, 1:N, etc.

Figure 4-5. Exposure service general behaviour

The AICP needs to know the characteristics of each technological domain to properly enforce
configurations and enable the management of E2E deterministic services. Each technological
domain exposes multiple set of information concerning its own network e.g., provisioned
services, network topology and capabilities, resources status, etc., whose modelling depends
on the technology itself. To consume such information, the AICP functional architecture
considers several Exposure MSs, in charge of exposing information form a technological
domain to the AICP at MD and E2E MD levels. This is shown in Figure 4-6, where an exposure
chain between domains translates the Entity X (e.g., network topology) information from a
Technological Domain specific model to the AICP E2E model. This behaviour is in line with the
functionalities reported in D3.1 (PREDICT-6G/D3.1/7.2.1.3-7.2.1.5-7.2.1.6-7.2.1.7-7.2.2.6-7.2.2.7, 2023)

3 https://www.openapis.org/

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 33 | 129

for all the exposure MSs: i) obtain information, ii) abstract information (i.e., translate to
another information model), iii) expose information.

Figure 4-6. MDP-AICP information exposure chain

4.3.1 SW Design

The development of an Exposure Service is characterized by a model-driven implementation
as the internal logic and the interfaces exposed are highly dependent on the models supported.
This implies that the information models are crucial for characterization of the module, while
the software architecture can be generalized and applicable to all types of Exposure Service,
careless of the information exposed. A further element that can affect the implementation
details is the dynamicity of the information i.e., the frequency the source information changes:
the Exposure Service must be able to timely detect such changes to provide always updated
information to the consumers.

A general software architecture for an exposure service is reported in Figure 4-7.

Figure 4-7. General Exposure Service SW architecture

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 34 | 129

It consists of 4 main elements:

• North/South-Bound interfaces (NBI/SBI). They are the Output and Input interfaces,
respectively for the translation process. The Exposure Service collects information for
a given element from the SBI and makes it available with the new format from the NBI.
These interfaces must consider the information dynamicity aspects discussed above
by implementing specific communication mechanisms (e.g., request/response,
subscribe/notification, etc.)

• Translation logic. Provides the logic for translating from a model to another one.
Modules such as the Digital Twins may require accessing data in the original format by
requesting them through a specific API in the NBI. In this case, the translation logic
simply forwards the data from the SBI to the NBI.

• Information Cache. Is the internal repository that maintains the data in the output
format. Refresh updates depend on both the information dynamicity and the
communication mechanism implemented to timely meet the change in the input
domain.

4.3.1.1 Data types and domains’ considerations

While the SW architecture in Figure 4-7 is valid for all the Exposure Services, the
implementation details depend on the type of the collected information, from which domain
is collected, and which domain is the target.

The exposure of the network topology is crucial for several services as topology information
not only offers an overview of the network but also includes additional information such as
resources available and network capabilities. For this reason, the Network Topology Exposure
service incorporates in a single component 3 different Exposure MSs reported in D3.1: Topology,
Resource and Capabilities.

The topology models for AICP internal purposes are different at the E2E MD and MDs. In
particular, at the MD level, the representation of the topology is uniform i.e., the same per each
MD regardless of the technological domain managed but still with the granularity of the
network exposed by the MDP i.e., a node per network device. This allows the Path Computation
service (see Section 4.5) to compute best paths inside the technological domain. Particularly,
the abstracted topology contains a high-level view of the KPIs of the links, namely, range of
achievable latencies, available/remaining link capacity and reliability. This, coupled with the
identifiers of the nodes, as well as the fields stating the endpoints of the links, the Path
Computation can execute weighted graph traversal algorithms to determine the path within
the domain as a sequence of physical links.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 35 | 129

At the E2E level, the topology graph is more abstract, and the granularity is one node per
technological domain, with edge nodes of that domain as ingress/egress points. Thus, a link
in the E2E abstracted topology not only represents the inter-domain link but also which are
the border nodes in the domain sequence. In addition to that, the nodes at the end-to-end
topology representation, besides the domain identifier, also contain a field indicating the
technological capabilities of the domain, that is, which is the specific technology (3GPP,
DetNet, etc.) that the data plane representation of the characteristics of the inter-domain links
is the same as in the internal domain topology model. Having said that, Figure 4-8 depicts a
representation of the two abstraction procedures. An example of the structure of the model
and considered fields can be found at Appendix C.

Figure 4-8. Example of abstract topology exposure at end-to-end and domain level

Network topology is subject to changes during the network lifetime with an unpredictable
frequency and it is necessary for the Network Topology Exposure services (both E2E and not)
to implement a mechanism to refresh their information in near real-time. This mechanism is
dependent on the MDP choices, i.e., whether MDP will offer a topology notification services or
not. In the first case, the SBI of the Network Topology Exposure service can implement a
subscribing mechanism to listen to MDP topology notification. This mechanism can be in turn
implemented in the E2E version of the exposure service and listen to changes at MD level. In
the case the notification service would not be available, one solution would be to refresh

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 36 | 129

topology at each topology request e.g., at service provisioning time: the related workflow is
simple to realize but may take some time to be performed, enlarging the time to fulfil the
request. Figure 4-9 shows both mechanisms.

Figure 4-9. Topology information updates 1) Notification based and 2) Request based

The list of APIs exposed by the Network Topology Exposure service is reported in Table 4-3.

Table 4-3. List of APIs exposed by both Network Topology Exposure Services’ NBI (MDs and
E2E MD)

Name Description Type Input/Output

Get Topology Request information about the full
topology as list of nodes and links

HTTP/REST,
RPC, Event,
etc.

I: N/A

O: A body that follows the
topology model, depending on
the domain the service resides
(MD or E2E MD). The E2E
topology model is available in
Appendix, Section 8.3.2.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 37 | 129

Get Nodes Request information about one or
more nodes in the target topology

HTTP/REST,
RPC, Event,
etc.

I: ID of the node (optional)

O: A list with one or more nodes
and their characteristics (if the
node ID is not provided, all the
nodes are returned)

Get Links Request information about one or
more links in the target topology

HTTP/REST,
RPC, Event,
etc.

I: ID of the link (optional)

O: A list with one or more links
and their characteristics (if the
link ID is not provided, all the
links are returned)

4.3.2 Early Implementation and Release plan

Currently there is no implementation for Network Topology Exposure service, nevertheless, a
dedicated code repository in the project’s GitLab is already available:

https://gitlab.netcom.it.uc3m.es/predict-6g/aicp/network-topology-exposure

The implementation plan is reflected in the roadmap in Section 5 and aim at progressively
covering the 3 functionalities reported in D3.1 for the Exposure MSs (i.e, i) obtain information,
ii) abstract information, iii) expose information).

• MD level implementation. For the Network Topology exists a direct dependency on MDP
implementation, so it is expected to have a complete implementation by M24. Anyway,
it is planned to build a mock implementation with the NBI that provides topology
samples by M15 to proceed with the implementation of the E2E counterpart that will
consumes those samples.

• E2E MD level implementation. For topology it is expected a stable implementation by
M21 to be refined up to M27.

The source code will be produced in Python by also exploiting specific packages for generating
codes starting from YANG models, e.g., pyangbind4. For the REST interfaces, OpenAPI paradigm
will be followed for API specification while FastAPI is the framework targeted for the
implementation.

4 https://pypi.org/project/pyangbind/

https://gitlab.netcom.it.uc3m.es/predict-6g/aicp/network-topology-exposure

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 38 | 129

4.4 Service Automation
The Service Automation module is the AICP component designed to ensure the correct
deployment and maintenance of deterministic E2E services across multiple heterogeneous
infrastructures.

The module is composed of two specific Management Services (MS): the E2E Service
Automation MS and the Management Domain (MD) Service Automation MS. Consequently, the
purpose of the Service Automation module is twofold. On the one hand, the E2E Service
Automation MS oversees the proper implementation and management of an E2E service
across all technology domains, solving all possible conflicts between each other. On the other
hand, the MD Service Automation MS interacts with each technology domain to ensure the
closed-loop automation of an accepted service. Further information of both MS and their
functionalities can be seen in section 7.2 of D3.1 (PREDICT-6G/D3.1/7.2, 2023).

To ensure closed-loop automation and the correct implementation of a service, the Service
Automation module manages the following lifecycle stages:

• Service provisioning: Implements the initial configuration of a technology domain to
meet service requirements.

• Service assurance: Continuous control-loop configuration and monitoring to ensure
service lifecycle.

• Service termination: Ensures service removal from a technology domain after a service
lifetime expiration or after receiving a termination request.

Furthermore, this module will also include another two specific MSs: E2E Service Exposure and
MD service exposure. This module will be also responsible for exposing service details to other
MSs and/or users requesting specific details of both E2E services and local services in a
specific TD.

Regarding its SW development, the Service Automation module will be implemented in all
project use cases: smart manufacturing, deterministic services for critical communications
and multi-domain deterministic communication. Further information of these use cases can
be seen in D1.1.

4.4.1 SW Design

Based on the workflows described in section 9 of D3.1, a Service Automation SW module will
be implemented to perform service provisioning and service decommissioning at both E2E
and MD levels. Considering the theoretical design of Service Automation Management
services, the Service Automation SW module will consist of two submodules: one designed to
cover E2E functionalities and the other for addressing MD needs.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 39 | 129

Figure 4-10. Service Automation SW Module and Submodules

Based on the proposed design, this subsection describes the Service Automation SW
implementation, considering Service Automation (E2E and MD) interactions with the
remaining modules present in the AICP. In this regard, the following subsections provide
details on how each Service Automation submodule interacts with the rest of modules, which
information is sent from/to each module, technical details of their inputs and outputs, and
the interfaces that will be utilised to support each interaction.

4.4.1.1 E2E Service Automation SW Submodule

The E2E Service Automation SW Submodule will cover the functionalities and interactions
required to perform E2E Service Provisioning and Decommissioning.

E2E Service Provisioning

Figure 4-11 depicts the service provisioning workflow from the perspective of the E2E Service
Automation submodule. This figure shows the implementation details of all the interactions
between the modules involved in the configuration and setup of a new E2E service. All service
interactions, unless it is specified otherwise, will follow a REST model since most of them are
based on simple unidirectional communications that should follow a standard request-
response communication model, simplifying its implementation in the process.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 40 | 129

Figure 4-11. E2E Service Automation Service provisioning

1. The E2E Service Automation receives a new provisioning E2E service request from the
E2E Service Ingestion. The module processes this request to set up a new E2E service
in the required management domains.

2. After processing the request, the E2E Service Automation module sends a Cross-
domain requests towards the E2E Path Computation service to select a suitable path
for the service. Once the paths and the involved domains have been selected by the E2E
Path Computation module, the E2E Service Automation module receives both the E2E
Path and domain selection information.

3. With the information shared from the E2E Path Computation service, the E2E Service
Automation requests a local service provisioning to the MD Service Automation module
in each of the selected domains. After a while, the E2E Service Automation module
receives a notification to inform that the Local Service has been provisioned in the
corresponding MD.

4. After receiving the previous confirmation, the E2E Service Automation sends a New
Provisioned Service Notification to both E2E AI-based PD & E2E DT Predictive Analytics
services. Furthermore, the E2E Service Automation module sends a Configure E2E
Monitoring notification to the E2E Monitoring module.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 41 | 129

5. As part of the provisioning service, the E2E Service Automation module instructs the
E2E Service Exposure to store the service information in its corresponding module.
Since other modules might need this data, and because it could be subjected to
modifications depending on the service assurance and its lifecycle, this interaction will
be performed using a REST model for its interface.

6. Finally, the E2E Service Automation module sends an E2E Service Provisioned
confirmation to the E2E Service Ingestion to confirm the provisioning of the service.
This interaction follows a REST model since it is a simple notification to a different
module in the AICP. In practice, this communication will be internal, since the E2E
Service exposure Ms will be embedded in the E2E Service Automation module.

E2E Service Decommissioning

Figure 4-12 depicts the decommissioning of an E2E service through the AICP from the
perspective of the E2E Service Automation. This figure presents the implementation details of
all the interactions between the management services involved in decommissioning a
previously deployed E2E service.

Figure 4-12. E2E Service Automation service decommissioning

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 42 | 129

1. The E2E Service Automation module receives a decommissioning E2E service request
from the E2E Service Ingestion. The module processes the request to detect and collect
the info needed to remove the E2E service in the corresponding domains.

2. After processing the request, the E2E Service Automation module (internally) retrieves
the data of the service to be decommissioned from the E2E Service Exposure.

3. Afterwards, the E2E Service Automation requests a local service decommissioning to
the MD Service Automation in each of the involved technology domains. After a while,
the E2E Service Automation service receives a notification to inform that the Local
Service has been properly decommissioned.

4. After the decommissioning confirmation is received, the E2E Service Automation
service sends a Decommissioned Service Notification to both E2E AI-based PD & E2E
DT Predictive Analytics services. Furthermore, the Service Automation module also
sends a Configure E2E Monitoring notification to the E2E Monitoring module to stop
monitoring the decommissioned service.

5. The E2E Service Automation module instructs the E2E Service Exposure to remove the
service information. In practice, this communication will be internal, since the E2E
Service exposure Ms will be embedded in the E2E Service Automation module.

6. Finally, the E2E Service Automation module sends an E2E Service Decommissioned
confirmation to the E2E Service Ingestion to inform about the service
decommissioning.

Considering the previous analysis, the proposed SW design for the E2E Service Automation
Submodule integrates a set of SW functions, interfaces and a database to cover all the
aforementioned functionalities. The specific design and role of each of the proposed
components is the following:

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 43 | 129

Figure 4-13. E2E Service Automation Submodule – SW Design

E2E Request Processing Function: SW function designed to process and forward the E2E
Service Provisioning or Decommissioning requests coming from the E2E Service Ingestion.
Among its functionalities, this function is able to process the requests, store or retrieve E2E
service information from the Services DB, and forward or receive information from either the
E2E Path Processing or to the E2E Lifecycle Management functions depending on the type of
workflow. During the Service Decommissioning phase, this function triggers the E2E Lifecycle
Management function.

E2E Path Processing Function: SW function designed to manage and process all information
related to the path allocation of E2E services. In particular, this function forwards and
processes the E2E path computation data via the E2E path interface, forwards the E2E pa.ths
and domain information for its storage in the Services DB, and triggers the E2E Service
lifecycle management during the Service Provisioning phase.

E2E Lifecycle Management Function: SW function designed to manage the lifecycle of the
E2E services. This function is responsible for initializing and enabling the service provisioning
and decommissioning towards local domains, notify E2E AI and DT about the service status,
request the monitoring of the E2E Service, and forward, request and update information
related to E2E Services through its interaction with Services DB. All these interactions are
performed through the E2E Service interface.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 44 | 129

E2E Service Exposure Function: SW function designed to expose information about the E2E
Services. This function is designed to receive exposure requests through the E2E service
interface, request the information of E2E Services to the Services DB, and forwarding this
information again through the E2E Service interface.

Services DB: Relational database used to store all information related to E2E Services
including all characteristics shown in the E2E Service Data Model (see Appendix C, Section
8.3.1) and the link between E2E Services, paths and selected domains. This database is also
used by the MD Service Automation SW sub-module to store information related to local
services.

E2E Service Ingestion REST Interface: REST interface designed to interact with the E2E
Service Ingestion module. This interface is used to receive Service Provisioning or
Decommissioning requests from the E2E Service Ingestion, and to forward the outcome, i.e.,
confirmation or rejection, for those requests.

E2E Path Computation REST Interface: REST interface designed to interact with the E2E Path
Computation module. This interface is used to forward E2E path computation requests and to
receive path and domain selection information from the aforementioned module.

E2E Service REST Interface: Multipurpose REST interface designed to interact with the Service
Automation, E2E AI, E2E DT and E2E Monitoring modules. This interface is used to start the
service provisioning and decommissioning in local domains, receives the outcome of those
processes, notifies about the status of E2E Services to E2E AI and DT MS, requests the
monitoring of a specific E2E Service, and exposes information related to E2E Services to users,
operators or other external MS.

The interaction with the interfaces will be performed through the development of specific APIs
with different GET, POST, PUT, DELETE methods for each interface. In particular, the set of APIs
and methods supported per interface are the following:

Table 4-4. List of APIs exposed by the E2E Service Automation

Interface Name Description HTTP
Method Input/Output

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 45 | 129

E2E Path
Computation

Path Computation
Request

Request the
computation of
the path for a
specific E2E

service

GET

I: Service description according
to the model reported in

Appendix C, Section 8.3.1.2

O: A body containing the ID of
the E2E service, the ID of the
selected path, the selected

domains, and the name of the
endpoints integrating the path

E2E Service

Local Service
Provisioning

Request the
provisioning of an

E2E service
POST

I: Service description according
to the model reported in

Appendix C, Section 8.3.1.2,
integrating the ID of the local

service already initialized.

