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ABSTRACT:  Terminal alkynes display high reactivity towards Ru-carbene metathesis catalysts. However, the formation of a less reactive bulky 
carbene hinders their homopolymerization. Simultaneously, the higher reactivity of alkynes does not allow efficient cross propagation with 
sterically less hindered cycloalkene monomers resulting in inefficient copolymerization.   Nonetheless, terminal alkynes undergo rapid cross-
metathesis with vinyl ethers.   Therefore, an efficient cross propagation can be achieved with terminal alkynes and cyclic enol ether monomers. 
Here, we show that terminal alkyne derivatives can be copolymerized in an alternating fashion with 2, 3-dihydrofuran using Grubbs’ 3rd gener-
ation catalyst (G3).  A linear relationship of the number average molecular weight vs. monomer to initiator ratio and block copolymer synthesis 
confirmed a controlled copolymerization. The SEC and NMR analyses of the synthesized copolymers confirmed the excellent control over 
molecular weight and exclusive alternating nature of the copolymer.  The regioselective chain transfer of G3 to vinyl ether and the high reactivity 
of Fischer type Ru carbene towards terminal alkynes was also exploited for polymer conjugation.  Finally, the presence of an acid labile backbone 
functionality in the synthesized alternating copolymers allowed complete degradation of the copolymer within a short time interval which was 
confirmed by SEC analyses.

Ring opening metathesis polymerization (ROMP) offers a wide va-
riety of functional monomers for microstructure controlled complex 
polymer design.1,2,3,4,5 Moreover, the mild reaction conditions and 
vast functional group tolerance of the metathesis polymerizations 
also allow the incorporation of labile/degradable functionalities into 
the backbone for tunable degradability.6,7,8,9,10,11 Therefore, ROMP 
became a common choice of polymerization among polymer chem-
ists. 
The release of ring strain is the driving force for ROMP polymeriza-
tion. As such, highly strained cyclic monomers like norbornene, cy-
clopropene, cyclobutene, and cyclooctene derivatives are logical 
choices for metathesis polymerizations.12 However, the sequence 
controlled incorporation of such strained monomers throughout the 
polymerization is challenging. Nonetheless, progress has been made 
regarding the sequential arrangements of such strained monomers 
during polymerization mainly in an alternating fashion.13,14,15,16,17,18 

The groups of Sampson, Xia, and our group developed alternating 
ROMP(AROMP) strategies based on the single molecular addition 
of highly strained cyclobutene, cyclopropene and oxanorbornene 
derivatives.19,20,21,22,23,24,25,26 
Strategies have also been developed for sequence controlled ROMP 
polymerization of low-strained monomers.27,28,29,30,31,32,33,34,35,36 
Amongst these, tandem ring-opening ring-closing enyne metathesis 
has been studied most.37,38,39,40,41,42 Even though, the alkyne under-
goes spontaneous metathesis polymerization via an intramolecular 

tandem/cascade process, the intermolecular homo or copolymeri-
zation of such alkyne derivatives with Ru-based metathesis catalysts 
is still out of reach.  

 
Figure 1. Grubbs’ 3rd generation catalyst (G3) (left). Alpha addition of 
Ruthenium catalyst to terminal alkyne (center). Propiolate derivatives 
(right). 

The ruthenium based Grubbs’ type initiators undergo rapid alpha 
addition with 1-alkyne derivates resulting in a sterically hindered 1,1 
disubstituted ruthenium carbene with diminished metathesis reac-
tivity (Fig 1).43,44,45,46 Moreover, the increasing double bond conjuga-
tion in the backbone further reduces the metathesis reactivity of Ru 
carbene complexes.47,48 Consequently, homopolymerization of 1-al-
kynes becomes increasingly difficult. However, such extended con-
jugations can be avoided if 
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Scheme 1. General representation of alkyne copolymerization  

 

alkynes can be copolymerized in an alternating fashion with another 
comonomer. Simultaneously, an alternating copolymerization of al-
kynes with sterically less hindered comonomers can overcome the 
steric restrains of the 1,1-disubstituted ruthenium carbene complex 
formed during metathesis polymerization of alkynes.19,20,21 Unfortu-
nately, due to the higher reactivity of 1-alkynes towards Ru carbene 
complexes and the formation of a less reactive bulky carbene com-
plex, comonomers that can undergo cross propagation with 1-al-
kynes are scarce. 
The Grubbs’ benzylidene and alkylidene complexes undergo rapid 
regioselective cross metathesis with electron rich vinyl ether deriva-
tives.49,50,51,52,53 The resulting electron rich Fischer-type Ru carbene 
complexes are thermodynamically more stable and show much 
lower metathesis reactivity than Schrock-type Ru alkylidene com-
plexes.49 However, the less reactive Fischer-type Ru complexes are 
still capable of initiating the metathesis polymerization of highly re-
active monomers.54,55,56,57,58,59 In 2003, the Diver group reported that 
1-alkynes undergo rapid intermolecular cross metathesis with vinyl 
ethers in the presence of Ru carbene complexes in excellent yield.60,61 
This indicates that an efficient chain transfer is happening from the 
propagating alkyne to the vinyl ether. As such, cyclic enol ethers 
could be efficient comonomers for the copolymerization of 1-al-
kynes. Even though terminal alkynes were reported to react in a cross 

