
688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 1 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Symbiosis of smart objects across IoT
environments

688156 - symbIoTe - H2020-ICT-2015

symbIoTe Domain-Specific Enablers and Tools

The symbIoTe Consortium

Intracom SA Telecom Solutions, ICOM, Greece
Sveučiliste u Zagrebu Fakultet elektrotehnike i računarstva, UNIZG-FER, Croatia
AIT Austrian Institute of Technology GmbH, AIT, Austria
NextworksSrl, NXW, Italy
Consorzio Nazionale Interuniversitario per le Telecomunicazioni, CNIT, Italy
ATOS Spain SA, ATOS, Spain
University of Vienna, Faculty of Computer Science, UNIVIE, Austria
UnidataS.p.A., UNIDATA, Italy
Sensing & Control System S.L., S&C, Spain
Fraunhofer IOSB, IOSB, Germany
Ubiwhere, Lda, UW, Portugal
VIPnet, d.o.o, VIP, Croatia
Instytut Chemii Bioorganicznej Polskiej Akademii Nauk, PSNC, Poland
NA.VI.GO. SCARL, NAVIGO, Italy

© Copyright 2017, the Members of the symbIoTe Consortium

For more information on this document or the symbIoTe project, please contact:
Sergios Soursos, INTRACOM TELECOM, souse@intracom-telecom.com

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 2 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Document Control

Title: Report on symbIoTe Domain-Specific Enablers and Tools

Type: Public

Editor(s): Tomasz Rajtar

E-mail: tomasz.rajtar@man.poznan.pl

Author(s): Mario Kušek (UniZG-FER), João Garcia (UW), Gerhard Duennebeil (AIT),
Matteo Pardi (NXW), Petar Krivić (UniZG-FER Luca De Santis (NAVIGO), Raquel Ventura
Miravet (S&C), Szymon Mueller (PSNC), Tomasz Rajtar (PSNC), Vasilis Glykantzis
(ICOM), Zvonimir Zelenika (VIP), Marcin Plociennik (PSNC), Ivana Podnar Žarko (UniZG-
FER)

Doc ID: D2.6-v1.0

Amendment History

Version Date Author Description/Comments

v0.1 7/10/2017 Mario Kušek (UniZG-FER) ToC

v0.2 7/11/2017 Mario Kušek (UniZG-FER) Added section responsibilities

v0.2.1 7/18/17 Petar Krivić, Mario Kušek (UniZG-FER) Updated sections 3 and 4.1

v0.3 7/20/2017 Matteo Pardi (NXW), Luca De Santis
(NAVIGO), Raquel Ventura Miravet
(S&C),

Integration of effort from NXW, S&C, NAVIGO and UNZIG-FER

v0.3.1 7/21/2017 Mario Kušek (UniZG-FER) Comments on contributions

v0.4 8/30/2017 Petar Krivić, Mario Kušek (UniZG-FER),
Matteo Pardi (NXW), Luca De Santis
(NAVIGO),

Integration of effort from UniZG-FER, NAVIGO, NXW and ICOM
comments (Vasilis) added after v0.3 by Tomasz Rajtar.

v0.4.1 8/31/2017 Mario Kušek (UniZG-FER) Cleaning up comments

v0.5 9/01/2017 Tomasz Rajtar (PSNC) Interfaces tables and general info tables for components added.

v0.6 9/11/2017 Matteo Pardi (NXW), Petar Krivić, Mario
Kušek (UniZG-FER), Luca De Santis
(NAVIGO), Zvonimir Zelenika (VIP)

Updated diagrams and procedures in section 5.3.1
Defining interfaces and component data
Changes in 5.2
5.4 Section (enabler for indoor location)
Executive summary, introduction and conclusion

v0.6.1 9/11/2017 Mario Kušek (UniZG-FER), Tomasz
Rajtar (PSNC)

Minor updates of v0.6

v0.7 9/13/2017 Gerhard Duennebeil (AIT), Raquel
Ventura Miravet (S&C), Luca De Santis
(NAVIGO), Szymon Mueller (PSNC),
Vasilis Glykantzis (ICOM), João Garcia
(UW)

Integrated version with missing parts in sections 4 and 5 filled.

v0.8 9/26/2017 Marcin Plociennik (PSNC), Tomasz
Rajtar (PSNC)

Internal review, editorial integration

v0.8.1 10/10/2017 Zvonimir Zelenika (VIP), Mario Kušek
(UniZG-FER)

Changes according to internal review

v0.8.2 11/03/2017 Ivana Podnar Žarko Final quality review with fixes and comments in all sections

v0.8.3 11/14/2017 Mario Kušek Fixing comments from review.