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

Local Service
Decommissioning

Request the
decommissioning
of an E2E service

DELETE
I: ID of the E2E Service

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

E2E Monitoring
Configuration

Request

Request the
monitoring of the

E2E service
POST

I: Service description according
to the model reported in

Appendix C, Section 8.3.1.2,
integrating the KPIs to be

monitored.

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

E2E Monitoring
Deconfiguration

Request

Stop the
monitoring of the

E2E service
DELETE

I: ID of the E2E Service

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

E2E Service
Provisioning or

Decommissioning
Notification

Notify the
outcome of the

E2E provisioning
or

decommissioning
request

POST

I: ID of the E2E Service and
status

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 46 | 129

4.4.1.2 MD Service Automation SW Submodule

The MD Service Automation SW Submodule will cover the functionalities and interactions
required to perform Local Service Provisioning and Decommissioning.

Local Service Provisioning

Figure 4-14 and Figure 4-15 depict the workflows where the MD Service Automation is involved
for local service provisioning. The workflow for this component is split into two separate flows:
(i) the path request loop, where the E2E Path Computation asks the MD to compute an
available path for the service, and (ii) the local service provisioning phase, where the remaining
interactions of the Service Automation module (at the MD level) are shown:

Figure 4-14. Path Request loop in MD Service Automation module

Similarly to the E2E Service Automation module, all service interactions, unless it is specified
otherwise, will follow a REST model, given the nature of all the interactions between modules
and its lower degree of complexity for its implementation.

1. The MD Service Automation service receives a Local Path request from the E2E Service
Path Computation entity. The module processes this request to find an available path
in the MD where it is located.

2. After processing the request, the Service Automation module sends a Local Path
Computation request towards the MD Path Computation to select a suitable path for
the service. Once the paths within each domain have been selected by the MD Path
Computation module, that module sends the information about the Local Path to the
MD Service Automation.

3. From the information received in the Selected Path, the MD Service Automation
requests the computation of the Service KPIs to the MD DT Predictive Analytics. After its
processing, the MD Service Automation receives the KPI values from this module.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 47 | 129

4. After this process is completed, the MD Service Automation forwards the Local Path
Selection to the E2E Path Computation module using a REST interface.

Figure 4-15. MD Service Automation service provisioning

1. Once the Path Computation steps have been completed, the MD Service Automation
receives the service provisioning request from the E2E Service Automation entity. The
module processes this request to set up a new service in its MD with the specifications
provided by the E2E component.

2. After processing the request, the MD Service Automation module sends a Path
Resource Allocation instruction towards the MD Resource Configuration module to
allocate the path resources. Once the resources have been reserved, the Resource
Configurator sends a Path Provisioning confirmation module.

3. Once the resources have been allocated in the management domain, the MD Service
Automation entity requests an update resource availability to the Resource Exposure
Module with the new resource allocation for the selected path.

4. The MD Service Automations sends a service provision notification to both the MD AI
Based Predictive and MD DT Predictive services to update the service status.

5. Finally, the MD Service Automation module sends a Local Service Provisioned
confirmation to the E2E Service Automation element to confirm the local service
provisioning.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 48 | 129

Service Decommissioning

Figure 4-16. MD Service Automation service decommissioning

1. The MD Service Automation receives a new service decommissioning request from the
E2E Service Automation. The module processes this request to remove the service in its
management domain.

2. Once the request has been processed, the MD Service Automation module sends a
Release Path Resources instruction towards the MD Resource Configuration module to
release the path resources. Afterwards, the Resource Configurator sends a Resource
Released notification.

3. Following the resource release, the SA module updates Resource Availability in the MD
Resource Exposure and removes service information in the MD Service Exposure
module, using in both cases their corresponding REST interface. For the MD Service
exposure case, this communication will be internal, since the E2E Service exposure Ms
will be embedded in the E2E Service Automation module.

4. After the resource update, the MD Service Automations sends a service
decommissioned notification to both the MD AI Based Predictive and MD DT Predictive

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 49 | 129

services to update the service status, as well as notifying the MD Measurement
Collection to stop collecting data from the domain.

5. Finally, the MD Service Automation module sends a Local Service Decommissioned
confirmation to the E2E Service Automation element to confirm the decommissioning
of the local service.

Considering the previous analysis, the proposed SW design for the Service Automation module
integrates a set of SW components, interfaces and a database to cover all the aforementioned
functionalities. The specific design of this module and the logic connectivity between each
component can be seen in Figure 4-17. SA module SW design

Figure 4-17. SA module SW design

The role of each of the proposed components is the following:

Path Processing Function: SW component designed to manage and process all information
related to path allocation in the MD. This component receives the path computation
information received from the E2E Path Computation module through its corresponding E2E
path interface. Using this data, the component forwards the path request towards the MD Path
Computation module to select the path in the domain. Once received, the component proceeds
to store the path information in the Services DB, triggering the Service lifecycle management
in the process. This component is only used during the service provisioning phase since it can
only be triggered when a new path computation request is received.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 50 | 129

Lifecycle Management Function: This component is one of the core elements of the module.
The lifecycle management component is designed to manage the Service lifecycle at MD level
since each E2E domain will be divided into one “local” service (i.e., Services with TD scope) per
domain. With this idea in mind, this function is responsible for establishing both service
provisioning and decommissioning in the local domains when a new Service commissioning
/ decommissioning request arrives from the E2E Service Automation through its
corresponding interface. This behaviour will be performed by updating its status and resource
consumption in the Service DB. Furthermore, the lifecycle management component will
contact the Resource configurator to allocate/release the resources used for the Service in the
domain, notify AI and DT about service status, and request measurement collection about the
Service. For this purpose, two REST interface will be used in the module: one used for resource
related requests (Resource REST interface) and one for the remaining interactions (Service
REST interface).

Service Exposure Function: SW component designed to expose information about the local
Service in the MD scope. This function is designed to receive exposure requests through the
Service interface, request the information of the local services to the Services DB, and
forwarding this information again through the Service interface.

Services DB: Relational database used to store all information related to E2E Services
including all characteristics shown in the E2E Service Data Model (see Appendix C, Section
8.3.1) and the link between E2E Services, paths and selected domains. This database is also
used by the MD Service Automation SW sub-module to store information related to local
services.

E2E Path Computation REST Interface: REST interface designed to interact with the E2E Path
Computation module. This interface is used to retrieve path computation requests from the
E2E Path Computation module, as well as forwarding path allocation notifications.

E2E Service Automation REST Interface: REST interface designed to interact with the E2E
Service Automation module. This interface is used to receive Service Provisioning or
Decommissioning requests from the E2E Service Automation, as well as to forward service
commission/decommission notifications.

Service REST Interface: Multipurpose REST interface designed to interact with the Service
Automation, AI, DT and Measurement collection modules is utilised to notify about the status
of the local Service to AI and DT Mses and start/stop the measurement collection of a Service,
as well as to expose information related to the local services to users, operators or other
external MSs.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 51 | 129

Resource REST Interface: Multipurpose REST interface designed to interact with resource
configurator and resource exposure modules. This interface will enable the interaction with
the Resource Configurator to allocate the service resources in the domain, as well as to contact
the resource exposure when a module or component requires the resources consumed in the
domain (present in the Service DB).

Path REST Interface: REST interface designed to interact with the Path Computation module.
This interface is used to retrieve path computation requests from the Path Computation
module, as well as forwarding path allocation notifications.

The interaction with the interfaces will be performed through the development of specific APIs
with different GET, POST, PUT, DELETE methods for each interface. In particular, the set of APIs
and methods supported per interface are the following:

Table 4-5. List of APIs exposed by the MD Service Automation

Interface Name Description HTTP
Method Input/Output

E2E Path
Computation

Path Computation
Request

Request the
computation of
the path for a

specific service

GET

I: Local Service description
based on the model reported in

Appendix C, Section 8.3.1.3

O: A body containing the ID of
the Service and the ID of the

selected path.

Path
Computation

Path Computation
Request

Request the
computation of
the path for a

specific service

GET

I: Local Service description
based on the model reported in

Appendix C, Section 8.3.1.3

O: A body containing the ID of
the Service and the ID of the

selected path.

E2E Service
Automation

Local Service
Provisioning

Request the
provisioning of a

local service
POST

I: Local Service description
based on the model reported in

Appendix C, Section 8.3.1.3

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 52 | 129

Local Service
Decommissioning

Request the
decommissioning
of a local service

DELETE
I: ID of the local Service to delete

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

Service

Service
Provisioning or

Decommissioning
Notification

Notify the
outcome of the
provisioning or

decommissioning
request

POST

I: ID of the local Service and
status

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

Start
measurement

collection
Request

Start collecting
measurement for
local MD service

POST

I: Local service description,
integrating the resources to be

monitored.

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

Stop
measurement

collection
Request

Stop collecting
measurement for
local MD service

DELETE
I: Local service ID

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

Resource

Resource
Allocation
Request

Allocate the
resources of a
local Service

POST

I: Local service description,
integrating the resources to be

allocated.

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

Resource Release
Request

Free the
resources of a
local Service

DELETE
I: Local service ID.

O: a proper HTTP code e.g., 200
OK, 404 NOT_FOUND, etc.

Resource Status
Request

Get resource info
of local service GET

I: ID of the local Service,
resources to be exposed.

O: List of resources used in the
local service.

4.4.2 Early Implementation and Release plan

Currently there is no existing implementation of the Service Automation modules,
nevertheless, a repository in the project’s GitLab is already available. The implementation plan
of this module will consist of three releases at M15, M18 and M24, according to the roadmap

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 53 | 129

reported in Section 5. The first release is expected to cover the development of the MD Service
Automation SW Submodule, while the second release will include the implementation of the
E2E Service Automation Submodule. After those implementation efforts, the second half of the
year will be dedicated to adjusting functionalities and performing the integration with the rest
of modules. The final release with a functional design and complete integration will be ready
in M24.

Regarding frameworks, programming languages and libraries, this module will be developed
by using Python as the main programming language. Regarding libraries, FastAPI could be
used for the implementation of the different interfaces, where its APIs could be defined by
according to the OpenAPI specification. With respect to the Services DB, it could be developed
by using PostgreSQL or SQLite solutions.

4.5 Path Computation
The path computation functionality is needed at the two levels defined for the AICP, that is, the
end-to-end and the technological domain level. Hence, while the end-to-end path computation
calculates an abstract E2E path that traverses a specific sequence of technological domains,
which must fulfil the connectivity requirements of the requested service, the path
computation component of each technological domain is responsible for computing a low-
level path, which is bounded to the underlying data plane technology and whose performance
is aligned with the requirements posed by the requested service and the performance offered
by the rest of the partial paths that take part of the end-to-end. (e.g., the end-to-end latency
requested by the service is split across the different domains involved in the computed path).
Therefore, the path computation functionality in the AICP is performed by two types of MSs,
namely the E2E Path Computation MS and the Local Path Computation MS. Both MSs are
described in (PREDICT-6G/D3.1/7.2.1.4-7.2.2.4, 2023) and participate in the service provisioning
process.

The use of the Path Computation MSs is transversal to all UCs, especially during the
provisioning phase, as it is the service that provides the specific sequence of network
elements (nodes and links) that need to be configured according to the stated KPIs. By
engaging with the Exposure services and the DT, it is able to provide path computations at
both end-to-end and technological domain (e.g., 3GPP, DetNet, Wi-Fi) level to satisfy the UCs
requirements.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 54 | 129

4.5.1 SW Design

E2E Path Computation SW module

This sub-section describes the preliminary design and implementation of the software
module that will implement the E2E Path Computation MS. Based on the workflows defined in
this sub-section first provides some detail on the interactions between the module and the
rest of the services, which allows to identify and define the communication interfaces.
Afterwards, the functional architecture of the software module is described.

Figure 4-18. E2E path computation request and calculation

Figure 4-18 illustrates the general operation and interaction of the E2E PC module for the
service provisioning workflow. First, the PC has to collect the abstracted topological
information of the underlying multi-domain data plane (1). To do this, the PC interfaces the E2E
Topology Exposure MS. Such information is modelled as a connected graph that contains an
abstracted view of the different domains of the data plane as described in Section 4.3. Such
abstracted view also contains information about the capabilities and KPIs offered by each
domain. During the AICP operation, upon a service provisioning request, the E2E Service
Automation MS requests an E2E path to the PC to support such service (2 and 3 in the Figure
4-18). The request contains the endpoints that need to be connected as well as the connectivity
requirements (e.g., KPIs) that need to be fulfilled. The E2E PC is responsible for computing a
valid E2E path over the abstract multi-domain topology and, consequently, for computing the
domain sequence to connect the endpoints of the service. To do this, the E2E PC implements
an internal logic that considers the information collected from the E2E Topology Exposure MS
to compute an E2E abstract path (or list of candidate paths), which fulfils the requirements of
the request. Such abstract path, which has been computed considering the KPIs offered by the

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 55 | 129

involved domains, results into a split of the E2E KPIs across them. Hence, each portion of the
E2E abstract path is translated to a single-domain path request to the domain-specific Service
Automation MS (5). It is worth noting here that the computation engine can be assisted by the
AI-based Predictive & Decision MS, which could execute more sophisticated path
computation processes (4). Upon the reception of local path request from the E2E PC (5), the
Service Automation MS of each involved domain requests a fine-grained local path (or list of
paths) computation with the specific KPI requirements for that domain and sends it back to
the path computation. Once all the partial paths have been computed, the engine of the E2E
PC composes one or more E2E paths that are sequentially sent to the DT (6, 7) for KPI
estimation. Afterwards, the E2E PC selects the path that better fulfils the requirements. The
selected path is finally sent to the E2E Service Automation MS, which is the responsible for
managing the service configuration process.

Figure 4-19 depicts the functional architecture of the E2E PC software module, which is aimed
to implement the process described above. Such architecture is composed of five functional
blocks:

1. MS Server & Interface: This block implements a REST interface and server devoted to
receiving the path requests from E2E Service Automation MS. From here the path
computation process is triggered.

2. MS Client Interfaces: This functional block embraces the client interfaces that the
module has to implement. In particular, this block contains the interfaces to the
Topology Exposure, the AI-based Predictive and Decision MS, the domain specific
Service Automation MSs, and the E2E level DT. Said interfaces support the CRUD
(Create, Read, Update and Delete) operations of the artefacts related to path
computation. To this end, several interface design and technologies can be adopted,
such as point-to-point interfaces (e.g., REST, gRPC) or message bus-based.

3. Inventory and Topology: These blocks contain the internal view of the abstracted E2E
topology and resources inventory, which will be used by the path computation engine
to calculate the E2E path. These elements collect the information from the exposure
MS through the corresponding client interface.

4. Path Computation & Decision Engine: This block implements the path computation
logic. As said before, the path computation can rely on an internal engine, which
considers the topology and inventory, as well as the service requirements conveyed in
the path request, to compute a candidate or set of candidate multi-domain E2E
abstract paths; but can also rely on AI-assisted path computation mechanisms, which
are requested through the client interface to the AI-based Predictive & Decision MS. In
addition, this element is responsible for contacting the domain specific Service
Automation MSs involved in the E2E abstract path to request the local path

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 56 | 129

computations (via the corresponding client interface). Afterwards, this block collects
the local paths, composes the E2E candidate or set of candidates, and sends it/them
to the DT for final KPI assessment. Finally, in case there is a set of candidate E2E paths,
this block selects the most appropriated one and sends it back to the E2E Service
Automation.

Figure 4-19. Schematic of the internal functional architecture for the E2E Path Computation
MS

Local Path Computation SW module

As with the case of the E2E Path Computation MS, this sub-section describes the preliminary
design and implementation of the technological local Path Computation MS, focusing on the
operational workflow that describes the main interaction between the MS and others, as well
as on describing the functional architecture of the software module that implements this
service.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 57 | 129

Figure 4-20. Technological domain path computation request and calculation

Figure 4-20 illustrates the operation of the Path Computation MS and its interaction with
other MS during the service provisioning workflow. Similar to the E2E case, the module first
has to request for the topological details of the technological domain, by interfacing with the
Topology Exposure MS at domain level (1). In addition, since fine grain and domain-specific
details are required for the low-level path calculation, the service also needs to retrieve the
resources of the technological domain and their capabilities to compute the feasible paths
according to the concrete technology of the domain. This is done by interfacing with the
domain Resource Exposure and Capabilities Exposure MS, respectively (2), (3). With this
information, the Path Computation is ready for calculating paths according to requirements
posed by service provisioning requests. During said operational workflow, the domain Service
Automation MS is contacted by the E2E Path Computation MS to request for the details of the
local path, passing as arguments the endpoints of the path as well as the desired KPIs (4).
Upon reception, the Service Automation contacts the local Path Computation with a path
computation request (5). The local Path Computation executes its own internal logic to
determine the candidate paths, which can be assisted by AI functionalities, by interfacing with
the AI-based Predictive and Decision MS, to perform a more insightful derivation of candidates
(6). Once the candidate paths have been determined, and the list potentially reduced thanks
to the AI capabilities. Finally, it sends the list of candidates to the Service Automation (7),
which will select the most suitable path to be sent to the E2E Path Computation (8).