metathesis reaction with vinyl ethers, the copolymerization of such 
alkynes with cyclic enol ethers has not yet been reported. 
Here, we report the synthesis of a degradable alternating copolymer 
of 1-alkynes and DHF initiated with Grubbs’ 3rd generation catalyst 
(G3) (Fig 1). Furthermore, the strict regioselective reaction of G3 
with vinyl ethers and the high reactivity of Ru-Fischer carbenes to-
wards alkynes was also exploited to synthesize block copolymers 
from a vinyl ether terminated poly(ethylene glycol).Cyclic low 
strain enol ethers like DHF undergo homopolymerization in bulk or 
at high monomer concentrations.57 The homopolymerization of 
such monomers can be avoided at lower monomer concentrations 
(<0.2M). In contrast, terminal alkynes rapidly react with Grubbs' 3rd 
generation catalyst (G3) yielding a less reactive bulky Schrock type 
alkylidene complex, resulting in inefficient homopolymeriza-
tion.43,44,46 Nonetheless, the Schrock type ruthenium carbene can un-
dergo rapid exchange with the vinyl ether to form an energetically 
more stable Fischer-carbene.49 Although the ruthenium Fischer-car-
benes are less reactive, they successfully undergo cross propagation 
with a reactive substrate like a terminal alkyne.60,61  
Therefore, DHF was considered as comonomer to copolymerize 
with propiolate derivatives (Fig 1). Thereafter, 1H NMR experi-
ments were used to study control over molecular weight and micro-
structure of homopolymerization of DHF and  



 

 

Figure 2. A. Plot of number average molecular weight vs monomer to initiator ratio for the copolymerization of M1 and DHF (1:2) using G3 with a 
DHF concentration of 0.14 M. B. Plot of M1 conversion vs. time in a copolymer of M1 and DHF (1: 10) with 5 mol% G3 in THF-d8. C. SEC analysis 
for the block copolymer (PB1). D. SEC analysis for polymer conjugate PB2 initiated from PEG vinyl ether macroinitiator.  

methyl propiolate (M1). Interestingly, no significant homopolymer-
ization was observed when M1 was reacted with 3.3 mol% G3 in 
THF-d8 over 12h (see Fig S1). In a similar homopolymerization 
study of DHF (0.27M) with 3.3 mol% G3 in THF-d8, less than 20% 
DHF consumption was observed over 24h. However, a SEC analysis 
of the reaction mixture did not show any oligomer/polymer for-
mation. 
Next, to test our hypothesis that 1-alkynes can be copolymerized 
with DHF, another 1H NMR copolymerization experiment was per-
formed with M1 (1eq), DHF (10eq), and 5 mol% G3 in THF-d8 
(Scheme 1A, see Fig S2). The DHF concentration was kept below 
the equilibrium concentration of homopolymerization (<0.27M) to 
avoid homopolymerization of DHF. Surprisingly, a fast consump-
tion of each monomer was observed during the initial course of the 
reaction and within 4 hours, 80% of M1 conversion was achieved 
(Fig 2B, Fig S2). A SEC measurement of the precipitated polymer 
(P1; Mn(theoret.)= 3.1 kDa.; Mn(SEC THF)= 4 kDa.; Ð= 1.5) indicated a 
good control over molecular weight. Next, the alternating character 
of the synthesized polymer P1 was analyzed by 1H NMR spectros-
copy. A comparison of the 1H NMR spectrum of P1 and polyDHF 
shows a characteristic shift in olefinic signals representing the alter-
nating diad (see Fig 3, Fig S4). However, a significant extent of DHF 
homopolymeric signal was also detected (60 % alternating diad, Fig 
S19).  
To overcome the oligomerizations of DHF, a similar 1H NMR co-
polymerization experiment of M1 and DHF was performed with 
lower DHF equivalents ( M1:DHF=1:2) with 5 mol% G3 (see table 
S1). Surprisingly, only 80% M1 consumption was observed within 4 
hours and remained unchanged even at extended reaction time. 1H 
NMR analysis of the synthesized copolymer (P2; Mn= 6.5 kDa.; Ð= 