V1.0 11/14/2017 Sergios Soursos Final version

Legal Notices
The information in this document is subject to change without notice.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 3 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

The Members of the symbIoTe Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The
Members of the symbIoTe Consortium shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance, or use of this
material.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 4 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Table of Contents

1 Executive Summary 7

2 Introduction 9

2.1 Purpose of this document 9

2.2 Relation to other deliverables 9

2.3 Document structure 9

3 Generic Architecture for symbIoTe Enablers 10

3.1 Enabler-specific Interface 11

3.2 Enablers’ Components 11

3.2.1 Registration Handler 12

3.2.2 Authentication and Authorization Manager 15

3.2.3 Resource Access Proxy 17

3.2.4 Monitoring 20

3.2.5 Resource Manager 22

3.2.6 Enabler Logic 25

3.2.7 Platform Proxy 28

3.3 Sequence diagrams 30

3.3.1 Enabler registration 31

3.3.2 Enabler resource registration 31

3.3.3 Enabler resource unregistration 34

3.3.4 Enabler resource update 37

3.3.5 Enabler resource availability reporting 39

3.3.6 Scheduled monitoring of Enabler resources 41

3.3.7 Start data acquisition 42

3.3.8 Search 43

3.3.9 Stop data acquisition 45

3.3.10 Data acquisition 46

3.3.11 Unresponding resource during data acquisition 47

3.3.12 Replacement of a malfunctioning resource 48

3.3.13 Access to Enabler resource using Enabler RAP 49

3.3.14 Access to Enabler resource using its Domain-specific Interface 51

3.3.15 Reporting Enabler resource usage 53

4 Components basic information tables 56

4.1 Authentication and Authorization Manager 56

4.2 Enabler Logic 56

4.3 Monitoring 56

4.4 Platform Proxy 57

4.5 Registration Handler 57

4.6 Resource Access Proxy 57

4.7 Resource Manager 58

5 Design of symbIoTe Use Case Enablers 59

5.1 Smart Mobility & Ecological Urban Routing Use Case 59

5.1.1 SMEUR workflows and Enabler Architecture 59

5.1.2 Data Acquisition 60

5.1.3 Data Interpolation 61

5.1.4 Calculation of Green Route 65

5.1.5 Point of Interest Search 71

5.2 Smart Yachting – Use Case 72

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 5 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

5.2.1 Smart Mooring 73

5.2.2 Automated Supply Chain 78

5.3 Smart Residence – Use Case 80

5.3.1 Location based resource filtering 80

5.3.2 Smart healthy indoor air 83

5.4 Smart Stadium – Use Case 84

5.4.1 Network-based Location Enabler 85

5.4.2 Source platforms for an Enabler 85

6 Implementation of Smart Mobility & Ecological Urban Enabler 90

6.1 Domain-Specific Interface 90

6.2 Enabler Logic – Green Route Controller 90

6.3 Enabler Logic – Point of Interest Search 91

6.4 Enabler Logic-Interpolator 92

6.5 Implementation Summary 93

7 Conclusion 94

8 References 95

9 Glossary 96

10 Abbreviations 97

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 6 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

(This page is left blank intentionally.)

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 7 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

1 Executive Summary

The aim of Deliverable 2.6, entitled “symbIoTe Domain-Specific Enablers and Tools”, is to
document the final set of components and provided features implementing the symbIoTe
Enablers. It also documents the architecture and design of Enablers for specific use cases.

Enablers are envisioned as domain-specific back-end services which are placed within the
symbIoTe Application Domain (APP) to offer services to end-user applications while
utilizing IoT resources provided by platforms. Since symbIoTe applications access
resources directly on symbIoTe-enabled L1 platform instances, applications need to
interact with multiple platforms and perform value-added services, e.g., data processing
and aggregation on the application side. This may not be favorable for some domains and
use cases where performed operations are compute-intensive, or dynamic and complex so
that they require interactions with many resources managed by different platforms. Thus,
Enablers are designed as value-added services providing domain-specific functionality to
facilitate the development of domain-specific applications as well as cross-platform and
cross-domain applications. They conceal the complexity of the symbIoTe ecosystem from
applications and can be used as a single point of access to this ecosystem.

An Enabler takes on two major roles:

• Platform role, since it behaves as an IoT platform offering value-added IoT-based
resources (services), and

• Application role, since it acts as any other application to access resources offered
by symbIoTe-enabled L1 platforms.

In the platform role, an Enabler registers its value-added resources (services) with the
symbIoTe Core Services, integrates all symbIoTe Cloud components for L1 compliant
platforms, and serves application requests over its Interworking Interface and domain-
specific interface. In the application role, the Enabler acts as any symbIoTe application
which searches for resources using the Core Services and accesses resources offered by
other L1 platforms. Thus, each Enabler instance integrates generic symbIoTe-defined
components which are independent of its domain-specific features. We report the design
of such generic components in this deliverable: these are four L1 Cloud components
(Registration Handler, Resource Access Proxy, Authentication and Authorization Manager,
and Monitoring) and three additional Enabler-specific components (Enabler Logic,
Resource Manager, and Platform Proxy)

This document reports the final design of generic software components for building
Enablers and includes component descriptions, a complete list of component features, as
well as a description of their interactions and communication interfaces. This document is
an accompanying report documenting the software produced in task T2.3 which is
published as open source in the symbIoTe GitHub repository [5].