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 58 | 129

Figure 4-21. Schematic of the internal functional architecture for the E2E Path Computation
MS

Figure 4-21 depicts the functional building blocks of the local Path Computation software
module, tailored to the implementation of the described workflow. Although having different
scopes, the functionalities of the E2E Path Computation and the local Path Computation MSs
are fairly similar, hence, their functional building block design is akin. For this reason, in the
below list only the differences with respect the E2E Path Computation MS are explained in
regard to the functionalities of the local Path Computation MS:

1. MS Server & Interface: This block implements the interface for receiving path
computation requests from external modules, like the Service Automation MS.

2. MS Client Interfaces: set of interfaces in order to interact with the MSs needed to
construct the topological and resource information of the domain, namely, the
Topology Exposure, the Resource Exposure and the Capabilities Exposure MSs.

3. Inventory and Topology: They contain the view of the domain topology, resources and
the associated capabilities, employed for calculating the local paths.

4. Path Computation & Decision Engine: This is the block that implements the logic for
computing the candidate paths at domain level and decide which is the most suitable
path (or paths) that matches the requirements (i.e., the KPIs) stated by the request
coming from the Service Automation MS. As said, this decision can be potentially aided
by the AI-based Predictive and Decision Service to refine the calculation and/or the
selection of paths.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 59 | 129

4.5.2 Early Implementation and Release plan

The current version of the Path Computation MS covers the internal path computation logic
that determines, given a graph of a network topology, the sequence of nodes and links that
conform the path. Said graph is based on a preliminary model topology that covers the details
and characteristics of nodes and links, being generic enough to cover both end-to-end and
domain level paths. Future releases will evolve said model to specialize the details for the
concrete needs of the two types of path computations. Additionally, although not fully
developed, it also contains a preliminary set of REST clients to interface with the rest of MSs.
The details and operation of the interfaces are still under design. Although for the current
deliverable there is no stable software release for the service, a repository in the project’s
GitLab is currently available. The release plan for the module is intended to be in four phases,
following the roadmap reported in this document and the integration and validation tests
planed at WP4 level.

The preliminary version of Path Computation MS is being implemented in Java for the internal
logic as well as the topology and path inventory. In this regard, Springboot5 is used as the
framework for the implementation of the software module. Together with a set of Maven
libraries, said framework is a good candidate that provides the necessary functionalities to
develop and implement all the expected requirements. Regarding the interfaces with the rest
of the MS to which the Path Computation interacts with, as said previously, the REST paradigm
is the main candidate to implement the server interfaces of the module. For the client ones,
the module will rely on the communication technologies offered by the other MSs. In any case,
Java and Springboot offer libraries that allow to easily define and implement the client and
server side of a number of interface technologies (e.g., REST, Websockets, gRPC, etc.), as well
as the supported operations and data exchanges.

4.6 Digital Twin
In this section, we briefly describe the main functionalities and requirements of the DT. Then,
a preliminary architecture with several modules is proposed. Details about the initial models
for TSN traffic to be considered in the DT are presented. Next, those contributions with
additional details on the KPI estimation procedures, including the list of measurable KPIs.

5 https://spring.io/projects/spring-boot

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 60 | 129

Moreover, the interfaces between DT and TSN CM, as well as KPI computation algorithms are
detailed. Finally, the status of the implementation is reported.

4.6.1 SW Design

Figure 4-22 sketches the preliminary architecture envisioned for the DT: it contains the
following basic modules: i) a manager module configuring and supervising the operation of
the rest of the modules; ii) a few modules that include algorithms, models, and the interface
with path computation MS; and iii) a Redis DB that is used in publish-subscribe mode to
communicate the different modules among them.

Regarding the CURSA-SQ engine, we adopt an efficient flow-based approach based on a
continuous queuing model for network flows analysis. The CURSA-SQ (M. Ruiz at al., 2023)
queue model is a continuous G/G/1/k model with a First-In-First-Out (FIFO) discipline based
on the logistic function. CURSA-SQ can be applied for a wide range of scenarios, such as
generating realistic data for Machine Learning training purposes and for accurate, scalable,
and predictive near real-time estimation of end-to-end KPIs in fixed and converged fixed-
mobile networks.

The evaluation/tuning and simulation composer modules work together to translate the
characteristics and parameters received in the incoming request into a simulation plan that
needs to be solved by means of calls to the CURSA-SQ engine. Once the results of such
simulations are available in the Redis DB, the KPI estimation module aggregates and post-
processes such results to compose the E2E KPIs metrics needed to provide as reply of the
received request.

Figure 4-22. DT preliminary architecture

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 61 | 129

CURSA-SQ extensions to model network interfaces supporting both BE traffic and TSN flows
simultaneously under different TSN standards are presented next. Specifically, the following
two approaches are initially considered:

1. Synchronous (sync) TSN model: aligned with IEEE 802.1Qbv standard, time slices are
reserved to TSN traffic flows, whereas Best Effort (BE) or QoS committed traffic is
transmitted in between consecutive protected TSN slices. Note that this option,
although ensures the QoS of TSN flows, might limit that of the BE traffic in the case
that the protected time slices are not fully consumed by the TSN traffic.

2. Asynchronous (async) TSN model: aligned with IEEE 802.1Qcr standard, TSN flows use
exactly the transmission time that they need, and inter-packet gaps can be filled with
BE frames of suitable size, which maximizes BE throughput and reduces its latency.

To model the mix of both TSN and BE, we assume the scheme of the network interface detailed
in Figure 4-23a, where n individual TSN input flows (XTSN) that arrive conveniently shaped,
are combined with an aggregated input BE flow (XBE). Each individual flow i is associated to
one continuous capacitated queue system, where its state qi(t) depends on the input flow and
on a server rate µi(t) variable with time; all the individual queue systems access the network
interface characterized by a fixed server rate µ. To model the sync approach, a time window of
fixed length (T) is defined and time slices for every TSN flow are reserved; the rest of the time
window that remains unassigned can be used to BE traffic (Figure 4-23b).

Figure 4-23. TSN Interface model

Figure 4-24 describes with an illustrative example how to model in the DT a simple scenario
for QoS KPI evaluation purposes in the event of a new provisioning request. This example
involves a factory floor with a TSN traffic flow established between AP1 and the coordinator
element (labelled as f1), as well as a BE traffic flow that connects users inside the factory with
remote contents/services in an external DC placed in the metro network domain (f2). Then, a
new TSN connection request (r) to connect AP2 with the coordinator needs to be evaluated

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 62 | 129

before provisioning. For the sake of simplicity, let us consider that the TSN connectivity
manager computes only one candidate route (depicted with a dashed line).

Figure 4-24. Example (a) and its modelling in the DT (b)

Figure 4-24 (b) shows the model of the example in Figure 4-24(a) for the UL direction, i.e.,
from AP/users to coordinator/DC. The model contains three main building blocks:

• Traffic generator (Gen): this block generates synthetic traffic to be propagated
through the queueing system according to the characteristics of each flow. For both
the new connection request r and the set of established flows F, we assume that traffic
characteristics of service type are available, by means of either expected models or
actual measurements or both. These characteristics include statistical distributions
of the following random variables:

o Inter-packet time
o Packet size
o Inter-burst time
o Burst size

Synthetic traffic is generated combining the statistical distributions of the
abovementioned random variables with other parameters such as maxTraffic.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 63 | 129

• Queue system (Q): Assuming the sync queue model approach described above
(aligned with IEEE 802.1Qbv standard), time slices are reserved to high priority TSN
traffic flows, whereas low priority BE traffic is transmitted in between of consecutive
protected TSN slices. Moreover, the sync model emulates other important features such
as enhanced preemption (according to 802.1Qbu and 802.3br standards).
Characteristics of each queue include speed (in Mb/s or Gb/s) and buffer size (in Bytes),
as well as other parameters characterizing time slicing policies.

• Termination point (End): this module simply serves as sink of the propagated traffic.

The example in Figure 4-24(b) shows a model with 4 queues, reproducing each of the involved
hops for the request r. Specifically, it includes one queue to reproduce the wireless segment
(e.g., from an AGVs to an AP), as well as a sequence of queues for each of the wired Ethernet
interfaces from AP to the coordinator element. Moreover, the traffic of each of the established
flows is injected and terminated before the first interface and after the last one, respectively,
of the common segment with route of request r. Thus, f1 traffic is injected in the S2 interface
that receives traffic from S1 (labelled as S1->S2), while f2 is injected one hop later (in S2->S3
interface). Both flows terminate after S3.

Assuming the queuing model described above, the following list of KPIs can be measured and
quantified by the DT for the flow request under evaluation and the rest of established flows:

• Throughput (or data rate): Average volume of traffic (in Mb/s or Gb/s) at the input
and/or output of a queuing system at a given time.

• Traffic loss ratio: Average percentage of traffic that is rejected at the input of a queuing
system due to lack of available queueing capacity at a given time.

• Delay (or latency): Average of the elapsed time (in µs or ns) that the traffic experiences
to traverse a queuing system from input to output at a given time.

• Jitter: Standard deviation of the elapsed time (in µs or ns) that the traffic experiences
to traverse a queuing system from input to output at a given time.

For each of the described KPIs, two type of measurements can be obtained:

• Nominal values i.e., the actual values that the DT estimates for request r once it is
considered to be established.

• Delta values i.e., the difference (increment or decrement) that the DT estimates
comparing the KPIs computed before and after establishing request r.

Typically, nominal values can be computed for the request r, while delta values are computed
for the existing set of flows F. However, depending on the specific KPI, service type and use
case, the set of available KPI metrics and measurements can change. In any case, the DT is

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 64 | 129

always able to provide relevant and accurate QoS estimation data for the TSN connectivity
manager to perform proper decision making.

4.6.2 Early Implementation and Release plan

The version that has been released in this deliverable includes a REST API which implements
a preliminary interface. Specifically, this version of the REST API offers several endpoints that
provide methods to interact with the Topology DB and to issue the evaluation of the KPI of a
selected flow. The REST API offers the following endpoints:

• NetworkDB: Allows GET, POST and DELETE methods. Implements the creation, deletion
and retrieval of the Topology DB in the Digital Twin.

• Topology/Node: Allows GET, POST and DELETE methods. Implements the creation,
deletion and retrieval of the Node’s information in the Topology DB.

• Topology/Link: Allows POST and DELETE methods. Implements the creation and
deletion of the Link’s information in the Topology DB.

• Flow: Allows GET, POST and DELETE methods. Implements the creation, deletion and
deletion of the Flow’s information in the Topology DB.

• KPIEvaluation: Allows GET method. Implements the KPI evaluation of a selected flow of
the Topology DB.

This version of the DT includes preliminary algorithms to compute the delay in a set of queues
that support a traffic flow. Initial versions of traffic definitions are also included.

4.7 Resource Configuration
Once the requirements of the ingested service are obtained, this module carries out the
requisite configuration changes on data plane resources of the pertinent technology domains
to meet the service demands. It is composed of per-domain resource configuration sub
module.

4.7.1 SW Design

The Resource Management module is the AICP component in charge of configuring the optimal
resources of the different domains based on the requirements of the service user wants to
allocate.

The module delivers the Resource Configuration Management Service (MS). It receives input
from the Service Automation MS and initiates the resource configuration process on identified

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 65 | 129

resources. The Resource Configuration MS realizes the actual updates to data plane resources
based on inputs defined in D3.1 (PREDICT-6G/D3.1/7.2, 2023).

Figure 4-25. Resource Configuration SW Module and Management Service

Resource Configuration management

Figure 4-26 shows the interaction among AICP module for the resource configuration of an
ingested service.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 66 | 129

Figure 4-26. Interaction among AICP the modules of the Resource Management for an
ingested service

1. Service Automation MS provides as input to the Resource Configuration MS a Path
Resource Allocation request. This interaction starts the process of the following
exchange of information with the Resource Configuration MS.

2. The process of configure the resources start here. Path information of participating
domains is forwarded to the Resource Configuration. Once the configuration is
performed, and the resources have been reserved the Resource Configurator sends a
Path Provisioning confirmation module, as defined in in Service Automation section.

The Resource Configuration process is illustrated in Figure 4-27, detailing the interaction
between each MS participant in the process.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 67 | 129

Figure 4-27. Resource Configuration interaction with other MS and the MDP

1. After the arrival of the message starting the resource configuration process, a Topology
Information Request is sent to the Topology Exposure MS. This request is replied with
a Technological Domain (TD) Topological Graph.

2. When the information from the TD Topological Graph is processed, the Resource
Configuration MS will request to the Resource Exposure MS for the information of
available resources at each node. After this request, it comes a reply from the Resource
Exposure MS with the needed information.

3. In the same way as in “2”, when the previous information is processed, the Resource
Configuration MS request to the Capability Exposure MS asking for each node
capabilities. The Capability Exposure replies with the needed information.

4. With all the information gathered from the different MS used as inputs, the Resource
Configuration MS is ready to generate the needed configuration to achieve the
boundaries of the service. When it is done, it will send an update message to the South
Bound Interface (to be defined). This module will generate the necessary files to send it
to the Data Plane. The insides of the Resource Configuration MS and the South Bound
Interface is going to be detailed in followings deliverables.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 68 | 129

4.7.2 Early Implementation and Release plan

Work on this software module is ongoing and an initial version is expected in M15 in time for
early integration tests as proposed in the roadmap presented in Section 5. The resulting
feedback from the integration work will be used to refine the software mainly with regard to
the Southbound Interfaces to the Multidomain Data Plane (MDP). A further release is planned
with these updates in M18 corresponding to the next integration milestones presented in the
roadmap. Although a stable release is currently unavailable, an official repository with work in
progress is available in the official GitLab of the project.

4.8 Data collection and management
The Data collection and management module is the AICP component responsible for the
gathering of monitoring data from PREDICT-6G data plane, MDP, to feed the logic of analytic
processes based on AI/ML and DT for deterministic service monitoring and data-driven
network automation decisions.

For this purpose, two specific Management Services (MS) were defined in section 6.2 of D3.1
(PREDICT-6G/D3.1/7.2, 2023) the E2E Monitoring MS and the Management Domain (MD)
Measurement Collection MS, with the aim to build a hierarchy of Monitoring Platforms: one
local to the technological domains and the one at the E2E level for collecting from domain-
specific instances. The goal is to gather metrics from multiple and heterogeneous data
sources, through specific plugins whose configuration is dynamically programmable via an
open API, to abstract and either to expose in near real-time or to store them in form of
timeseries in order to provide them to a data consumer, which can be another AICP SW
component, a local application, a human user, etc. The access to the collected data is
differentiated on a data consumer basis to prevent a complete open access: so, before reading
some kind of data, authentication (through credentials or certificate) and authorization
(proper privileges) shall be set. Given the high-level of programmability and the fact that the
KPI measurement is crucial for the control of deterministic service, the Data Collection
management will be employed to collect data in all technological domain encompassed by
MDP and for all UCs of the project.

4.8.1 SW Design

The Data collection and management component is designed to be a modular software to
increase the flexibility and maximize the re-usage of existing data collection plugins. Its
architecture is represented in Figure 4-28.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 69 | 129

Figure 4-28. Collection and management platform module SW design

The SW architecture present several modules and interfaces:

• Adaption Layer. Is the component in charge of exposing in a uniform manner the
monitoring data from the heterogeneous data sources. The data sources can belong to
the MDP’s Technological Domains (TD) or to an AICP MD in form of local monitoring
platform, as clarified below. The data are collected through a set of Programmable
Data Collectors created and terminated on demand (e.g., at service
provisioning/decommissioning). The target data source of each collector can be
configured at runtime along with sampling frequency, if required. In fact, the collectors
can be configured to for either active (poll data sources with a configurable frequency)
or passive (data sources push data to the collector) monitoring.

• Event Streaming Bus. Is the component in charge to expose data in a near real-time
manner i.e., a soon as they are provided by the Adaptation Layer. This data is used for
continuous deterministic service monitoring, AI/ML inference, and as event to trigger
network automation process.

• Time-series DB. Is the component in charge to store the data collected (provided by the
Adaptation Layer) in form of timeseries (historical data collection). This historical data
collection can be used for periodic analysis and/or AI/ML models’ training.

• Data Manipulation Logic. Is the component in charge perform aggregations on the
monitoring data (e.g., calculation of min, max, average, standard deviation, etc). This
component is optional since the data manipulation functionalities of the related MSs
reported in D3.1 (PREDICT-6G/D3.1/6.2.1.2-6.2.2.2, 2023) are not mandatory.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 70 | 129

• Configuration Logic. Provides configuration functionalities that includes i)
creation/termination of Programmable Data Collectors and their target data sources at
runtime ii) data aggregation and retention time, and iii) data consumer management
i.e., access control, authentication and authorization.