1.6) showed a significant improvement in alternating character. 
However, a SEC measurement of the crude reaction mixture showed 
a poor control over molecular weight and dispersity (See Table S1). 
We believe that at lower DHF concentration M1 undergoes 
homopropagation, resulting in catalyst deactivation and hence poor 
control over molecular weight. Next, M1 (1eq) and DHF (2eq) 
were copolymerized with 5 mol% G3 in THF-d8 at 0.14M DHF con-
centration and followed by 1H NMR spectroscopy. Interestingly, 
over 90% monomer conversion was achieved within 4.5 hours 
(Scheme 1A, see Fig S3). Simultaneously, a SEC measurement of 
the crude reaction mixture indicated good control over molecular 
weight with narrow dispersity (see Table S2). 1H NMR analysis of 
the synthesized copolymer (P3; Mn= 3.2 kDa.; Ð= 1.2) confirmed 
the exclusive alternating nature of the copolymer (Fig 3). We there-
fore performed a set of copolymerizations using M1 and DHF with 
varying monomer to G3 ratios in THF (see table S1). A linear rela-
tionship between the number average molecular weight and mono-
mer to initiator ratio with narrow dispersities was obtained (Fig 2A). 
The excellent molecular weight control (DP up to 50)  



 

Figure 3. Stacked 1H NMR comparison of polyDHF, P1 (1:10 M1 and 
DHF), and P3 (1:2 M1 and DHF). The highlighted characteristic sig-
nals of polyDHF are compared with synthesized copolymer. 

and exclusive alternating character of the synthesized copolymer 
were confirmed by SEC and 1H NMR analyses (see SI). 
Next, to test the versatility of the method, monomers M2, M3 and 
M4 were synthesized (see SI). Thereafter, M2 was copolymerized 
with DHF in the presence of 10 mol% and 2.5 mol% of G3 in THF 
at room temperature to obtain P8 and P9 respectively (see table S2). 
The SEC analyses of P8 (Mn= 1.6 kDa.; Ð= 1.2) and P9 (Mn= 7.1 
kDa.; Ð= 1.3) confirmed an excellent control over molecular weight, 
while 1H NMR analyses confirmed a highly alternating nature of the 
copolymer (see Fig S23). Then, monomer M3 was copolymerized 
with DHF in the presence of 3.3 mol% G3 to obtain P10 (Mn= 6 
kDa.; Ð= 1.4). Surprisingly, a copolymerization of monomer M4 
with DHF with 2 mol% G3 shows much slower propagation rates 
than other monomers (M1-M3) tested here. We believe the higher 
steric bulk of M4 caused the slower propagation. Nonetheless, SEC 
and NMR analysis of the synthesized copolymer P11 (Mn= 9.4 
kDa.; Ð= 1.4) confirmed a good control over molecular weight and 
high degree of alternation (see Fig S25). 
Thereafter, the highly reactive phenylacetylene (M5) was also tested 
under optimized copolymerization conditions. Unfortunately, no 
polymer was obtained when phenylacetylene was copolymerized 
with 2 eq of DHF (0.14M) in THF. As mentioned earlier, we hy-
pothesized that due to the higher reactivity of phenylacetylene cross 
propagation at lower DHF concentration was significantly reduced, 
resulting eventually in catalyst deactivation. However, such limita-
tions can be overcome by increasing the DHF concentration. Inter-
estingly, a quantitative conversion was observed when phenylacety-
lene (M5) was copolymerized with a ten-fold excess of DHF to ob-
tain P12 (Mn= 3 kDa.; Ð= 1.24, see Table S3). The copolymer P13 
(Mn= 11 kDa.; Ð= 1.52) was also synthesized with 2 mol% of G3 in 
THF with a 1:10 phenylacetylene to DHF ratio. 1H NMR analyses 
of the synthesized copolymers confirmed moderate degree of alter-
nation (60% alternating diad), whereas SEC analysis confirmed con-
trol over molecular weight.  
The possibility to form block copolymers is an important feature for 
any living polymerization. In our first experiment we investigated 
whether the monomer system M2/DHF could be used to extend a 
well-investigated polymer block prepared by ROMP. Therefore, 
exo-N-methylnorborneneimide (MNI) was polymerized with 8.3 
mol% G3 in THF for 15 min (Scheme 1B). Then, a mixture of M2 
and DHF was added to the polymerization solution and the progress 
of the reaction was followed by 1H NMR spectroscopy. As expected, 
SEC measurements of the polymer before (Mn(1st block)= 1.7 kDa.; Ð= 
1.2) the addition of M2/DHF and after complete consumption of 
M2 showed a distinct shift of the SEC trace, indicating the formation 