Within the symbIoTe project, Enablers are designed for domains covered by symbIoTe
use cases to facilitate the development of use case specific applications. In particular, four
such enablers are defined: Smart Mobility and Ecological Urban Routing Enabler, Smart
Yachting Enabler, Smart Residence Enabler and Smart Stadium Enabler. We report the
design of all listed Enablers in this document with focus on their domain-specific features.
Finally, to showcase a complete Enabler solution, we present the implementation details of
the Smart Mobility and Ecological Urban Routing Enabler. It integrates an Interpolator for
air quality monitoring which uses air quality readings acquired from different symbIoTe-

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 8 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

enabled platforms within the same city, performs data interpolation, and provides output
results in an as-a-Service manner to applications. It also includes two additional services:
Green Route Calculator to offer less polluted routes in the city to cyclists and pedestrians,
and Point of Interest search facility.

The symbIoTe GitHub repository [5] contains a complete source code of the
aforementioned Enabler components, configuration files and guidelines on how to
implement a new symbIoTe Enabler (https://github.com/symbiote-
h2020/SymbioteEnabler). The source code of the Smart Mobility and Ecological Urban
Routing Enabler is available at https://github.com/symbiote-h2020/EnablerSMEUR).

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 9 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

2 Introduction

2.1 Purpose of this document

The purpose of this deliverable is to explain the design of symbIoTe domain-specific
Enablers and to provide guidelines on how to implement a new Enabler for a different
domain. This deliverable includes the specification of communication between
components, basic information related to developed components: further information is
provided on GitHub with instructions on how to implement a Domain-Specific Enabler for
other purposes. The design and interaction between components in four specific use
cases is provided to be used as an example for designing and implementing future
Enablers in different domains.

2.2 Relation to other deliverables

The system Requirements relevant to Enablers are defined in D1.2 “Initial Report on
System Requirements and Architecture” [3] and D1.4 “Final Report on System
Requirements and Architecture” [4]. The generic architecture for symbIoTe Enablers is
built upon the symbIoTe Core Services and L1 Cloud components presented in D1.4 since
symbIoTe Enablers reuse components from the symbIoTe L1 solution presented in D2.2
“symbIoTe Virtual IoT Environment Implementation” [9] and D2.5 “Final symbIoTe Virtual
IoT Environment Implementation” [7]. The proposed design and implementation of
Domain-Specific Enablers is within the domains framed by the symbIoTe use cases which
are reported in D1.3 “Final Specification of Use Cases and Initial Report on Business
Models” [10]. The technologies used for the implementation of symbIoTe system are
specified in D5.1: “Implementation Framework” [11]. This deliverable presents the final
specification related to symbIoTe Domain-Specific Enablers which is a continuation of
work reported in D2.3 “Report on symbIoTe Domain-Specific Enablers and Tools” [6].

2.3 Document structure

Section 3 describes the final generic Enabler architecture with all components and relevant
features as well as interactions between components. Section 4 provides a detailed
description of each generic Enabler component including documentation and implemented
features. The design of Domain-Specific Enablers specific for symbIoTe use cases is
presented in Section 5 while the implementation details of Smart Mobility and Ecological
Urban Routing Enabler are provided in Section 6.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 10 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

3 Generic Architecture for symbIoTe Enablers

The main purpose of Enablers is to provide value-added features based on IoT resources
needed in specific domains. Examples of such functionalities are data aggregation based
on sensor readings stemming from various IoT platforms, or continuous processing of
such data, etc. However, each Domain-Specific Enabler has generic functionalities that
enable its interaction with other symbIoTe-enabled platforms and components within the
symbIoTe ecosystem. This generic architecture with required components is shown in
Figure 1.

Figure 1. Enablers’ Generic Architecture

Enablers’ Generic Architecture is composed of two types of components: components in
common with the Cloud Domain (marked in orange), and Enabler-specific components
(marked in green). Each Enabler handles two types of resources since it acts both as a
symbIoTe application and an IoT platform. Enabler Resources are resources that the
Enabler offers to applications (in its role of a “virtual” IoT platform), and Underlying
Resources are defined as resources that the Enabler uses from the underlying symbIoTe-
complaint IoT platforms. Enabler Resources are created based on the Underlying
Resources.

Components in common with the symbIoTe Cloud Domain are generic components for
each Enabler. These are: Resource Access Proxy (RAP), Authentication & Authorization
(AAM), Registration Handler (RH), and Monitoring. RAP serves as an access point for
applications to use resources exposed by the Enabler. AAM is responsible for
authenticating and authorizing users, applications and Enabler components. RH registers
resources exposed by the Enabler to symbIoTe Core, while Monitoring tracks the
availability and usage of the exposed resources.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 11 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Enabler-specific components implement domain-specific functionalities. These
components are Resource Manager, Platform Proxy and Enabler Logic. Developers
wanting to facilitate the usage of symbIoTe system for their domain-specific applications
should be able to create those components according to their requirements.

Resource Manager is responsible to find the IoT resources using the symbIoTe Core
Services which are required by an Enabler to provide its value-added services. Domain-
specific functionality of this component relates to the process of finding adequate
Underlying resources and replacing them with others when some resources become
unavailable. This is done using the symbIoTe Core Services.

Platform proxy is used to access Underlying resources exposed by IoT platforms and
found by the Resource Manager. A domain-specific functionality of this component relates
to the interaction logic with those resources, for the proxy can retrieve data from
underlying IoT every 10 seconds).