• Multi-technology access interface. The module exposes 3 different interfaces. The
Configuration I/F allows the access to the Configuration Logic functionalities,
exposing REST-based APIs. The Near-RT and the Historic Data Retrieval I/Fs are
designed to access the collected data in near real-time and timeseries respectively. The
second one allows the access to aggregated data from the Data Manipulation Logic, if
available and can be REST or a combination of REST APIs for the aggregated data and
the specific timeseries DB interface for the historical data.

4.8.1.1 Hierarchical intra-AICP data collection

As discussed at the beginning of this section, the idea is to implement a hierarchical
monitoring structure capable to collect at both MD and E2E MD level. It is worth noting that,
from the AICP functional architecture, both the E2E Monitoring MS and the Measurement
Collection MS (monitoring service at MD level) share the same functionalities listed below:

• Historical data management
• Real-time data management
• Data Manipulation
• Service Configuration

All of them are covered by the SW design discussed above, so this AICP component can be used
both for the local MD and for the E2E MD just by changing the configuration depending on the
scope, as shown in Figure 4-29.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 71 | 129

Figure 4-29. Hierarchical configuration of the multiple Data collection and Management
components for multi-domain data collection

The figure show that flow of the data from the Technological Domains to the E2E MD. Each local
MD monitoring component collects data from its coupled TD through the proper MDP-AICP
Interface and uniforms the metrics according to the format:

<service_id>, <parameter_name>, <value>, <timestamp>

Then, it propagates these translated metrics to the upper layer of the architecture by pushing
them to the near real-time bus; the data are also stored in the Time-series DB for local interest,
i.e., related to the underlying TD. The E2E MD monitoring component, which aggregates the
local MD ones on an E2E service basis, collects the MD data and uniforms them to the format:

<e2e_service_id>, <service_id>, <parameter_name>, <value>, <timestamp>

Finally, these integral format data are further published both in the bus and in the DB in order
to keep track of the service behavior.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 72 | 129

4.8.2 Early Implementation and Release plan

The software baseline used to implement the Data Collection and Management in the AICP is
the 5G Monitoring Platform built in the context the ANChOR Project6, a research project funded
by the European Space Agency in the context of ESA Artes 4.0 research program. Developed for
support AI-driven closed control loops in 5G systems, the 5G Monitoring Platform already
covers part of the functionalities described in the software design above and the idea is to
evolve it for the purposes of PREDICT-6G. This would include:

• Enlarge the current set of data source supported towards time-sensitive service KPI
monitoring.

• Possibility to deploy multiple instances in different domain to enable distributed KPI
collection and cross-domain data distribution (i.e., hierarchical monitoring platform).

• Implementation of Authentication/Authorisation mechanisms for differentiated data
access control

The platform leverages on some open-source tools, which have been customized, integrated
together and extended with additional components developed from scratch. All the internal
modules are encapsulated in Docker containers and can be deployed by exploiting container
orchestrators such as Docker Swarm7 and Kubernetes8.

Figure 4-30 reports the 5G Monitoring platform original SW architecture.

6 https://connectivity.esa.int/projects/anchor
7 https://docs.docker.com/engine/swarm/swarm-tutorial/
8 https://kubernetes.io/

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 73 | 129

Figure 4-30. Software Architecture of 5G Monitoring Platform

By making a comparison with the SW architecture in Figure 4-28, Apache Kafka9 is used as
Event Streaming Bus while an instance of InfluxDB10 covers the role of time-series DB. Telegraf11
is used collect data from the different data sources. In particular, Telegraf allows both passive
(listen to data) and active (poll for data) collection from multiple data sources and data post-
processing. This implies that a battery of Telegraf instances can cover both the role of Data
Collectors and Adaptation Layer. The Data Manipulation Logic and the related interface is
implemented with an instance of Prometheus12, that also offers a tool13 for setting alarms on
data variations (e.g., threshold exceeding). As already discussed, Data Manipulation is an
optional functionality (aggregated data e.g., average, standard deviation, etc. are not relevant
for time sensitive services) therefore Prometheus will not be employed.

The Config Manager is the only component of the platform developed from scratch, covering
the role of the Configuration Logic and interface. It implements a REST API Server whose YAML
specification file has been written according to the OpenAPI specification then exported and
extended in Python language. The available endpoints of the interface are divided into two
groups: datasource for the dynamic configuration of the data sources and user for the setup
of authentication and authorization of data consumers. The current status of the

9 https://kafka.apache.org/
10 https://www.influxdata.com/
11 https://www.influxdata.com/time-series-platform/telegraf/
12 https://prometheus.io/
13 https://prometheus.io/docs/alerting/latest/alertmanager/

https://kafka.apache.org/
https://www.influxdata.com/
https://www.influxdata.com/time-series-platform/telegraf/
https://prometheus.io/
https://prometheus.io/docs/alerting/latest/alertmanager/

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 74 | 129

configuration for each data source and for each data consumer is persisted in a SQL database
implemented through PostgreSQL14, running on a different Docker container. Figure 4-31 lists
the datasource REST API set.

Figure 4-31. REST APIs exposed by the Config Manager for the dynamic configuration of data
sources

The user set of APIs, shown in Figure 4-32, is part of the evolution of the platform started in
the context of PREDICT-6G and is mainly addressed to system administrators and/or
authorized process. When invoked, the Config Manager logic configures authentication and
authorization on both Kafka and InfluxDB accordingly.

14 https://www.postgresql.org/

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 75 | 129

Figure 4-32. REST APIs exposed by the Config Manager for setup of authentication and
authorization of data consumers

To correctly access the data related to a service, the consumer requires to be registered to the
platform with proper permissions: this happens in two steps, as shown in Figure 4-33 and
Figure 4-34, respectively.

Figure 4-33. POST request for registering a new data consumer with the credentials provided
in the body. The returned value is the Authn-ID uniquely associated to the consumer.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 76 | 129

The registration requests return a unique ID (Authn-ID) associated to the consumer. The
second request adds permission to the data consumer. Notice the AUTHN-ID in the URL of the
request.

Figure 4-34. POST request for authorizing the data consumer with its Authn-ID provided as
path parameter and the permissions and the related resource provided in the body. The

returned value is the Authz-ID uniquely associated to the consumer

Authentication and authorization information are maintained by both Kakfa and InfluxDB and
can be retrieved in any moment through the Config Manager interface as shown in Figure 4-35
and Figure 4-36. The tools can be also directly queried through their own CLI: the related output
is quite long, and it is not reported for the sake of readability.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 77 | 129

Figure 4-35. GET request for listing all the current registered data consumers.

Figure 4-36. GET request for listing the enabled permissions of all the current registered data
consumers

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 78 | 129

Finally, a data consumer can be removed from the monitoring platform by deleting first its
own permissions and then its credentials, through the corresponding request, as shown in
Figure 4-37 and Figure 4-38, respectively.

Figure 4-37. DELETE request for removing the permissions of the data consumer with its
Authn-ID provided as path parameter. The returned value is the Authz-ID of the consumer

Figure 4-38. DELETE request for removing the credentials of the data consumer with its
Authn-ID provided as path parameter. The returned value is the Authn-ID itself

The source code of already available can be found in the corresponding repository in the
project’s GitLab:

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 79 | 129

https://gitlab.netcom.it.uc3m.es/predict-6g/aicp/monitoring-and-data-collection

The next steps for the release plan are:

• Implement the Authentication and Authorization feature also for the Config Manager,
in order to prevent that non authorized users can change the configuration. The idea is
to leverage on a platform such as Keycloak, which is already mentioned in Section 4.2.
This addition will be stable in the release at M21.

• Implement a specific set of data collectors for the different technologies employed by
the MDP. Multiple releases are expected in collaboration with WP2 at the end of each
development cycle (M15, M18, M21, and M24).

• Cross-instance interactions for hierarchical deployment at M18 with possible
refinements in the following cycles.

4.9 AI/ML Algorithmic Frameworks
4.9.1 Orchestration of Machine Learning Tasks Execution

4.9.1.1 Algorithms for optimally distributing learning tasks

Training machine learning (ML) models is notoriously hard, as it requires large quantities of
data as well as significant computational resources. To cope with this issue, cooperative
training – most notably, federated learning (FL) – has emerged as a universal approach to
leverage the resources of multiple nodes to perform a single learning task. In all such
scenarios, the data and resources needed to perform the training are scattered throughout
different nodes, whose availability and connectivity may significantly vary in both space and
time. This results in a major technical challenge, namely, the mutual adaptation of the
decisions concerning (i) ML training (e.g., model selection and compression), (ii) data selection
(i.e., which datasets to use for training), and (iii) node and resource allocation (i.e., at which
network nodes to train each portion of an ML model). Several existing works address one or
another of the above aspects but fall short of providing a comprehensive strategy to jointly
make all the required decisions.

To fill this gap, we developed an algorithmic framework, called Performance-Aware
Compression and Training (PACT) (Malandrino et al., 2023), which makes distributed training
of deep neural networks (DNNs) sustainable, while being amenable to the presence of
heterogeneous nodes with datasets that cannot be shared as well as limited network and
computing resources. PACT has the ability to leverage multiple DNN models across different
stages of the same learning task, by switching among them as needed (e.g., through model
pruning). It runs at the learning orchestrator and can generate arbitrary stage sequences:

https://gitlab.netcom.it.uc3m.es/predict-6g/aicp/monitoring-and-data-collection

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 80 | 129

importantly, it optimizes the set of nodes, number of epochs, and model compression along
the process. Specifically, for each stage – hence, for each model –, PACT selects the most
appropriate datasets, network nodes, and resources. As depicted in Figure 4-39, a fairly
complex model may be used in the early stages of training, running on a small set of powerful
nodes. Later, it is possible to switch to a simpler (e.g., pruned) model, thus including more
nodes with less capabilities but more valuable local data. At the same time, the benefits of
model switching must be weighed against the cost of switching itself, which requires
additional resources and will often result in a (temporary) drop in learning performance.

Figure 4-39. Distributed training process of an AI/ML model. Subsets of nodes sequentially
train compressed versions of an original DNN model. Nodes are categorized based on their

capability and data availability (gold, silver, bronze).

4.9.1.1.1 The PACT algorithmic framework

The goal of PACT is to let the learning orchestrator efficiently find high-quality solutions to the
problem of distributed learning illustrated in Figure 4-39, which, as we proved in (Malandrino
et al., 2023), is an NP-hard problem. PACT consists of three main steps:

1. Create an expanded graph representing the possible decisions that the Learning
Orchestrator can make, and their outcome;

2. Using such a graph, identify a set of decisions deemed feasible, based on the estimated
value of loss that would be obtained by applying such decisions;

3. By combining learning- and energy-related information, choose the best feasible
solution to enact.

Step 1: Expanded graph. The expanded graph is a directed graph built according to the
following rules: (i) The vertices represent the states of the system; they are labelled with the
current epoch k, model m(k) and set of nodes n(k) being used, and the total elapsed time T(k)

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 81 | 129

and current loss value l(k). With the aim of identifying feasible solutions, the latter quantity is
computed using the robust estimators λchange(k, m, m′) and λrun(k, m, n) that can be
experimentally obtained as detailed in (Malandrino et al., 2023); (ii) Elapsed time and loss
values are represented, respectively, with resolutions γT and γl (e.g., if γl = 0.1, a vertex with l =
0.1 or 0.2 can exist, but not with l = 0.15); (iii) A directed edge is drawn between two vertices if
there is an action (i.e., selection of model and node cluster to execute it) making the system
move from one corresponding state to the other; each edge is labelled with the energy
consumption of the associated action; (iii) Each vertex representing a feasible state of the
system (i.e., with l(k) ≤ lmax and T (k) ≤ T max) is further connected to a virtual node Ω through
a zero-cost edge.

The graph is created through the CREATEEXPANDEDGRAPH function, presented in Alg. 1 in
Figure 4-40 (the notation used therein is summarized in Table 4-6).

First, all vertices are created, representing all valid combinations of model and set of nodes,
epoch, loss value, and elapsed time (Lines 3–6). Note that the quantization parameters γl and
γT (Lines 4–6) allow controlling the trade-off between size of the graph and quantization error.
For each vertex v, the effect of taking action a from vertex v	is determined by computing the
resulting elapsed time and the required energy (Lines 12–13). If either is infinite, then taking
action a while in state v	is impossible, and we move on to the next action. Otherwise, the loss

l′ resulting from taking the action is computed using the robust estimator (Line 16). Now, tuple

(k	+	1,	m′,	n′, l′, T) would describe the state the system lands on after performing a from v;

however, due to the way the vertices are created (i.e., using γl and γT), such a tuple may not

correspond to any vertex. Accordingly, in Lines 17–18, l′ and T′ are cast into integer multiples of

γl and γT. Then, vertex v′ representing the new state is identified (Line 19), and an edge from v	
to v′ is added using the appropriate energy value E as its weight. Finally, if v is feasible, v is
connected to Ω (Line 22).

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 82 | 129

Figure 4-40. PACT algorithmic framework.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 83 | 129

Table 4-6. Notations used in Algorithms 1, 2, and 3 of the PACT framework.

Step 2: Feasible paths. Next, PACT uses the expanded graph to identify a set of paths deemed
feasible; the first edge of such paths represents a feasible action. To mitigate the impact of
potential errors in the loss estimation (which in principle may jeopardize feasibility), the

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 84 | 129

expanded graph is built using the robust estimators of the loss variation, which guarantees
that all paths landing at a feasible node are, indeed, feasible with high probability. Thus, using
function FINDFEASIBLEPATHS in Alg. 2 in Figure 4-40 (the notation used therein is summarized
in Table 4-6), PACT seeks for paths that (i) start from the current state, and (ii) arrive to a
feasible state, i.e., to a vertex connected to Ω. Specifically, for each vertex v corresponding to a
feasible state, it determines the shortest path (Line 5) from the current state vcurr to v. Such
paths are collected in set P and associated with a weight corresponding to the sum of weights
(i.e., energy consumption) of their edges.

Step 3: Making the best decision. Once the set of feasible paths, and associated feasible
actions, has been identified, using robust estimators to choose the decision to enact would be
overly cautious, possibly resulting in unnecessarily higher energy costs. Thus, PACT accounts
for two additional aspects when selecting an action: an opportunity and a risk factor. Such
factors and the path weight are integrated into a score, and the action corresponding to the
lowest score is enacted. For every path p	 ∈	 P, scores are computed in the CHOOSEACTION
function in Alg. 3 in Figure 4-40 (the notation used therein is summarized in Table 4-6).

The opportunity factor, opp ≥ 1, is given by the ratio of (i) the sum of the expected loss to (ii) the
sum of the robust loss associated with the edges in p	(Line 9). The intuition is to make it easier
to choose actions with a good expected loss, since the robust estimator may be too
pessimistic. As for the risk factor, its high-level purpose is to avoid undoing decisions. To this
end, PACT seeks for paths on the expanded graph that lead from the first node of p, to a vertex
v	∈	V associated with the current model m (Line 10), and thence to Ω. The risk factor, risk	≥	1,
associated with path p is then computed in Line 12 as the ratio of the minimum among the
weights of such paths to the weight of p (defined in Alg. 2). The score of path p is obtained in
Line 13 as p’s weight, divided by the opportunity factor, and multiplied by the risk factor. Then
the action associated with the minimum-score path is returned. It is important to underline
that the shortest path going from the current state to Ω	represents the lowest-cost decision
since edge weights are set to the energy cost of the corresponding actions. Thus, the ultimate
outcome of this step is the action with the lowest energy cost to enact.

4.9.1.1.2 Performance results

We assess PACT’s performance focusing on a smart factory-based application in a sequential
learning scenario, like the one depicted in Figure 4-41, where models are passed among
individual nodes. We consider the VGG 19 model for image classification, using the CIFAR-10
dataset, and three nodes, each belonging to a different category, namely, gold, silver or bronze.
They have respectively 17,500, 12,500, and 7,500 samples from the CIFAR-10 dataset. While the
bronze node has a balanced data distribution, the gold and the silver ones have unbalanced
datasets: the gold node has 2,750 for each of classes 1–6 and 250 for each of classes 7–10; the

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 85 | 129

silver node has 1,500 samples for each of classes 1–8 and 250 for each of classes 9–10; finally,
the bronze node has 750 samples per class. The training time and energy values used for the
gold, silver, and bronze nodes reflect (resp.) the capabilities of NVIDIA Ampere A100, NVIDIA RTX

A4000, and Raspberry Pi’s Videocore 6 GPUs. Finally, we set the target loss to lmax	= 1.05 and, for

simplicity, a very long-time limit of Tmax=1,000 time units.

We compare the performance of PACT against the following benchmarks: (i) Optimum: the
optimal decisions yielding the minimum cost, found through brute-force search and using the
true loss evolution; (ii) NoSwitch: no model switching occurs, meaning that only the full model
is used; (iii) OneSwitch: only two models are used. For both the NoSwitch and the OneSwitch

solution, we consider the best decisions they yield for each value of lmax. Specifically, for

OneSwitch, we consider the lowest energy cost, feasible strategy changing once, considering
all combinations of models and changing epochs. Note that most state-of-the-art works (Gou,
J. et al., 2021)(Gao, Z., et al., 2021)(Zhang, T., et al., 2021) envision pruning once, hence, their
performance would be represented by OneSwitch.