of a block copolymer (PB1; Mn(both blocks)= 5 kDa.; Ð= 1.4) with ex-
cellent efficiency (Fig 2C). However, a minor amount of first block 
signal was also observed in the SEC of the final diblock copolymer.  
While this experiment did not prove the living character of the 
M2/DHF system, it confirmed its controlled behavior even when 
macro-initiated from another polymer block. 
NMR analysis of the synthesized copolymer also confirmed the for-
mation of the block copolymer PB1 (see Fig S28). 
Next, a vinyl ether alkyne copolymerization was exploited for poly-
mer conjugation. An efficient regioselective metathesis catalyst 
transfer to a polymer chain end is very challenging; especially, using 
Grubbs’ 3rd generation (G3) catalyst.62,63 However, Grubbs’ catalysts 
undergo regioselective chain transfer with vinyl ethers with excellent 
efficiency. Therefore, Ru carbenes can be selectively converted to 
Fischer carbenes by reacting with a vinyl ether terminated polymer 
chain.64 Thus, we believed that a chain extension could be achieved 
from a Fischer carbene macro initiator.  To test the  

Figure 4. SEC analyses for degradation of P10 under acidic condition. 

hypothesis, a vinyl ether end-functional PEG polymer was synthe-
sized (Mn(macroinitiator)= 1.7 kDa.; Ð= 1.1). Thereafter, the vinyl ether 
terminated PEG was treated with an equivalent amount of G3 
(Scheme 1C). An immediate measurement of a 1H NMR spectrum 
showed a complete shift of the ruthenium benzylidene to the Fischer 
carbene complex (δ 13.53 ppm; see Fig S8). After that, a mixture of 
M2 and DHF was added to the reaction mixture, and the progress of 
the reaction was followed by 1H NMR spectroscopy. A SEC analysis 
after completion of the copolymerization showed a significant shift 
in SEC trace compared to the PEG macroinitiator (Fig 2D) and con-
firmed the formation of a block copolymer PB2 (Mn(both blocks= 3.3 
kDa.; Ð= 1.3). Very few alternative methods are currently available 
to macro-initiate a metathesis polymerization from a polymeric end-
group.65  
While macro-initiated block copolymer formation works very well 
for our propriolate/DHF system, one major limitation observed in 
our polymerization system is the synthesis of block copolymers by 
sequential addition of different propriolates (for instance, M1, DHF 
followed by M2, DHF). The underlying reason could be the decom-
position of propagating Ru complex when monomer concentration 
is low during the later stage of the polymerization as reported for al-
kyne polymerizations before.66 
To demonstrate this peculiar non-living behavior we compared the 
controlled polymerization of M1 and DHF with a target DP of 40 
(all monomer added in one portion, see P7, Table S2)  with the se-
quential addition of M1/DHF in two portions (each corresponding 
to a DP of 20). While a controlled polymerization was observed in 
the first experiment, the second resulted in an uncontrolled 
polymerization of the second block (see Fig S9). This limitation of 
the polymerization procedure is currently under investigation. 



 

A microstructure controlled functional polymer with tunable degra-
dability would fulfill the current demand of material chemists.67,68 
The copolymer synthesized from alkyne and DHF contains a highly 
acid labile backbone functionality. Hence, a complete degradation 
can be achieved under acidic conditions. To test the chemical degra-
dability of the synthesized copolymer, a solution of polymer P10 
(Mn= 6 kDa.; Ð= 1.4) in DCM was treated with a 1:1 mixture of 
water and trifluoroacetic acid (see SI). The progress of the degrada-
tion was followed by SEC (Fig 4). Interestingly, a drastic reduction 
in molecular weight was observed within 5 min, and a complete deg-
radation was achieved within 1 hour. 
In conclusion, we have shown that 1-alkynes can be copolymerized 
with cyclic enol ethers in an alternating manner with a Grubbs’ type 
initiator. An excellent degree of alternation can be achieved when 
propiolate derivates are copolymerized with DHF at low concentra-
tions. A linear relationship between number average molecular 
weight and monomer to initiator ratio as well as successful macro-
initiations to yield block copolymers confirmed the controlled na-
ture of the polymerizations. Simultaneously, a new protocol for me-
tathesis polymer conjugation was also established for the first time 
through regioselective chain transfer of G3 to polymeric vinyl ether 
end groups. The higher reactivity of the Fischer carbene towards al-
kynes allows the synthesis of block copolymers from a macro initia-
tor. Finally, the availability of acid labile functionality in the alternat-
ing copolymer backbone allows complete degradation of the func-
tional polymer under acidic conditions. We believe the understand-
ing of the reactivity of alkynes and the possibility of alternating co-
polymer synthesis provides a new pool of functional monomers in 
the toolbox of metathesis polymerization.  
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