Enabler Logic is an Enabler-specific component responsible for specifying the type of
resources that will be found by the Resource Manager, accessed by the Platform Proxy
and offered to applications. It also integrates domain-specific logic, e.g., functions for
processing the retrieved data (e.g. data aggregation), statistical operations and similar.
These functionalities should be customized for each specific Enabler.

We describe Enabler architecture in more detail in the following subsections. Section 3.1
presents Enabler-specific Interface exposed to applications. The Enabler components are
described in Section 3.2. Sequence diagrams showing the interaction between these
components, as well as interaction with components from other domains, are presented in
Section 3.3.

3.1 Enabler-specific Interface

For communication with Applications, Enabler-specific Interface is specified, composed of
the RAP Interface and a Domain-Specific Interface. RAP offers the same functionality as
the component with the same name in the Cloud domain; it allows symbIoTe applications
to access the wanted Enabler resources (services) through the interface defined in D2.5
[7]. When accessing Enabler resources through RAP, the communication goes through
symbIoTe Core (as in L1 Compliance) and Interworking Interface. In that way, symbIoTe
Core is informed of the usage of Enabler resources. Domain-specific Interface provides
additional domain-specific functionalities, mainly for accessing the Enabler Logic and data
store. When using the Domain-specific Interface, communication between an application
and the Enabler is direct (it does not use the Interworking Interface). Enabler-specific
Interface is exposed to application developers so that they can use it within their
applications. Further details regarding access to Enabler features are presented in
Sequence diagrams in Sections 3.3.13 and Error! Reference source not found..

3.2 Enablers’ Components

In this subsection, we provide an overview of all developed Enabler components and
definition of component interfaces. Components in common with the symbIoTe Cloud
Domain are presented first. These are:

• Registration Handler (RH),

• Authentication and Authorization Manager (AAM),

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 12 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Resource Access Proxy (RAP),

• Monitoring, and

Afterwards, Enabler-specific components are described:

• Resource Manager,

• Enabler Logic, and

• Platform Proxy.

Security Handler is a library for accessing IoT platform resources by Platform Proxy and its
usage is shown in the diagrams in section 3.3.

3.2.1 Registration Handler

Table 1. Registration Handler overview

Component Registration Handler
Description This component provides similar functionalities to the platform-side Registration Handler

(CLD), apart from the support for IoT federations. Federations between enablers or
enablers and platforms are not considered. The component allows sharing of IoT
resources published by Enablers with other application developers by registering them at
symbIoTe Core. Furthermore, the component enables registration updates.

Provided
functionalities

• Registers resources to the symbIoTe Core using the symbIoTe Core Information
Model and Best-Practice Information Model

• Updates resource status and unregisters resources
• Registers security info
• Handles configuration of the exposed resource
• Synchronizes the information with symbIoTe Core Services

Relation to other
components

Registry (at symbIoTe Core level): To register the resources in the Registry

Security Handler (Enabler): To retrieve the necessary core tokens and communicate
securely with the symbIoTe Core

Resource Access Proxy (Enabler): To register the resource offered by the Enabler
including the access policy to access the offered resources

Enabler Logic: Initiates registration of resources (sensors, actuators or services).
Related use
cases

ALL

Related
requirements

22, 34, 39, 45

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 13 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Table 2. Registration handler interfaces

Interface Message
Type

From Msg
Consumers

Address/Queue/Exchange type Payload
1
 Description

1 Resource
registration

RabbitMQ RH INTERWOKING
INTERFACE

Exchange: symbIoTe.InterworkingInterface
routing key:
symbIoTe.InterworkingInterface.registrationHandler.register_resourc
es
Routing type: RPC

Resource information Event requesting
registration of new
resource

2 Resource
unregistration

RabbitMQ RH INTERWOKING
INTERFACE

Exchange: symbIoTe.InterworkingInterface
routing
key:symbIoTe.InterworkingInterface.registrationHandler.unregister_r
esources
Routing type: RPC

Resource id Event requesting
unregistration of existing
resource

3 Resource
update

RabbitMQ RH INTERWOKING
INTERFACE

Exchange: symbIoTe.InterworkingInterface
routing key:
symbIoTe.InterworkingInterface.registrationHandler.update_resourc
es
Routing type: RPC

Resource information Event requesting update
of existing resource

4 Resource
registration

RabbitMQ RH RAP Exchange: symbIoTe.platformExchange
Routing key: symbIoTe.platformexchange.rh.rap.register_resources
Routing type: routing-direct

Resource information Event requesting
registration of new
resource

5 Resource
unregistration

RabbitMQ RH RAP Exchange: symbIoTe.platformExchange
Routing key:
symbIoTe.platformexchange.rh.rap.unregister_resources
Routing type: routing-direct

Resource id Event requesting
unregistration of existing
resource

6 Resource
update

RabbitMQ RH RAP Exchange: symbIoTe.platformExchange
Routing key: symbIoTe.platformexchange.rh.rap.update_resources
Routing type: routing-direct

Resource information Event requesting update
of existing resource

7 Resource
registration

RabbitMQ RH MONITORING Exchange: symbIoTe.platformExchange
Routing key:
symbIoTe.platformexchange.rh.monitor.register_resources
Routing type: routing-direct