Figure 4-41. Loss (left) and total energy cost (right) as functions of the training time

We evaluate PACT’s effectiveness, i.e., how the cost (consumed energy E(K)) it yields compares

to that of the benchmarks. To this end, Figure 17(left) depicts the time evolution of loss l(k) for

lmax= 1.05. Note that the peak due to the loss variation λchange incurred when switching models is

not always present, as the testing loss can decrease even when switching the model. This is
especially true when the first switching is performed early, relative to the PACT and the optimal
solutions. Remarkably, PACT makes virtually the same decisions as the optimal policy, i.e.,
performs the model switching at (almost) the same times. OneSwitch can only switch once,
hence, does so later. Interestingly, all the strategies achieve the learning target at almost the
same time. However, we recall that the total energy cost is the optimization objective, while

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 86 | 129

time is a mere constraint. Accordingly, Figure 4-41(right) highlights how the optimum indeed
takes slightly shorter than PACT to reach the objective and does so at a (marginally) lower cost
(see the position of the last marker on the y-axis). On the other hand, OneSwitch solution,

despite taking a comparable time, requires much more energy to reach lmax.

4.9.1.2 Cooperative learning across multiple administrative domains

In the current world, where data is distributed along multiple entities, training machine
learning models encounters well known problems. On one hand, the exposure of the data from
one entity to the others may entail privacy issues if the data is susceptible. On the other hand,
transporting all necessary data may suppose a great amount of network and computational
resources, which translate into high energy consumption.

In addition, data generated inside a unique domain may not be enough to properly train the
model. Hence, data from other administrative domains must be exploited to increase the
quality of the trained model.

Centralized schemes take advantage of a single optimized computational node to execute the
model training over it. However, transporting all data to that point can be an arduous task, as
a high amount of network resources is needed.

Decentralized Learning (DL) solves this problem. It is based on training the same model in
multiple entities, partially collecting the data (e.g., using only its data), and then gathering and
joining trained models from the surrounds of each entity. Repeating actively this process
ensures that data from all the system influences in the model.

However, DL face the challenge of identifying the correct models to collect from the
neighbourhood to be integrated together, as wrong decision may cause catastrophic results
and useless models. In (Yang et al., 2021), they propose a DL architecture called E-TREE Learning
where nodes are grouped in clusters to aggregate their model weights together, and then
follows a hierarchical approach that allows different frequencies among the branches to end
up with a global model. To make these clusters, they also present a grouping algorithm that
considers the datasets of the nodes.

In the aforementioned scenario, where a set of administrative domains cooperate towards the
accomplishment of a training task, our goal is to define a DL logical training topology, which
specify the interactions among the administrative domains. At the same time, we want to
select the resources employed by each administrative domain to fulfil the task, from the
computing nodes and data sources to the amount of computational and network resources,
and even exploiting the resources from other administrative domains through resource

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 87 | 129

federation. These decisions are taken with the objective of minimize the energy consumption
of the overall process.

4.9.1.1.3 Architecture of the system

We consider a system with multiple administrative domains composing a Federated Domain
Set (FDS), coexisting with the purpose of taking advantage of each other’s resources. To this
end, they are connected through a Federation Layer, managed in each domain by the
Federating Orchestrator (FO) – see Figure 4-42. Each administrative domain owns two
datasets for a given task, one for training and one for testing. The latter is continuously
updated with input data collected within the administrative domain; thus, at any time instant
it reflects the current distribution of input data and possible drift that may emerge.

Figure 4-42. Scheme of the architecture of the system.

Within each administrative domain, there is also a Training Orchestrator (TO), which, whenever
a model needs to be trained, asks the FO of that domain for the following information:

1. List of active trustworthy administrative domains (obtained through the Federation
Layer);

2. Topology of the network connecting the administrative domains;
3. Topology of each administrative domain (only involved nodes and their connections);
4. Type of data: data distribution and related metadata (e.g., if the traffic belongs to dense

or sparse population locations);
5. Type of resources (e.g., computing, network, energy) and availability within each

administrative domain;
6. Communication delay (or available bandwidth) between administrative domains.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 88 | 129

The last four bullet points are retrieved (directly from the administrative domains composing
the FDS) using a smart contract developed by the FO.

With this information, the TO decides the nodes participating in the training, how they should
interact, and the resources needed to execute the model training.

4.9.1.1.4 Interactions between administrative domains. Decentralized Learning.

Remember that the administrative domains will cooperate to train a model following a DL
scheme, so we are going to review how it works and how the model weights are updated.

Let 𝐺	 = 	 (𝒱, ℰ) be an undirected simple graph representing the physical topology of the
network connecting the administrative domains 𝒱. As mentioned, each administrative
domain 𝑣	 ∈ 	𝒱 owns two datasets that should not be shared with others, one for training

𝐷!
(#$%&') and the other for testing 𝐷!

(#)*#). While locally training a model within an administrative
domain, the model weights 𝐰! are updated as follows:

𝐰! = 𝐰!
+,- − 𝜂∇𝐰𝐿 I𝐰!

+,-; 	𝐷!
(#$%&')K

where 𝜂 is the learning rate and 𝐿 I𝐰!
+,-; 	𝐷!

(#$%&')K is the training loss. Executing the training

requires 𝑙/+-),|𝐷!
(#$%&')| operations, being 𝑙/+-), the executed operations for training the model

with one sample, so it is model-dependant.

Administrative domains exchange the locally-computed weights with their neighbours on the
logical topology. Let 𝐺0 =	 (𝒱, ℰ′) 	⊆ 	𝐺 be a spanning subgraph of 𝐺 representing the logical
topology, and 𝐴10 =	 P𝑎&,30 	R&,3∈5 	 its adjacency matrix, for

𝑎&,30 = S1 if	𝑖 ∈ 𝒩10(𝑗) ⇔ 𝑗 ∈ 𝒩10(𝑖)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	

Hence, an administrative domain 𝑣	 ∈ 	𝒱 updates its own weights using those from its
neighbours, i.e.,

𝐰! = a 𝜆!,&𝐰&

&∈{!}∪𝒩!"(!)

where 𝒩1"(𝑣) is the set of neighbours of 𝑣 on the graph 𝐺′, and 𝜆!,& is the aggregation weight
for neighbour 𝑖 of 𝑣; in our case, 𝜆!,& = 	1/(1	 +	∑ 𝑎!,303∈5), but other solutions can be considered.
The number of operations to perform the aggregations depends on the number of neighbours

sending weights |𝒩1"(𝑣)| and the size of the weights 𝑙𝐰. Also, 𝐭𝐞!,' is the energy wasted on
transmitting a byte from 𝑣	 ∈ 	𝒱 to 𝑛 ∈ 𝒩1(𝑣).

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 89 | 129

4.9.1.1.5 Measuring data distributions

The accuracy of the model strongly depends on the input data that is used to train and the
output that it produces, so one can relate differences in the datasets with differences in the
accuracy. One idea to measure these differences in datasets is by comparing their
distributions, either input or output. These continuous distributions have one dimension per
feature of the samples.

In classification problems, each sample of the input training data is marked with a ground
truth label belonging to a class. Then, we can reduce the distribution accounting only for the
class labels, being now a discrete distribution of one dimension, and use the Euclidean
distance to measure it (Snell et al., 2017).

Let 𝐝!̅ and 𝐝:̅ be the normalized class distributions for the administrative domains 𝑣,𝑤 ∈ 𝒱,
one can measure the differences between them with the Euclidean distance j|·|j;,

lj�̅�! − 𝐝:̅jl
;
≔ nao𝑑!,& − 𝑑:,&q

;
<𝐝̅#<

&?@

r

@
;

.

4.9.1.1.6 Modelling the system

Our solution will minimize the energy consumption during model training. To this end, we need
to characterize this process and model the components.

Each administrative domain 𝑣 ∈ 𝒱 has a set of nodes 𝒱! with 𝑅 computational resources to
fulfill the local training. Let 𝐑! = P𝑟&,3R and 𝐑!/%A = P𝑟&,3/%AR be the |𝒱!| × 𝑅 matrices representing
the used and maximum amount of resource 𝑗 of node 𝑖, respectively. Additionally, node 𝑖	 ∈ 𝒱!

owns a portion of the total training dataset 𝐷!,&
(#$%&') 	⊆ 𝐷!

(#$%&'). Notice that 𝑟&,3/%A = 0 if node 𝑖

cannot provide resource 𝑗, and 𝐷!,&
(#$%&') = ∅ if node 𝑖 does not own any data sample. Let also

𝐭𝐧! = {𝑡𝑛'}'∈𝒱# , where 𝑡𝑛' ∈ {0, 1} is a Boolean decision representing whether node 𝑛 performs
training or not.

One can construct a graph 𝐺! = (𝒱! , ℰ!) that captures the logical data movement among the
nodes within the administrative domain 𝑣 ∈ 𝒱; where 𝐀1# is its adjacency matrix. This data
movement is represented by the bandwidth and the number of transmitted bytes. Let 𝐁! , 𝐁!/%A
and 𝐓𝐁! = P𝑡𝑏&,3R for,

𝑡𝑏&,3 = ~l𝐷!,&
(#$%&')l 𝑖𝑓	𝑡𝑛& = 0, l𝐷!,&

(#$%&')l > 0
𝑙: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,							𝑖, 𝑗 ∈ 𝒱! .

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 90 | 129

be the |𝒱!| × |𝒱!| matrices representing the assigned percentage and maximum bandwidth,
and the number of bytes transmitted for the edge between each pair of nodes, respectively.

Local model training within the administrative domains can be divided in three steps:

i. Data extraction: Extracting data samples from the storage is an energy consuming
process that depends on the amount of data samples and the efficiency of the node

𝐞𝐞! = {𝑒𝑒'}'∈𝒱# . Then, the consumed energy at extracting the data 𝜁 I𝐞𝐞! , 𝐷!
(#$%&')K

within an administrative domain 𝑣 ∈ 𝒱 is

𝜁 I𝐞𝐞! , 𝐷!
(#$%&')K ≔ �l�l𝐷!,&

(#$%&')l�
&∈𝒱#

∘ 𝐞𝐞!l�
@,@
,

where j|·|j@,@ denotes the entry-wise matrix norm, and 𝐀 � 𝐁 the Hadamard (or element-

wise) product between matrices 𝐀 and 𝐁.
ii. Data transmission: Let 𝐌𝐄! ∈ ℝ|𝒱

#|×|𝒱#| be the matrix representing the energy of
moving a byte between two nodes. Hence, the consumed energy while transporting the
data 𝜉(𝐀1# , 𝐌𝐄! , 𝐓𝐁!) within an administrative domain 𝑣 ∈ 𝒱 is

𝜉(𝐀1# , 𝐌𝐄! , 𝐓𝐁!) ≔ j|𝐀1# ∘ 𝐌𝐄! ∘ 𝐓𝐁!|j@,@.
iii. Computing actions: As reviewed before, we consider two kind of computing actions:

training and aggregating. Let 𝐑𝐄! ∈ ℝ|𝒱
#|×E be the matrix representing the energy of

using the resources per unit of time. Then, the consumed energy while using the

computational resources 𝜓 I𝑙/+-), , 𝑙𝐰, 𝐭𝐧! , 𝐀1# , 𝐷!
(#$%&'), 𝐑! , 𝐑𝐄!K within an

administrative domain 𝑣 ∈ 𝒱 is

𝜓 I𝑙/+-), , 𝑙𝐰, 𝐭𝐧! , 𝐀1# , 𝐷!
(#$%&'), 𝐑! , 𝐑𝐄!K ≔ lj𝑙/+-),o𝐭𝐧! ∘ 𝐷! ∘ 𝑡𝑖𝑚𝑒(𝐑!)q𝐑𝐄!jl

@,@
+

�l𝑙𝐰 I𝟏|𝒱#|𝐀1# ∘ 𝑡𝑖𝑚𝑒(𝐑!)K𝐑𝐄!l�
@,@
,

where 𝑡𝑖𝑚𝑒:ℝ|𝒱#|×E → ℝ@×|𝒱#| is a function that maps the resources used by each node
into the time they take to perform one operation, and 𝐃! = {𝑑'} ∈ ℝ@×|𝒱

#|, 𝑑' =
l𝐷!,'

(#$%&')l + ∑ (1 − 𝑡𝑛&) l𝐷!,&
(#$%&')l'FGGGG⃑ ∈ℰ#,			&∈𝒱# 	, i.e., a vector with the data samples of the

nodes. Here, 𝟏K is a row vector of ones with 𝑘 elements.

Once analysed all steps, one can formulate the optimization problem as

mina𝜁 I𝐞𝐞! , 𝐷!
(#$%&')K +

!∈𝒱

𝜉(𝐀1# , 𝐌𝐄! , 𝐓𝐁!) + 𝜓 I𝑙/+-), , 𝑙𝐰, 𝐭𝐧! , 𝐀1# , 𝐷!
(#$%&'), 𝐑! , 𝐑𝐄!K +

a 𝑎!,'0 𝑡𝑒!,'𝑙𝐰
'∈𝒩!(!)

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 91 | 129

As the problem is focused on minimizing the energy consumption, one needs to impose some
accuracy 𝛼 and latency 𝛽 bounds to the model for ensuring a correct performance.

As shown previously, the weights of node 𝑣 depends on those of its neighbours, hence, on its
neighbours’ datasets. The accuracy of the model increases, as data samples belonging to
different distributions are added and as data samples matching the, possibly, time-evolving
input data statistics are considered. Then, for an administrative domain 𝑣 ∈ 𝒱,

𝑎𝑐𝑐 �𝐷!
(#$%&'), � 𝐷:

(#$%&')

:∈𝒩!"(!)

, 𝐷!
(#)*#), 𝐑! , 𝐁!� ≥ 𝛼.

The time expend at local training within the administrative domains depends on the
movements of the data and the assigned resources, both network and computational,

𝑎𝑐𝑐 I𝐷!
(#$%&'), 𝐑! , 𝐁!K ≥ 𝛽.

Notice that the resources of the nodes within the administrative domains cannot exceed their
respective maximum, i.e.,

0 ≤ 𝑟&,3 ≤ 𝑟&,3/%A , ∀𝑖, 𝑗 ∈ 𝒱! , 𝑣 ∈ 𝒱,

a𝑟3,K

E

K?@

≥ 0, ∀𝚤𝚥��⃑ ∈ ℰ! , 𝑖, 𝑗 ∈ 𝒱! , 𝑣 ∈ 𝒱,	

a 𝑟&,K

E

K?@

≥ 0, ∀𝑖 ∈ 𝒱! , 𝑡𝑛& = 1, 𝑣 ∈ 𝒱.	

Notice also that bandwidth is assigned only at ℰ! edges, then

0 ≤ 𝑏&,3 ≤ 1, ∀𝑖, 𝑗 ∈ 𝒱! , 𝑣 ∈ 𝒱,

0 ≥ 𝑏&,3 − 𝑎&,3
(!) > −1, ∀𝑖, 𝑗 ∈ 𝒱! , 𝑣 ∈ 𝒱.

4.9.1.3 Secure AI/ML Model Distribution within 3GPP Domain

Many of today’s AI applications were trained on data in a centralised location (e.g., the cloud)
and often in an offline fashion. Allowing the training and in particular the inference of AI
models to take place in a more decentralised and agile fashion, federate learning capabilities
form the foundation for this ambition. PREDICT-6G inherits and implements this approach by

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 92 | 129

enabling federated learning and inference through the definition of dedicated E2E and
domain-specific Management Services (MSs), as described in D3.1 (PREDICT-6G/D3.1/4, 2023).
For the set-up of an AI/ML service, Section 9.1 in D3.1 (PREDICT-6G/D3.1/9.1, 2023) provides a
detailed message sequence chart depicting the required interactions among the involved MSs,
which form the basis for the section herein.

A challenge that comes with decentralising tasks is to control the access to them to request
them and to retrieve information or simply processing it. And the exchange of AI/ML models is
no different. Focussing on a 3GPP domain interconnecting with the PREDICT-6G E2E
management domain, the figure below illustrates a functional mapping of PREDICT-6G’s MSs
to 3GPP’s in respect to working with AI/ML models. In the 3GPP domain, the Network Data
Analytics Function (NWDAF) may contain the Model Training Logical Function (MTLF), as
defined in (3GPP/TS23.501/2023). If so, the NWDAF offers two main AI/ML model services
(3GPP/TS23.501/7.2.12, 2023):

1. Enable consumers to request and get ML model information.
2. Enable consumers to receive a notification when an ML model matching the

subscription (and environmental) parameters becomes available.

An AI/ML Application Function (AF) is akin to a PREDICT-6G domain-specific MS and interacts
with the E2E MS. The AI/ML AF then interacts with the technology domain, here 3GPP, where
the NWDAF which may contain the MTLF as well as the Analytics Data Repository Function
(ADRF). Optionally, the ADRF can also be deployed as a separate component.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 93 | 129

Figure 4-43. Mapping of PREDICT-6G Management Services to an AI/ML-Enabled 3GPP
Technology Domain

Figure 4-44 below illustrates the interactions between PREDICT-6G’s E2E and domain-specific
Management Services with an AI/ML-enabled 3GPP domain. The sequence chart mimics the
generic one provided in D3.1 (PREDICT-6G/D3.1/9.3, 2023). Most notably in that context is that
the majority of orchestration and management in the domain-specific Management Services
is a single AI/ML Application Function from 3GPP’s view and the actual repositories for models
and data(sets) is represented by the NWDAF. As illustrated in the chart below, the actual
training of new models must be conducted outside of a 3GPP network and is not offered by an
NWDAF or any other Network Function (NF).

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 94 | 129

Figure 4-44. Message Sequence Chart for a AI/ML-Enabled 3GPP Domain Interacting with a
PREDICT-6G Management Services

The Figure 4-45 illustrates procedures the network enforced access control for AI/ML model
distribution. An AI/ML model may be owned by a specific domain or entity, or a 3rd party (e.g.,
an application provider). It is important to ensure that only the intended parties can use and
modify the AI/ML models, and to enforce a particular level of security based on security policies
and contextual factors. Therefore, the procedure in Figure 4-45 allows to ensure that AI/ML
models are used or modified by the intended entities, and they are used/modified only under
the intended conditions (e.g., satisfying environmental and contextual conditions). Examples
of environmental or contextual information are PLMN ID, cell ID, serving area ID, time of day,
date of the year, and weather conditions.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 95 | 129

Figure 4-45. Network Enforcement of AI/ML Model Distribution Access Control

4.9.2 Machine Learning-based Network Services

4.9.2.1 TWT settings in WiFi networks

Target Wake Time (TWT) is a feature of the IEEE 802.11ax-2021 standard that allows Wi-Fi
stations to doze and wake up at predetermined times in order to minimize power consumption

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 96 | 129

and channel contention. Even if it has originally been designed to save energy in low-power
sensor networks, it can be used to obtain transmission delay determinism by avoiding the
random backoff procedure. In fact, TWT wake intervals and durations can be set to limit the
number of simultaneously active stations accessing the shared medium,

In D2.1, Section 4.4.1, we formalized a general traffic admission problem to guarantee given
latency and throughput requirements to the requested traffic flows.

maxa𝑝%L𝑥%L
M$%

𝑙%L𝑥%L ≤ 𝐿%L

𝑇%L ≥ 𝑡%L𝑥%L	

More formally, given the set of Wi-Fi stations S	=	{s1,…	sn}, we define the required deterministic
traffic flows as F	=	{f11,	f12,	…	fnm}, For each traffic flow fab, the objective of the problem is to set
the admission binary variable xab (which takes 1 if fab is admitted, 0 otherwise) that maximizes
the sum of the priorities pab	associated with each admitted flow. The latency and throughput

performance lab and tab associated with the admission of the flow fab have to satisfy the flow

requirement Tab and Lab.

The solution of the traffic admission problem requires to overcome several challenges:

• Wireless communication in general is very complex to model, as it is affected by many
factors whose comprehensive impact is difficult to estimate, e.g., device mobility, radio
interference, irregular traffic, etc. Without an accurate model, the behavior of the
system cannot be predicted reliably.

• To guarantee reliable communication, not all settings can be applied in every
conditions. Common machine learning approaches are not suitable to operate in
mission-critical environments where a single bad decision could break determinism
and therefore cannot be directly applied to solve this problem.

To overcome these challenges, we propose an approach based on constrained Reinforcement
Learning (RL). In RL, agents learn to act in an unknown environment by trial and error,
performing increasingly better actions as the learning phase progresses. Agents are not
limited to specific behaviors; thus, they are free to explore the entirety of the action space as
long as it leads to performance improvements. Instead, in constrained RL, the learning agent
aims not only to optimize the total reward but also to satisfy additional constraints, which
could be related to safety, budget, or diversity. In this case, those behaviors that are
undesirable, as they may cause excessive performance loss or damages, are forbidden in all

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 97 | 129

conditions, even during the initial exploratory phase. Clearly, constrained RL algorithms are
more complex than existing techniques, as they have to address the challenges of learning
dynamics, exploration, exploitation simultaneously with constraints satisfaction.

One of the most common approaches to solve a constrained RL problem is by using Lagrange
multipliers, which are used to convert the constrained optimization problem to an
unconstrained one with a new objective function. In the context of RL, the Lagrangian is a
combination of the original reward function and the constraints, which are weighted by
coefficients, known as Lagrange multipliers. Then, the optimal solution of the constrained
problem is a stationary point of the Lagrangian, where the gradient of the Lagrangian is zero
or parallel to the gradient of the constraints.

The Lagrange multipliers can be selected manually, which however leads to different optimal
solutions that have to be evaluated in a time-consuming hyper-parameter tuning process.
Alternatively, a primal-dual algorithm can be used to choose the parameters automatically. In
this class of algorithms, the policy update is on a faster timescale than the multiplier update.
Iteratively, the best policy for a given set of parameters is found, then the parameters are
updated taking steps along the gradient of the Lagrangian with respect to the multipliers
(Chen Tessler, 2018).

4.9.2.2 ML-driven radio access slicing in cellular networks

4.9.2.2.1 Network Slicing

In enterprise, it will be desirable to manage and optimize network operations to support
multiple use cases with different quality of service (QoS) requirements. Network Slicing will
allow multiple logical networks tailored to the different user requirements, over a common
infrastructure. In this work our focus is on AI-based Dynamic Network Slicing. The goal is to
allocate resources to assure service level agreements (SLA) and build intelligence to configure
Radio Resources for Network Slices to guarantee:

i. Maximum delay for Low Latency (LL) cases
ii. Minimum data rate for high throughput (HT) cases

iii. while maximize radio resources available to other slices including best effort (BE)

The conceptual framework is shown in Figure 4-46. In this work, conventional round robin
scheduling is used for operation. A constrained Reinforcement learning (RL) algorithm is
designed for AI based slice planning.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 98 | 129

Figure 4-46. Conceptual Framework

4.9.2.2.2 Constrained RL Algorithm

The network slicing problem is formulated as a generic optimization problem:

Where, the objective f0 is the (negated and normalized) mean-rate across best effort (BE) flows
Ube. The constraints are defined to guarantee the average data rate of the worst performing
user in HT slice is greater or equal to 𝑟/&', and the 99-percentile of all the packet latencies
observed during the slicing window for LL applications is less than 𝑙/%A .

f = (f1, f2) is the vector-valued constraint function for min-rate (worst-rate) and max-latency
(worst latency) constraints across high-throughput flows Uht and low-latency flows Ull,
respectively. p(.) denotes the bandwidth allocation / slicing decisions.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 99 | 129

ri(t) denotes the rate/throughput of the flow i over the slicing window indexed with t. Similarly,
li(t) denotes the latency of the flow i over the slicing window t. Latency is measured as the 99-
percentile of all the packet latencies observed during the slicing window t, where packet
latency for each transmitted packet is calculated as the time difference between the
transmission time and the generation time.

4.9.2.2.3 Lagrangian Duality and State-Augmentation

Given the vector of nonnegative dual multipliers corresponding to the constraints, we define
the augmented Lagrangian:

The optimal state-augmented parametrization minimizes the expected augmented
Lagrangian w.r.t a dual multiplier distribution pμ:

The offline training phase aims to solve the preceding minimization problem. During online-
execution phase, we derive the slicing decisions using the trained state-augmented
parametrization augmented with the current dual multipliers which evolve over time
according to the dual dynamics given as

4.9.2.2.4 Network Traffic Model

We consider three different slice/flow/user/traffic categories with different QoS requirements:
• High-throughput (HT): minimum rate/throughput constraint rmin (specified in bps/Hz).
• Low-latency (LL): maximum latency constraint lmax (specified in ms).

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 100 | 129

• Best-effort (BE): no strict QoS constraint. We target best possible rate/throughput for
these traffics, given HT and LL traffics satisfy their respective requirements.

We fix the total number of flows N in each network but the fraction of flows in each category
will vary from network to network. In our experiments, N = 20.
Traffic demands and packet generation for all flows follow the Constant Bit Rate Model (CBRM).
Traffic demands for flows in each slice category vary over slicing windows in a random-walk
like manner within prescribed ranges. CBRM simulates the packet arrivals for each flow based
on the arrival rates dictated by the traffic demands.

4.9.2.2.5 Experiment Setup

Slicing decisions are made for each slicing window indexed with t = 0, 1, …, Tslice-1, where Tslice is
the total number of slicing windows over which the objective and the constraints are
evaluated. Within each slicing window, multiple scheduling sub-windows take place.
In each scheduling sub-window, within each slice category, all flows take turns to transmit
their packets via a round-robin scheduling algorithm. During transmission, the whole
bandwidth allocated to the slice category is utilized. The main parameters of the experiment
configuration are as follows:

• Total bandwidth BW = 20 MHz, transmit power is Ptx = 10 dBm, noise PSD is N0 = -174
dBm/Hz.

• Total number of slicing windows Tslice = 200, dual multiplier and slicing decision
update period T0 = 5.

• The QoS requirements are set as rmin = 0.6 bps/Hz and lmax = 10 ms. The normalization
factor in the mean best-effort rate objective is set to rmean = rmin.

• For the neural network parametrization, we use a multi-layered perceptron (MLP) with
two hidden layers with 64 neurons. As slice feature inputs, we concatenate the vector
of fraction of flows in each slice and the average traffic demands.

• The primal learning rate (lr) is set as 0.001 and dual update step size as 2.
• The dual multipliers for each constraint are sampled uniformly in the range [0, 5].
• The training is done over 64 different training networks with a batch size of 16, over 25

epochs.
• We test on 16 different test networks and report the evolution of objective and

constraint metrics.
• Two simple baselines of interest are:

o Uniform slicing: Split the total bandwidth (BW) available equally among all
slices (E.g., p = (⅓, ⅓, ⅓) for HT, LL and BE flows)

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 101 | 129

o Proportional slicing: Split the total BW available proportional to number of
flows in each slice (E.g., if there are 10 HT, 6 LL and 4 BE flows at a given time,
the slicing decision is p = (½, 0.3, ⅕).

4.9.2.2.6 Initial Simulation Results

The initial simulation results (code not open-sourced) show that the proposed state
augmented algorithm outperforms both proportional and uniform slicing.

Figure 4-47. The test performance of the state-augmented model in terms of min-rate
constraint and max-latency constraint for an average test network w.r.t. the number of

training iterations. Rate (left) and Latency (Right) Constraints, Red dashed lines with no
markers specify the QoS requirements. State-augmented slicing satisfies both QoS

requirements for an average network unlike the two baselines.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 102 | 129

Figure 4-48. The time/slice evolution of the min-rate constraint (left) and max-latency
constraint (right) for an example test network. For this network configuration, latency

constraint is the harder of the two which is only met by the state-augmented approach.

Figure 4-49. From left to right, the time/slice evolution of the bandwidth allocations for HT,
LL and BE slices for a test network.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 103 | 129

Figure 4-50. The average rate of failures for min-rate constraint (left) and max-latency
constraint (right) for the same test network. The rate of failure metric captures what fraction

of the time a typical user does not meet their respective QoS requirements.

Figure 4-51. Ergodic average of latencies of LL flows over time, RL algorithm (Left),
Proportional slicing (middle) and uniform slicing (right).

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 104 | 129

4.10 ML Architectural Framework and Interfaces
The concept of MLOps is defined in literature as the technology paradigm based on the
extension of the DevOps methodology for enabling the full lifecycle management of AI/ML
models in production environments. As part of this approach, MLOps targets the integration
of different processes related to data collection, data transformation or model training
towards the development and deployment AI/ML models (Erich et al. 2014).

Leveraging this technology concept, ATOS brings to PREDICT-6G the design of a specific AI/ML
framework solution that targets the application of MLOps main principles towards the design
of the future 6G systems, where AI/ML techniques are expected to play a significant role (A.
Bang et al. 2023).

ATOS AI/ML framework is designed to support and facilitate the development and execution of
AI/ML algorithms across multiple domains. The framework enables the management of the
complete lifecycle of AI/ML models, from design and training to deployment in production
environments at different domains, allowing their integration into the Management &
Orchestration domain control loops. The integration of the AI/ML framework in these domains
can be performed either through the exchange of AI/ML models in the shape of artifacts or
through the delivery of AI/ML inference results, i.e., the resulting predictions or model outputs.

To host and deploy all the aforementioned functionalities in a portable and scalable manner,
the AI/ML framework relies on a deployment strategy based on the concept of containerization
and its orchestration through Kubernetes (K8s) system. K8s allows to scale and manage
containerized software components and execute them as cloud-native applications. Based on
this approach, ATOS relies on the use of Kubeflow cloud-native platform for enabling the
deployment and orchestration of the AI/ML framework in any infrastructure where Kubernetes
is available. Kubeflow15 is an open-source system conceived for deploying and orchestrating
ML workflows on K8s. It offers an ML toolkit where the SW Vendor workflow pipeline can be
developed, executed, and tested. The development of workflows is enabled through Jupyter
notebooks16 servers and katib17 components. With respect to orchestration, Kubeflow
integrates an orchestration component called Kubeflow Pipelines.

15 https://www.kubeflow.org/
16 https://jupyter.org/
17 https://github.com/kubeflow/katib

https://www.kubeflow.org/

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 105 | 129

Considering the described deployment framework, ATOS proposes an AI/ML framework
architecture composed of five main blocks: Pipeline Development, Pipeline Orchestration
Plataform (POP), Model Storage and Model Serving:

Figure 4-52. Current AI/ML framework architecture and technologies

Pipeline Development: The proposed AI/ML framework exploits the concept of AI/ML pipelines
or workflows for managing the complete lifecycle of AI/ML models. This module is dedicated
to developing AI/ML pipelines considering the combination of different data science and AI/ML
stages such as data ingestion, data preparation, data validation, AI/ML model design, AI/ML
model training, or AI/ML model testing, among others. This pipeline development module will
run over Kubeflow through the preparation of Jupyter Notebooks, where TensorFlow18 Extended
(TFX) libraries are used. TFX is an extension of the well-known TensorFlow framework, which is
typically used to create and manage ML production pipelines.

DatasetDB: Connected to the pipeline development inputs, a specific DB is included to allow
the storage of input datasets. The type of database (relational, non-relational, supporting time-
series) will be decided depending on the type of data to be stored.

Pipeline Orchestration Platform (POP): AI/ML framework module dedicated to performing
and E2E orchestration and automatization of the AI/ML pipelines/workflows generation. The
POP will not only build, manipulate, schedule, and deploy these pipelines in a portable and

18 https://www.tensorflow.org/

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 106 | 129

scalable manner but will also orchestrate workflows using containerization strategies. The POP
also includes the presence of two different databases: (i) the InputDB, used to store the data
used as an input for performing the model training, and (ii) the MetadataDB, used to store
metadata about the pipeline orchestration stages. Currently, the AI/ML framework relies on
Kubeflow Pipelines19 as POP while the DBs rely on MySQL and MinIO20 respectively.

Model Storage: AI/ML framework module envisaged to store the ML models generated as the
outcome of the different orchestrated pipelines. The model storage module has available a
REST/gRPC interface to serve models under request. Currently, the model storage module of
the AI/ML framework relies on MinIO database, which is merely a K8s-native objects storage.

Automatic Model Deployer: AI/ML framework add-on deployed on top of the Model Storage
module to monitor the creation of new models. If new models are created, they are forwarded
to the Model Serving module.

Model Serving: AI/ML pipelines/workflows are combined with model serving techniques for
enabling the access to AI/ML inference results. This module offers the model serving
capabilities. The current version of the AI/ML framework relies on TensorFlow Serving (TFS) for
offering model serving. TensorFlow Serving is a flexible serving system where AI/ML models
are deployed and are made available for inferencing requests through an API. The Model
Serving module is also deployed over Kubeflow and directly connected to the Inference System
and the Model and Metrics Monitoring module.

Inference System: AI/ML framework module devised to act as the main entry point for
performing inference requests and returning inference outputs. This module is directly
connected to the Model Serving for accessing the models, but also to the Model and Metrics
Monitoring and to the POP for performing a closed-loop monitoring of the models and
triggering its retraining in case of drift detection events.

Model and Metrics Monitoring: AI/ML framework module composed of two sub-modules
dedicated to monitor the drift introduced by the AI/ML models and to monitor specific metrics
related to Model Serving performance. The module is connected to the Model Serving for
monitoring models and receiving serving metrics, but also to the inference system for
informing about drift detection, and to the POP for receiving POP performance metrics.