Resource information Event requesting
registration of new
resource

8 Resource
unregistration

RabbitMQ RH MONITORING Exchange: symbIoTe.platformExchange
Routing key:

Resource id Event requesting
unregistration of existing

1 Payloads descriptions are available in Appendix, chapter Error! Reference source not found.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 14 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

symbIoTe.platformexchange.rh.monitor.unregister_resources
Routing type: routing-direct

resource

9 Resource
update

RabbitMQ RH MONITORING Exchange: symbIoTe.platformExchange
Routing key:
symbIoTe.platformexchange.rh.monitor.update_resources
Routing key: routing-direct

Resource information Event requesting update
of existing resource

10 Resources
Information

REST Platform
Owner

RH GET /resources None Get the list of resources
which have been
registered to the Core

11 Resources
Information

REST Platform
Owner

RH GET /resource/{internalResourceId} None Get information of a
particular resource given
its platform’s internal ID

12 Resource
registration

REST Platform
Owner

RH POST /resource Resource information Registers a resource in
the core

13 Resource
registration

REST Platform
Owner

RH POST /resources List of resources
information

Register a list of resources
in the core

14 Resource
update

REST Platform
Owner

RH PUT /resource Resource information Updates the information
about a resource in the
core

15 Resource
update

REST Platform
Owner

RH PUT /resources List of resources
sinformation

Updates the information of
several resources in the
core

16 Resource
unregistration

REST Platform
Owner

RH DELETE /resource/{internalResourceId} None Unregister a resource on
the core

17 Resource
unregistration

REST Platform
Owner

RH DELETE /resources None Unregister a list of
resources on the core

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 15 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

3.2.2 Authentication and Authorization Manager

Table 3. Authentication and Authorization Manager overview

Component Authentication and Authorization Manager
Description This component provides similar functionalities as the platform-side Authentication and

Authorization Manager component located in CLD.
Provided
functionalities

• Authenticates native applications registered in the Enabler's space, and
provides home tokens containing attributes in the Enabler's space

• Enables sign out functionality for applications registered in the Enabler's space

• Checks any asynchronous revocation of home tokens when polled by external
AAMs, by managing a "Token Revocation List"

• Checks the validity of foreign tokens or core tokens provided by applications
that are not natively registered in the Enabler's space

• Performs the "Attributes Mapping Function" for applications that are not
natively registered in the Enabler's space and would like to access resources in
the Enabler's space

• Generates foreign tokens for applications that are not natively registered in the
Enabler's space

Relation to other
components

Security Handler (Enabler): To check home token revocation in Enabler's components
(e.g., Registration Handler, Resource Access Proxy) and to authenticate applications
registered in the Enabler's space

Core Authentication & Authorization Manager (APP): To check home token revocation
in Enabler's components (e.g., Registration Handler, Resource Access Proxy)

Platform Authentication & Authorization Manager (CLD): To check home token
revocation in Enabler's components (e.g., Registration Handler, Resource Access
Proxy)

Related use cases ALL
Related
requirements

35, 37

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 16 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Table 4. Authentication and Authorization Manager interfaces

Operation From Type Request Response

Get available AAMs REST client GET empty ResponseEntity<Set<AAM>> with code HTTP:200 on ok and HTTP:500 on
error

Get Component certificate REST client GET empty CA certificate in PEM String format
Manage platform Administration AMQP Platform Management Request Platform Management Response

get owned platforms instances’
details

Administration AMQP Platform Owner’s Token String OwnedPlatformDetails

Manage user (application /
platform owner)

Administration AMQP User Management Request User Management Response

Get client certificate REST client POST ClientCertificateRequest:

- username
- password
- client identifier
- Base64 encoded String with certificate signing request

Success:
Base64 encoded String with PEM certificate
Error:
error status

Get Home Token Administration AMQP Signed LoginRequest token String issued for that client (user/platform owner client)
Get Home Token REST client POST Signed LoginRequest Headers with X-Auth-token containing token String for that client
Get Roamed / federated /
foreign Token

REST client POST Headers with:
X-Auth-token containing HOME token String for that client;
(opt) X-Auth-Cert containing Base64 encoded PEM Certificate String
matching SPK from token

Headers with X-Auth-token containing FOREIGN/ROAMED/FEDERATED
token String for that client

Get Guest Token REST client GET empty Headers with X-Auth-token containing GUEST token String
validation symbIoTe

components
AMQP JWS token String

(opt) Base64 encoded PEM Certificate String matching SPK from
token

ValidationStatus

validation REST client POST Headers with:
X-Auth-token containing HOME token String for that client;
(opt) X-Auth-Cert containing Base64 encoded PEM Certificate String
matching SPK from token

ValidationStatus

Revoke token REST client POST X-Auth-token containing HOME token String for that client,
Username,
Password

{"status": <success/failure>}

Revoke certificate REST client POST Username,
Password,
client_id

{"status": <success/failure>}

Revoke certificate Administration AMQP AAM admin credentials,
Base64 encoded PEM Certificate String issued by this AAM