19 https://www.kubeflow.org/docs/components/pipelines/v1/introduction/
20 https://min.io/

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 107 | 129

4.10.1 SW Design

The AI/ML Framework described in the previous subsection will include some functionalities
present in D3.1 (PREDICT-6G/D3.1, 2023) united in a single module. Particularly, the AI/ML
Framework will cover functionalities considered in the following MS:

• AI/ML Model Registry (Fully covered): Store and serve specific information and
characteristics related to the models already onboarded in PREDICT-6G platform. This
functionality is already available in the framework.

• Dataset Registry (Fully covered): Store and serve specific information related to
datasets available for model training or pre-training. This functionality is not available
in the framework, but it will be covered as part of the framework extension plan.

• Model Repository (Fully covered): Store and serve the AI/ML models already onboarded
in the platform through the Learning Manager. This functionality is already available in
the framework.

• Dataset Repository (Fully covered): Allow the storage and serving of the datasets
already onboarded in the platform through the Learning Manager. This functionality is
not available in the framework, but it will be covered as part of the framework extension
plan.

• Resource Orchestration/Learning Manager (Partially covered): Allow the creation of new
AI/ML models, allow the monitoring and update and redeployment of AI/ML models
according to specific metrics or external requests. This functionality is already
available in the framework.

Considering all previous points regarding the MS functionalities that the AI/ML framework will
cover, the following subsection provides details of the interactions that will be performed
between the AI/ML framework module, and the rest of MS/modules present in the architecture.
All interactions are based in the Diagram present in Section 9 of the 3.1 Deliverable [PREDICT-
6G/D3.1/9, 2023], assuming that the AI/ML framework will cover the role of the MS specified at
the beginning of the section.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 108 | 129

Figure 4-53. AI/ML Framework interactions

Figure 4-53 depicts the workflow of the interactions between AI/ML framework module and
the Learning Orchestrator module at the MD level. Particularly, this workflow depicts the setup
that takes place when a new AI/ML Service is requested from the E2E Learning Orchestrator,
enabling its implementation at the corresponding domain. In this regard, the performed
interaction between these components will be the following:

1. The E2E Learning Orchestrator sends a new AI/ML Service request generated from a user
to set up the configuration of a new E2E Service. The E2E learning Orchestrator will
forward the request to the corresponding domains involved in the configuration
towards the MD Learning Orchestrator. Since this is a unidirectional communication
sending information towards the module, its implementation will be performed using
a REST interface.

2. The MD Learning Orchestrator receives the request and processes it. With the
information included in its content, the MD Learning Orchestrator proceeds to retrieve
from the AI/ML framework module the metadata of the available models in order to
select the most appropriate model for the AI/ML operations. Similarly, the Learning
Orchestrator also retrieves the necessary datasets metadata for training the AI/ML
model. Both messages will be implemented using a REST interface.

3. With all the information compiled in the previous queries, after determining the most
appropriate algorithm to run within the domain, the Learning Orchestrator provides the

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 109 | 129

AI/ML framework with the instructions to run the chosen AI/ML tasks involved in the
configuration of the E2E service. After the service was configured within the domain,
the AI/ML module replies with a confirmation message. This interaction follows a
standard REST model since it is a simple confirmation message.

4. Finally, the MD Learning Orchestrator forwards the reply to the E2E Learning
Orchestrator to confirm the configuration of the E2E service within the domain. In the
same fashion, this confirmation message will also use a REST implementation.

Considering the expected interactions and functionalities described in this section, the
project will reuse, adapt and extend the AI/ML framework for developing and deploying AI/ML
algorithms developed in T3.1. To perform this extension, the following framework
enhancements will be implemented:

1. Add Dataset Registry and Repository functionalities: PREDICT-6G requires the inclusion
of dataset registry and repository capabilities for allowing the storage of complete data
sets as well as their most relevant characteristics. Since the current version of the AI/ML
framework only supports data ingestion without exploiting storage capabilities, the
project will extend the framework functionalities to enable dataset registry and repository
functionalities. This extension will be focused on the development of a specific REST
interface for accessing dataset repository and registry information stored in DatasetDB.

2. Migrate AI/ML framework from TensorFlow to Pytorch libraries: PREDICT-6G partners
plan to develop AI/ML algorithms under Pytorch21 framework. As a consequence, the
existing AI/ML framework will be adapted to support Pytorch, enabling the pipeline
generation, orchestration, model storage and model serving for Pytorch libraries.

3. Extend AI/ML framework capabilities to support Federated Learning: The AI/ML models
developed in T3.1 will exploit Federated Learning techniques. The AI/ML framework will be
shaped to support FL models where training and evaluation phases are clearly split.

4. Extend AI/ML framework capabilities to support the development and deployment of
Distributed Learning and, potentially Reinforcement Learning models: The AI/ML
models developed in T3.1 will also leverage DL and RL techniques. The AI/ML framework will
be extended to support these models.

5. Integrate AI/ML framework with the rest of AI/ML Management Services: The project will
integrate the AI/ML framework with the rest of AICP components through the use of the

21 https://pytorch.org/

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 110 | 129

existing REST API/gRPC interfaces exposed in the Model Serving and Model Storage
components.

Considering the targeted extensions, the SW design of the AI/ML framework will be slightly
modified through the modification of some specific submodules. The set of modifications or
additions are described below:

Figure 4-54. Proposed AI/ML framework architecture

Pipeline Development: This module will be extended to support the development of Pytorch
E2E production pipelines through the potential use of Pytorch libraries such as TorchX or
ZenML. This pipeline development will be enhanced to support the distribution of data from
several data sources in the context of Federated Learning and, potentially, Reinforcement
Learning techniques.

Pipeline Orchestration Platform (POP): This module will be extended to support the
development of pipelines for Federated Learning through the replication of specific pipeline
stages related to data validation, preparation, etc. The module will still rely on Kubeflow
Pipelines since this framework also supports Pytorch pipelines.

Model Serving: This module will also be extended to support the serving of Pytorch AI/ML
models through the potential use of Pytorch libraries such as Torchserve. As for the pipeline
development, the serving design will be performed to support the distribution of FL/RL models.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 111 | 129

DatasetDB: As previously mentioned, a specific interface will be developed to access dataset
registry and repository functionalities allowing to retrieve complete data sets as well as their
most relevant features. The type of database (relational, non-relational, supporting time-
series) will be decided depending on the type of data to be stored.

4.10.2 Early implementation and Release Plan

The existing implementation of the AI/ML framework is available in Atos private repository:

https://github.gsissc.myatos.net/GLB-BDS-ETSN-GLB/MLOPS-FRAMEWORK.

To upgrade and enhance the capabilities of the existing version, an implementation plan is
defined, consisting initially of four SW development phases, concluding at M15, M18, M21 and
M24, according to the roadmap reported in Section 5. The first phase is expected to cover the
functionalities related to adding dataset registry and repository capabilities, as well as the
support of Pytorch libraries. The second phase will add functionalities to support the
deployment of FL algorithms. The third phase will include the fine-tuning of the previous
functionalities and the release of the first complete version of the AI/ML framework. Finally,
the last phase at M24 will deliver the final version of the AI/ML framework, covering a complete
integration with other MS.

Regarding frameworks, programming languages and libraries, this module will be enhanced
by exploiting Pytorch framework and Python as the main programming language. Regarding
libraries, Pytorch libraries like TorchX, TorchServe or ZenML are expected to be used. With
respect to the DB, it could be developed by using PostgreSQL22, SQLite23, InfluxDB24 or other
types of databases depending on the type of data to be stored.

22 https://www.postgresql.org/
23 https://www.sqlite.org/index.html
24 https://www.influxdata.com/

https://github.gsissc.myatos.net/GLB-BDS-ETSN-GLB/MLOPS-FRAMEWORK

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 112 | 129

5 Implementation Roadmap
This section shows the roadmap towards the release of an AICP prototype, following the time
management methodology discussed in Section 3.3. The roadmap is exposed in Figure 5-1 and
considers a timeframe that spans from M13 to M27, when WP3 activities will be terminated,
encompassing 4 development cycles plus a final one for the prototype refinement and
reporting (D3.3 and D3.4)

It is important to note that as soon as feedback from the implementation activities are
collected, the releases of the different AICP components might be updated, especially for those
modules that directly interacts with the data plane, whose implementation depends on the
interfaces exposed by the MDP. Integration AICP-MDP integration activities are foreseen,
according to the definition of Development cycle: those activities are carried out in the context
of WP4 and are not explicitly reported in the roadmap figure.

Figure 5-1. Initial roadmap towards AICP prototype

In Table 5-1 are reported the advancements expected in the implementation of the different
AICP components.

Table 5-1. Implementation advancements expected at the end of each Development Cycle

Component Cycle 1

M13-M15

Cycle 2

M16-M18

Cycle 3

M19-M21

Cycle 4

M22-M24

Time Sync Initial
interfaces and
data models
definition

Implementation
of technology
domain specific
TS MS

Implementation of
E2E time sync
management

Integration
with MDP

Service
Ingestion

Component
skeleton with
base NBI
functions and

NBI for service
Management,
service
management

Base
authentication
logic design and
early

Full-fledged
NBI and SBI.
Integration
with Service

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 113 | 129

Component Cycle 1

M13-M15

Cycle 2

M16-M18

Cycle 3

M19-M21

Cycle 4

M22-M24

base service
parsing logic

logic, initial
integration with
service
automation via
SBI

implementation.
Possible changes
in the information
model to be
integrated

Automation
and IAM
platform
under
refinement

Exposure
Services

Skeleton of
MD level for
topology
exposure
service. Data
model
analysis for
mock
modules

Mock for MD
topologies.

Skeleton form E2E
MD level modules.
Mock to complete
modules, if
possible

Complete set
of exposure
modules in
both MDs and
E2E Md levels

Service
Automation

Final
definition of
data model.
Development
of MD Service
Automation
and
interfaces.

Implementation
of E2E Service
Automation
functionalities
and interfaces.

Fine-tuning MD
and E2E
functionalities,
initial integration
with the rest of
modules.

Final
integration
and testing
with other
modules.

Path
Computation

Initial
interfaces and
data models
definition

Interfaces and
data models
consolidation

Preliminary path
computation
engine

Consolidated Path
Computation
engine both at
domain and E2E
level

Initial integration

Fully
integration of
the Path
Computation
module with
the other
modules

Digital Twin Initial
interfaces and
data models
definition

Preliminary
Queuing models
for deterministic
services

KPIs composition
for e2e estimation

Fully
Integration
with other
models

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 114 | 129

Component Cycle 1

M13-M15

Cycle 2

M16-M18

Cycle 3

M19-M21

Cycle 4

M22-M24

Resource
Configuration

Initial
manually
configurable
TSN module

Preliminary TSN
configurator with
DetNet
Constraints focus

Integrable TSN
configurator in
DetNet with well-
defined SBI
endpoints

Fully
autonomous
interoperable
configurator

Data
Collection and
Management

Integration
with MDP
available data
collection
technologies

Support for
hierarchical
deployment,
Integration with
MDP available
data collection
technologies

Support of IAM,
integration with
MDP available data
collection
technologies

Integration
with MDP
available data
collection
technologies

AI/ML
algorithmic
framework

Problem
Formulation
and initial
algorithm
definition for
distributed
learning

Initial
Performance
evaluation
through
numerical
analysis

Consolidated
version of the
algorithmic
frameworks

Integration in
the AI/ML
learning task
operational
flow

ML
Architectural
Framework

Addition of
dataset
registry and
repository
capabilities.
Support for
Pytorch
libraries.

Support for the
deployment of
Federated
Learning
algorithms.

Fine-tuning of
functionalities,
and release of first
complete version
of AI/ML
architectural
framework. Initial
integration with
other Management
Services.

Final
integration
with the rest of
Management
Services.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 115 | 129

6 Conclusions
This document aims at presenting the initial advancements related to the implementation of
PREDICT-6G AICP. Starting from the control plane functional architecture presented in D3.1, a
methodology to select MSs candidate for implementation has been presented, along with a
strategy to manage the time dedicated to the development and integration activities and
consideration related to the source code management and influence of the MDP technology
on the implementation of some MSs. The MSs selected have been grouped per SW
components, whose SW design and implementation plan have been also described. Finally, a
roadmap mapping the releases of the different piece of SW have been reported.

Nevertheless, the work presented in the deliverable is only a starting point towards the
realisation of an AICP prototype, ready to be integrated with the MDP prototype, exploiting the
activities in WP4. The path is not straightforward: the implementation activities often reveal
issues and gaps not identified at the design phase. For that reason, the time remaining to the
end of the WP3 has been fractionated in implementation cycles, at the end of which, beside
the SW artifacts, key feedback from implementation and integration are collected and used to
update the AICP functional and SW design (whose final version will be reported in D3.3 and
D3.4, respectively), progressively and up to the prototype release.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 116 | 129

7 References
(PREDICT-6G/D1.1/4-5, 2023) PREDICT-6G D1.1 "Analysis of use cases and system requirements.”,
Sections 4 and 5, Jun. 2023.

(PREDICT-6G/D1.2/5.3.3, 2023) “PREDICT-6G framework architecture and initial specification”,
Section 5.3.3, Dec. 2023

(PREDICT-6G/D1.2/5.3.3.1, 2023) “PREDICT-6G framework architecture and initial specification”,
Section 5.3.3.1, Dec. 2023

(PREDICT-6G/D1.2/5.4.3, 2023) “PREDICT-6G framework architecture and initial specification”,
Section 5.4.3, Dec. 2023

(PREDICT-6G/D3.1/2023) "Release 1 of AI-driven inter-domain network control, management,
and orchestration innovations.”, Sep. 2023

(PREDICT-6G/D3.1/4, 2023) "Release 1 of AI-driven inter-domain network control, management,
and orchestration innovations.”, Section 4, Sep. 2023

(PREDICT-6G/D3.1/6.2, 2023) "Release 1 of AI-driven inter-domain network control,
management, and orchestration innovations.”, Section 6.2, Sep. 2023

(PREDICT-6G/D3.1/6.2.1.2-6.2.2.2, 2023) "Release 1 of AI-driven inter-domain network control,
management, and orchestration innovations.”, Sections 6.2.1.2 and 6.2.2.2, Sep. 2023

(PREDICT-6G/D3.1/7.2, 2023) "Release 1 of AI-driven inter-domain network control,
management, and orchestration innovations.”, Section 7.2, Sep. 2023

(PREDICT-6G/D3.1/7.2.1.1-7.2.2.1, 2023) PREDICT-6G D3.1 "Release 1 of AI-driven inter-domain
network control, management, and orchestration innovations.”, Sections 7.2.1.1 and 7.2.2.1, Sep.
2023

(PREDICT-6G/D3.1/7.2.1.3-7.2.1.5-7.2.1.6-7.2.1.7-7.2.2.6-7.2.2.7, 2023) "Release 1 of AI-driven inter-
domain network control, management, and orchestration innovations.”, Sections 7.2.1.3, 7.2.1.5,
7.2.1.6, 7.2.1.7, 7.2.2.6 and 7.2.2.7, Sep. 2023

(PREDICT-6G/D3.1/7.2.1.4-7.2.2.4, 2023) "Release 1 of AI-driven inter-domain network control,
management, and orchestration innovations.”, Sections 7.2.1.4 and 7.2.2.4, Sep. 2023

(PREDICT-6G/D3.1/9, 2023) PREDICT-6G D3.1 "Release 1 of AI-driven inter-domain network
control, management, and orchestration innovations.”, Section 9, Sep. 2023

(PREDICT-6G/D3.1/9.1, 2023) "Release 1 of AI-driven inter-domain network control, management,
and orchestration innovations.”, Section 9.1, Sep. 2023

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 117 | 129

(PREDICT-6G/D3.1/9.3, 2023) "Release 1 of AI-driven inter-domain network control,
management, and orchestration innovations.”, Section 9.3, Sep. 2023

(3GPP/TS23.501/2023) “System architecture for the 5G System (5GS) v18.3.0”, Sep. 2023

(3GPP/TS23.501/7.2.12, 2023) “System architecture for the 5G System (5GS) v18.3.0”, Section
7.2.12, Sep. 2023

Malandrino, F. et al. (2023), ‘Tuning DNN Model Compression to Resource and Data Availability
in Cooperative Training,’ in IEEE/ACM Transactions on Networking, doi:
10.1109/TNET.2023.3323023.

Gou, J., et al. (2021) ‘Knowledge distillation: A survey,’ International Journal of Computer Vision.