{"status": <success/failure>}

Released attributes
provisioning

Administration AMQP WIP {"status": <success/failure>}

Attributes mapping
provisioning

Administration AMQP WIP {"status": <success/failure>}

 D2.6 – Domain-Specific Enablers and Tools
Public

overview

Resource Access Proxy
This component provides functionalities similar to those offered by the platform-side Resource Access Proxy component (CLD) developed for L1. The
component acts as a mediator between Enabler Logic and the application. The presence of this component is necessary to make the Enabler

compliant, by allowing the applications to access the resources offered by Enablers in the same way as those offered by L1 IoT Platforms.
resource as a service exposed by the Enabler

Registers when an application starts or stops using Enabler resources

enabled Application: It accesses Resource Access Proxy to access/use Enabler resources

Registration Handler (Enabler): Informs Resource Access Proxy of the registered resources that it should provide access to

Security Handler (Enabler): Verifies tokens

Monitoring (Enabler): Resource Access Proxy notifies Monitoring when applications start or stop using resources

Core Resource Monitor: Contacts Resource Access Proxy to check the availability/status of Enabler resources

Monitor: Resource Access Proxy emits resource usage and notifies the Core Access Resource Monitor when a resource is

There could be more the one Enabler Logic in one Enabler. If one Enabler Logic needs data from another one, then it sends application
requests to the appropriate Enabler Logic which implements a RAP plugin.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 18 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Table 6. Resource Access Proxy interfaces

Interface Name Message
Type

From Msg
Consumers

Address/Queue Payload
2
 Description

1 Resource
registration

symbIoTe.rap.registrationHandler.register_resources RabbitMQ RH RAP Exchange:
symbIoTe.rap
Routing key:
routing-direct

Resource information Event requesting
registration of new
resource

2 Resource
registration

symbIoTe.rap.registrationHandler.unregister_resources RabbitMQ RH RAP Exchange:
symbIoTe.rap
Routing key:
routing-direct

Resource id Event requesting
unregistration of existing
resource

3 Resource
registration

symbIoTe.rap.registrationHandler.update_resources RabbitMQ RH RAP Exchange:
symbIoTe.rap
Routing key:
routing-direct

Resource information Event requesting update
of existing resource

4a Resource access
read

/rap/Sensor/{resourceId} REST Interworking
Interface

RAP GET None - replies with the
value of the resource

Event reading the value
of a resource

4b Resource access
read

/rap/Sensors({resourceId})/Observations?$top=1 OData Interworking
Interface

RAP GET None - replies with the
value of the resource

Event reading the value
of a resource

5a Resource access
read history

/rap/Sensor/{resourceId}/history REST Interworking
Interface

RAP GET None - replies with the
history values of the
resource

Event reading the value
of a resource

5b Resource access
read history

/rap/Sensors({resourceId})/Observations OData Interworking
Interface

RAP GET None - replies with the
history values of the
resource

Event reading the value
of a resource

6a Resource access
write

/rap/Service/{resourceId} REST Interworking
Interface

RAP POST {
“inputParameters”: [
{
“name”: “param_name”,
“value”: “param_value”
},
..
]
}

Event writing the value of
a resource

6b Resource access
write

/rap/ActuatingService{resourceId} OData Interworking
Interface

RAP PUT {
“inputParameters”: [
{
“name”: “param_name”,
“value”: “param_value”

Event writing the value of
a resource

2 Payloads descriptions are available in Appendix, chapter Error! Reference source not found.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 19 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

},
..
]
}

7 Resource
notifications

/notification WebSocket Interworking
Interface

RAP client / server the value of the
resource

Event reading the value
of a resource

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 20 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

3.2.4 Monitoring

Table 7. Monitoring overview

Component Monitoring
Description This component provides features similar to those offered by the platform-side

Monitoring component (CLD). It monitors the load of IoT resources (services)
offered by an Enabler and the usage of registered services by applications.
Monitoring information can be used to estimate service popularity (useful for
ranking).
The component must monitor the quality of the offered services so as to make
sure that the advertised quality of service is met.

Provided functionalities • Checks load/availability of resources registered by an Enabler
• Records the start and end of access to a resource

Relation to other
components

Security Handler (Enabler): To request core token

Resource Manager (Enabler): To notify Resource Manager about the
status/availability/performance of Enabler resources

Core Resource Access Monitor: To send usage report for the purpose of ranking
Enabler resources by symbIoTe Core Services

Related use cases ALL
Related requirements 6, 81

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 21 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Table 8. Monitoring interfaces

3 Payloads descriptions are available in Appendix, chapter Error! Reference source not found.

Interface Message Type From Msg Consumers Address/Queue/ Payload
3
 Description

1 Resource registration RabbitMQ RH MONITORING Exchange: symbIoTe.platformExchange
Routing key:
symbIoTe.platformexchange.rh.monitor.register_
resources
Routing type: routing-direct

Resource information Event requesting
registration of new
resource

2 Resource unregistration RabbitMQ RH MONITORING Exchange: symbIoTe.platformExchange
Routing key:
symbIoTe.platformexchange.rh.monitor.unregist
er_resources
Routing type: routing-direct