Gao, Z., et al. (2021), ‘Knowru: Knowledge reusing via knowledge distillation in multi-agent
reinforcement learning,’ arXiv [cs.CR]. Available at: http://arxiv.org/abs/2103.14891

Zhang, T., et al., ‘Catastrophic interference in reinforcement learning: A solution based on
context division and knowledge distillation,’ arXiv [cs.CR]. Available at:
http://arxiv.org/abs/2109.00525

Chen Tessler, et al. (2018). ‘Reward constrained policy optimization,’ arXiv [cs.CR]. Available at:
http://arxiv.org/abs/1805.11074

L. Yang, Y. Lu, J. Cao, J. Huang and M. Zhang, "E-Tree Learning: A Novel Decentralized Model
Learning Framework for Edge AI," in IEEE Internet of Things Journal, vol. 8, no. 14, pp. 11290-11304,
15 July15, 2021, doi: 10.1109/JIOT.2021.3052195.

Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. Advances
in neural information processing systems, 30.

J. J. Alcaraz et al. (2022), “Model-Based Reinforcement Learning with Kernels for Resource
Allocation in RAN Slices,” IEEE Trans. Wireless Communications, 2022.

Navid NaderiAlizadehet al. (2022), “State-augmented learnable algorithms for resource
management in wireless networks,” IEEE Transactions on Signal Processing, 2022.

Y. Liu, et al. (2020), “A Constrained Reinforcement Learning Based Approach for Network
Slicing,” IEEE 28th Int’l. Conf. Network Protocols, 2020.

Q. Liu, et al. (2021), “OnSlicing: Online End-to-End Network Slicing with Reinforcement
Learning,” Proc. 17th Int’l. Conf. Emerging Networking Experiments and Technologies, 2021, pp.
141—53

M. Ruiz, D. Careglio, and L. Velasco, "CURSA-SQ models for Time-Sensitive Networking," in Proc.
IEEE International Conference on Transparent Optical Networks (ICTON), 2023.

http://arxiv.org/abs/2103.14891
http://arxiv.org/abs/2109.00525

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 118 | 129

Erich F., Amrit C., Daneva M., “A Mapping Study on Cooperation between Information System
Development and Operations”, In: Jedlitschka A., Kuvaja P., Kuhrmann M., Männistö T., Münch
J., Raatikainen M. (eds) Product-Focused Software Process Improvement. PROFES 2014. Lecture
Notes in Computer Science, vol 8892. Springer, Cham, 2014.

Ankur Bang, Kapil Kant Kamal, Padmaja Joshi, Kavita Bhatia, 6G: The Next Giant Leap for AI and
ML, Procedia Computer Science, Volume 218, 2023, Pages 310-317, ISSN 1877-0509,
https://doi.org/10.1016/j.procs.2023.01.013.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 119 | 129

8 Appendixes
8.1 Appendix A - AICP Operational Workflows
8.1.1 E2E Deterministic Service Provisioning

The E2E Service provisioning operational workflow describes the interactions between
multiple MSs involved in the E2E and technology-specific MDs. The workflow is first described
and illustrated in Figure 8-1 from the E2E perspective, and then, analysed step by step,
including specific workflows for loops in local MDs (Figure 8-2 and Figure 8-3). The AI/ML MSs
are here indicated as AI/ML AI-based & Predictive Decision Service (E2E and not E2E) in a
single box per domain, in order to ease the readability of the figures.

Figure 8-1 E2E Deterministic Service provisioning - E2E Management Domain view

• Step 1. User/Operator sends a Service Provisioning Request to the E2E Service Ingestion
MS.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 120 | 129

• Step 2. E2E Service Ingestion validates the format and the syntax of the Service
Provisioning Request.

• Step 3. E2E Service Ingestion forwards the Service Provisioning Request to the E2E Service
Automation for launching the provisioning process.

• Step 4. E2E Service Automation kicks off the provisioning process by requesting the cross-
domain E2E path to the E2E Path Computation.

• Step 5. E2E Path Computation computes gross-grained E2E paths where the nodes in the
network graph have the granularity of a domain, interconnected by the existing links
between domain’s border nodes.

• Step 6. E2E Path Computation sends the results to the E2E Learning Orchestrator for their
evaluation.

• Step 7. E2E Learning Orchestrator recommends the best path and domain selection for the
E2E, considering the path computation alternatives, and forwards this information to the
E2E Path Computation.

• Step 8 and 9. After preselecting the domain and the path, the E2E Path Computation
requests an E2E KPI computation to the E2E DT Predictive Analytics MS, based in the KPIs
computed for each local domain.

• Step 8. E2E Path Computation starts an iterative path computation process in each local
Management Domain by interacting with the corresponding technology-specific Service
Automation MS. See details in Figure 8-2.

• Step 9. E2E Path Computation receives the local path selection from the different
technology domains.

• Step 10 and 11. After preselecting the domain and the path, the E2E Path Computation
requests an E2E KPI computation to the E2E DT Predictive Analytics MS, based in the KPIs
computed for each local domain.

• Step 12. E2E Path Computation forwards the E2E Path Computation result to the E2E
Service Automation.

• Step 13. E2E Service Automation triggers an iterative process for requesting the service
provisioning in the corresponding domain through an interaction with the Service
Automation MS.

• Step 14. E2E Service Automation receives feedback about the local service provisioning
from the Service Automation MS.

• Step 15. E2E Service Automation sends a notification about the E2E service provisioning to
the E2E Learning Orchestrator.

• Step 16. E2E Service Automation sends a notification about the E2E service provisioning
to the E2E DT Predictive Analytics MS.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 121 | 129

• Step 17. E2E Service Automation configures E2E Monitoring to collect from Measurement
Collection MSs of each domain.

• Step 18. E2E Service Automation stores the E2E Service Information in the E2E Service
Exposure.

• Step 19. E2E Service Automation informs about the E2E Service Provisioning to the E2E
Service Ingestion.

• Step 20. E2E Service Ingestion informs the user or the operator about the success of the
Service Provisioning Request.

In the following, we detail the first loop, i.e., the operations happening in local domains when
the E2E Path Computation requests a local deterministic path.

Figure 8-2 E2E Deterministic Service provisioning – Loop 1, Local Management Domain view

• Steps 1 and 2. Service Automation MS forwards the local path computation request to the
local Path Computation MS.

• Steps 3, 4 and 5. Path Computation MS in each domain asks Topology Exposure, Capability
Exposure, and Resource Exposure to retrieve information from domains.

• Steps 6, 7, and 8. Topology Exposure, Capability Exposure, and Resource Exposure get the
corresponding information from the data plane, abstract it, and send it back to Path
Computation.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 122 | 129

• Steps 9, 10, and 11. Path Computation performs the path calculation for each domain and
forwards this calculation to the Learning Orchestrator to get a recommendation for the
best path alternative to provision the service in the specific local domain.

• Step 12. Path Computation forwards the selected path to the Service Automation
• Steps 13 and 14. Under request from Service Automation, the DT Predictive Analytics MS

composes a dedicated scenario with the sub-topology defined for the route to evaluate,
selects the already provisioned services that are supported by these resources and runs
simulations to estimate the KPIs based on the definition of traffic for the new service and
the traffic models for the current services. The estimation results for the local domain are
returned.

• Step 14. Service Automation forwards the local path selection to the E2E Path Computation.

Below is detailed the second loop characterizing the provisioning of an E2E Deterministic
service, i.e., the set of operations required to provisioning a local deterministic sub-service.

Figure 8-3 E2E Deterministic Service provisioning - Loop 2, Local Management Domain view

• Step 1. E2E Service Automation requests the service provisioning in the selected local
domain through an interaction with the Service Automation MS.

• Step 2. Service Automation MS performs a request for resource configuration to the
Resource Configuration MS.

• Step 3. Resource Configuration MS receives the request and configures resources directly
on the data plane and provisions the path to the Service Automation MS.

• Step 4. Service Automation MS updates resource availability at the Resource Exposure MS.
• Steps 5 and 6. Service Automation MS informs the Learning Orchestrator about the service

provisioning.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 123 | 129

• Step 7. Service Automation MS informs the E2E Service Automation about the service
provisioning in the local domain.

8.1.1 E2E Deterministic Service Decommissioning

The termination of a deterministic service can happen under two potential situations: (1)
explicit termination request from the user/operator, or (2) due to the expiration of the service
lifetime, which is a subset of the steps performed by (1). As in previous workflow the AI/ML MSs
are generically indicated as AI/ML AI-based & Predictive Decision Service (E2E and not E2E) in
a single box per domain, in order to ease the readability of the figures.

(1) Explicit Termination Request

Figure 8-4 E2E Deterministic Service decommissioning - Part 1, E2E Management Domain view

• Step 1. User sends Service Decommissioning Request to E2E Service Ingestion.
• Step 2. E2E Service Ingestion forwards the request to E2E Service Automation where E2E

service decommissioning is initiated.
• Step 3. E2E Service Automation retrieves additional service information from the E2E

Service Exposure to perform the decommissioning.
• Step 4. E2E Service Exposure returns additional service information to the E2E Service

Automation.
• Step 5. E2E Service Automation informs the Service Automation MS of the specific

technology-domain about the service decommissioning and starts an iteration in the local
MD.

• Step 6. E2E Service Automation is informed about the local service decommissioning and
turns it into an E2E service decommissioning.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 124 | 129

• Step 7. E2E Service Automation forwards the E2E Service Decommissioning notification to
the E2E Learning Orchestrator.

• Step 8. E2E Service Automation forwards the E2E Service Decommissioning notification to
the DT Predictive Analytics.

• Step 9. E2E Service Automation configures E2E monitoring for stopping the monitoring of
the parameters related to the decommissioned service.

• Step 10. E2E Service Automation removes the E2E service information from the E2E Service
Exposure MS.

• Step 11. E2E Service Automation informs the E2E Service Ingestion about the E2E Service
Decommissioning.

• Step 12. E2E Service Ingestion notifies the user or operator about the success of the E2E
Service Decommissioning request.

Figure 8-5 E2E Deterministic Service decommissioning - Part 2, Local Management Domain
view

• Step 1. Service Automation MS receives the local service decommissioning request.
• Step 2. Service Automation MS requests to the Resource Configuration MS the release of

the resources allocated to the specific service in the local domain and the specific path.
• Step 3. Resource Configuration MS releases the corresponding resources.
• Step 4. Service Automation MS informs the Resource Exposure MS about the update on

the resource availability.
• Step 5. Service Automation MS removes service information from the Service Exposure.
• Steps 6 and 7. Service Automation MS informs about the service decommissioning to the

Learning Orchestrator and the DT Predictive Analytics MSs.

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 125 | 129

• Step 8. Service Automation MS requests to stop collecting monitoring parameters to the
Measurement Collection MS.

• Step 9. Service Automation MS informs the E2E Service Automation MS about the local
service decommissioning.

(2) Expiration of the Service Lifetime

In this case, the E2E Service Automation automatically detects the service expiration and
trigger its termination. The workflow coincides with (1) starting from step 3.

8.2 Appendix B – E2E Service lifecycle model
Figure 8-6 shows the set of administrative state in which a service can be. A more detailed
description is available in D1.2 (PREDICT-6G/D1.2/5.4.3, 2023).

Figure 8-6. E2E service administrative states and state transitions

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 126 | 129

8.3 Appendix C – AICP information models
All the information reported in this Appendix are available in the project’s GitLab25.

8.3.1 Deterministic Services

8.3.1.1 E2E Deterministic Service request

module: E2E_deterministic_service_request_model
 +--rw e2e-service
 +--rw endpoints
 | +--rw source
 | | +--rw id? string
 | +--rw destination
 | +--rw id? string
 +--rw qos-characteristics
 | +--rw priority? uint8
 | +--rw reliability? percent
 | +--rw packet-loss? percent
 | +--rw e2e-delay? milliseconds
 | +--rw e2e-rtt? milliseconds
 | +--rw jitter? milliseconds
 | +--rw burst-arrival-time-window
 | | +--rw t1? milliseconds
 | | +--rw t2? milliseconds
 | +--rw burst-completion-time-window
 | +--rw t1? milliseconds
 | +--rw t2? milliseconds
 +--rw traffic-characteristics
 | +--rw direction? enumeration
 | +--rw periodicity? boolean
 | +--rw period? milliseconds
 | +--rw burst-size? uint32
 | +--rw maximum-flow-bitrate? thoughput
 +--rw tft
 +--rw service-lifetime
 +--rw service-duration
 | +--rw t1? milliseconds
 | +--rw t2? milliseconds
 +--rw recurrent-service-interval
 +--rw t1? milliseconds
 +--rw t2? milliseconds
 +--rw recurrence-interval? milliseconds

8.3.1.2 E2E Deterministic Service data model

module: E2E_deterministic_service_model

25 https://gitlab.netcom.it.uc3m.es/predict-6g/aicp/information-models

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 127 | 129

 +--rw e2e-service
 +--rw id? string
 +--rw service-status? status-type
 +--rw endpoints
 | +--rw source
 | | +--rw id? string
 | +--rw destination
 | +--rw id? string
 +--rw e2e-path-selection
 | +--rw id? string
 | +--rw path-status? string
 | +--rw domain-list* [index]
 | +--rw index uint32
 | +--rw path-domains
 | +--rw name? string
 | +--rw class? domain-type
 +--rw qos-characteristics
 | +--rw priority? uint8
 | +--rw reliability? percent
 | +--rw packet-loss? percent
 | +--rw delay? milliseconds
 | +--rw rtt? milliseconds
 | +--rw jitter? milliseconds
 | +--rw burst-arrival-time-window
 | | +--rw t1? milliseconds
 | | +--rw t2? milliseconds
 | +--rw burst-completion-time-window
 | +--rw t1? milliseconds
 | +--rw t2? milliseconds
 +--rw traffic-characteristics
 | +--rw direction? enumeration
 | +--rw periodicity? boolean
 | +--rw period? milliseconds
 | +--rw burst-size? uint32
 | +--rw maximum-flow-bitrate? thoughput
 +--rw tft
 +--rw service-lifetime
 | +--rw service-duration
 | | +--rw t1? milliseconds
 | | +--rw t2? milliseconds
 | +--rw recurrent-service-interval
 | +--rw t1? milliseconds
 | +--rw t2? milliseconds
 | +--rw recurrence-interval? milliseconds
 +--rw md-services
 +--rw local-service* [index]
 +--rw index uint32
 +--rw service
 +--rw id? string
 +--rw service-status? status-type
 +--rw target-domain
 +--rw name? string

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 128 | 129

 +--rw class? domain-type

8.3.1.3 Local Deterministic Service data model

module: local_service_model
 +--rw td-service
 +--rw id? string
 +--rw e2e-service-id? string
 +--rw service-status? status-type
 +--rw td-nodes
 | +--rw endpoint
 | | +--rw id? string
 | | +--rw node-resources
 | | +--rw resource-list* [index]
 | | +--rw index uint32
 | | +--rw CPU? cpu
 | | +--rw RAM? ram
 | | +--rw disk? storage
 | +--rw gateway
 | +--rw gateway-list* [index]
 | +--rw index uint32
 | +--rw node
 | +--rw id? string
 | +--rw node-resources
 | +--rw resource-list* [index]
 | +--rw index uint32
 | +--rw CPU? cpu
 | +--rw RAM? ram
 | +--rw disk? storage
 +--rw td-path-selection
 | +--rw path-id? string
 | +--rw path-status? status-type
 | +--rw involved-nodes
 | +--rw node-list* [index]
 | +--rw index uint32
 | +--rw node
 | +--rw id? string
 | +--rw node-resources
 | +--rw resource-list* [index]
 | +--rw index uint32
 | +--rw CPU? cpu
 | +--rw RAM? ram
 | +--rw disk? storage
 +--rw qos-characteristics
 | +--rw priority? uint8
 | +--rw td-reliability? percent
 | +--rw td-packet-loss? percent
 | +--rw td-delay? milliseconds
 | +--rw td-rtt? milliseconds
 | +--rw td-jitter? milliseconds
 | +--rw burst-arrival-time-window
 | | +--rw t1? milliseconds

[D3.2] – Implementation of selected release 1 AI-driven inter-
domain network control, management and orchestration
innovations

 129 | 129

 | | +--rw t2? milliseconds
 | +--rw burst-completion-time-window
 | +--rw t1? milliseconds
 | +--rw t2? milliseconds
 +--rw traffic-characteristics
 | +--rw direction? enumeration
 | +--rw periodicity? boolean
 | +--rw period? milliseconds
 | +--rw burst-size? uint32
 | +--rw maximum-flow-bitrate? thoughput
 +--rw tft
 +--rw service-lifetime
 +--rw service-duration
 | +--rw t1? milliseconds
 | +--rw t2? milliseconds
 +--rw recurrent-service-interval
 +--rw t1? milliseconds
 +--rw t2? milliseconds
 +--rw recurrence-interval? milliseconds

8.3.2 Topology Exposure

8.3.2.1 E2E Topology Read request

{
 "topology:" {
 "nodes": [
 {
 "id": "123e4567",
 "type": "3GPP"
 }
],
 "links": [
 {
 "id": "373938c6",
 "source-termination-point": "5790f992",
 "destination-termination-point": "7aba13c2",
 "minimum-latency": "10",
 "maximum-latency": "100",
 "available-capacity": "150",
 "reliability": "99.99"
 }
]
}