Resource id Event requesting
unregistration of existing
resource

3 Resource update RabbitMQ RH MONITORING Exchange: symbIoTe.platformExchange
Routing key:
symbIoTe.platformexchange.rh.monitor.update_r
esources
Routing key: routing-direct

Resource information Event requesting update
of existing resource

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 22 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

3.2.5 Resource Manager

Table 9. Resource Manager overview

Component Resource Manager
Description This component manages the Underlying IoT resources used by Enabler. It receives input

from the Enabler Monitoring component about the status/availability/performance of the
resources offered to the Enabler (Underlying IoT Resources). If the advertised quality of
service is not met by the Underlying IoT resources (e.g., some sensors are offline on the
platform side), this component is responsible to automatically discover alternative
platform resources and starts using them instead.
The component queries the symbIoTe Core Search Engine to discover new resources
which match certain criteria required by Enabler services. Furthermore, it filters the results
returned by the Search Engine according to the Enabler domain-specific requirements.
Additionally, the component keeps track of IoT resources assigned to the Enabler during
the mediation process, e.g., when an enabler has identified, requested and has been
granted access to IoT resources for the intended value-added service.

The usage of new resources may also be facilitated by an automated payment system to
support access to private resources that are not exposed to everyone. The Resource
Manager should also periodically search for resources matching its needs and if it finds
more suitable ones (e.g., cheaper or more accurate), it should replace the old ones with
the new ones.

Provided
functionalities

• Supports resource discovery
• Ranks resources relevant to the Enabler's needs. The Enabler might have

different criteria compared to the symbIoTe ranking engine
• Supports automated filtering of resources
• Periodically searches for more suitable resources in the symbIoTe Core Registry

Relation to other
components

Enabler's Logic: The Enabler's Logic provides information about the characteristics of
resources required by the Enabler to the Resource Manager

Monitoring: The monitoring notifies the Resource Manager about the
status/availability/performance of used resources

Search Engine: Finds resources in the symbIoTe Core Registry.

Platform Proxy: Resource Manager sends requests for data acquisition to Platform Proxy.
Related use
cases

ALL

Related
requirements

6, 20, 21, 82

Example 1:
An Enabler claims to provide temperature sensors in all the European capitals. However,
the temperature sensors used to provide temperature information in Zagreb suddenly
become unavailable. The Resource Manager should be notified about this incident in order
to automatically search and subscribe to temperature sensors offered by other platforms in
Zagreb.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 23 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Table 10. Resource Manager interfaces

Interface Name Msg type From Msg
Consumers

Address/Queue Payload Description

1 Start Task
Acquisition

 RabbitMQ RPC Enabler Logic Resource
Manager

Exchange: symbIoTe.resourceManager

Routing key:
symbIoTe.resourceManager.startDataAcquisition

Array of Task Information requests
containing:

• taskId

• minimum number of resources

• Parameterized Query (i.e.
CoreQueryRequest)

• queryInterval

• boolean for allowing caching of
resource ids

• caching interval

• boolean for passing the data to
the Platform Proxy

• the name of the enabler logic
which made the request

• the SPARQL query request

Returns:

Same info along with:

• the list of resource ids

• the status

Request for acquisition of
sensor data for a new task

2 Update Task RabbitMQ RPC Enabler Logic Resource
Manager

Exchange: symbIoTe.resourceManager

Routing key:
symbIoTe.resourceManager.updateTask

Array of Task Information requests
containing:

• taskId

• minimum number of resources

• Parameterized Query (i.e.
CoreQueryRequest)

• queryInterval

• boolean for allowing caching of
resource ids

• caching interval

Request for updating the task
information

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 24 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• boolean for passing the data to
the Platform Proxy

• the name of the enabler logic
which made the request

• the SPARQL query request

Returns:

Same info along with:

• the list of resource ids

the status

3 Cancel Task RabbitMQ RPC Enabler Logic Resource
Manager

Exchange: symbIoTe.resourceManager

Routing key:
symbIoTe.resourceManager.cancelTask

List of task ids to be deleted

Returns:

• status

• message

Request for canceling a task

4 Unavailable
Resources

 RabbitMQ
(async)

Platform
Proxy

Resource
Manager

Exchange: symbIoTe.resourceManager

Routing key:
symbIoTe.resourceManager.unavailableResources

ProblematicResourcesInfo
containing:

• TaskId of the problematic
resources

• Resource ids

Platform Proxy informs
Resource Manager for
unavailable resources

5 Wrong Data RabbitMQ
(async)

Enabler Logic Resource
Manager

Exchange: symbIoTe.resourceManager

Routing key:
symbIoTe.resourceManager.wrongData

ProblematicResourcesInfo
containing:

• TaskId of the problematic
resources

• Resource ids

Enabler Logic informs Resource
Manager for resources with
wrong data

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 25 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

3.2.6 Enabler Logic

Table 11. Enabler Logic overview

Component Enabler Logic
Description This component implements the minimal application domain logic. In the simplest case

this corresponds to the mere aggregation of IoT resources from multiple IoT platforms.
More advanced processing can be applied to support value-added services
corresponding to the requirements of a specific domain. The component is domain-
specific and its additional functionalities should be implemented by the developers of the
Enabler in a class implementing the Processing Logic interface.
It is responsible for notifying the Resource Manager about the characteristics of required
resources as well as for accessing and storing resource data (in case of sensors).
Furthermore, it groups platform resources in virtual resources (if necessary), processes
acquired sensor data and offers more specialized services (e.g., weather forecast,
access to historical data, statistical analysis, etc.). Finally, it notifies the Enabler's
Registration Handler about resources which should be registered in symbIoTe Core as
services offered by an Enabler to third-party applications. It also initiates the update of
registered resources. There could be more than a single Enabler Logic component
integrated within a single Enabler.

Provided
functionalities

• Defines the type and amount of Underlying IoT resources required
• Groups platform resources in virtual resources
• Provides data storage for acquired sensor data
• Processes the data and offers the possibility to develop specialized value-added

services

Relation to other
components

Resource Manager (Enabler): The Resource Manager receives the description of the
resource type and number from Enabler Logic

Registration Handler (Enabler): The Enabler Logic specifies the type of resources which
are registered in symbIoTe Core as services offered by the Enabler to third parties

Resource Access Proxy (IoT Platforms): Requests from applications are forwarded to
Enabler Logic. Enabler Logic returns response through Resource Access Proxy

Domain-specific Interface: Requests from applications are forwarded to Enabler Logic.
Enabler Logic returns responses through the Domain-specific Interface

Related use
cases

ALL

Related
requirements

20, 21, 39, 45, 83

Example 2:
An Enabler offers temperature readings for all European capitals. Enabler logic should
continuously receive data from selected temperature sensors in European capitals (found
by Resource Manager) calculate the average and store it in its internal database. In an
application, a user wants to access average temperature in Zagreb for the last three days.
Enabler Logic will receive request for temperature in Zagreb (indirectly over Domain-
Specific Interface or Resource Access Proxy), read calculated average form internal
database and send the response to the application indirectly over Domain-Specific
Interface or Resource Access Proxy.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 26 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Table 12. Enabler Logic interfaces

Interface Name Msg type From Msg
Consumers

Address/Queue Payload Description

1 Acquire
measurements

 RabbitMQ
RPC

RAP/
Domain-
Specific
Interface

Enabler
Logic

Exchange: symbIoTe.enablerLogic

Routing key: symbIoTe

.enablerLogic

.acquireMeasurements

 Request for acquisition of sensor
data

2 Receive acquired
data

 RabbitMQ
(async)

Platform
Proxy

Enabler
Logic

Exchange: symbIoTe.enablerLogic

Routing key: symbIoTe

.enablerLogic

.dataAppeared

taskID, timestamp, observations
list

Platform Proxy forwards received
resource data to Enabler Logic

3 RAP plugin –
access read
resource

 RabbitMQ
RPC

RAP/
Domain-
Specific
Interface

Enabler
Logic

Exchange: plugin-exchange

Routing key: symbIoTe

{EnablerName}.get

Resource info with simbioteId,
interlanlId and observed
properties

Returns: observation

RAP/DSI asks plugin for value of
resource

4 RAP plugin –
access read
resource history

 RabbitMQ
RPC

RAP/
Domain-
Specific
Interface

Enabler
Logic

Exchange: plugin-exchange

Routing key: symbIoTe

{EnablerName}.history

Resource info with simbioteId,
interlanlId, observed properties
and constraints

Returns: observations

RAP/DSI asks plugin for historical
values of resource

5 RAP plugin –
access to set
resource or call
service

 RabbitMQ
RPC

RAP/
Domain-
Specific
Interface

Enabler
Logic

Exchange: plugin-exchange

Routing key: symbIoTe

{EnablerName}.set

Resource info with simbioteId,
interlanlId, observed properties
and parameters

Returns: result

RAP/DSI asks plugin to write values
of resource

or

RAP/DSI asks plugin to call service
with parameters and enabler logic
returns service result

6 Receiving
synchronous
request form
another enabler
logic

 RabbitMQ
RPC

Another
enabler
logic

Enabler
Logic

Exchange: symbIoTe.enablerLogic

Routing key: symbIoTe .enablerLogic
.syncMessageToEnablerLogic

Parameter message

Returns: result

Another enabler logic send
synchronous message to this enabler
logic

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 27 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

7 Receiving
asynchronous
request form
another enabler
logic

 RabbitMQ
(async)

Another
enabler
logic

Enabler
Logic

Exchange: symbIoTe.enablerLogic

Routing key: symbIoTe .enablerLogic
.asyncMessageToEnablerLogic

Parameter message

Another enabler logic send
asynchronous message to this
enabler logic

 Resources Updated RabbitMQ
(async)

Resource
Manager

Specific
Enabler
Logic

Exchange: symbIoTe.enablerLogic

Routing key:
symbIoTe.enablerLogic.resourcesUpdated.{specific
enabler logic name which owns the task}

ResourcesUpdated containing:

• task id

new Resource List

Resource Manager informs a specific
enabler logic which owns the task
about new resources

 Not enough
available resources

 RabbitMQ
(async)

Resource
Manager

Specific
Enabler
Logic

Exchange: symbIoTe.enablerLogic

Routing key:
symbIoTe.enablerLogic.notEnoughResources.{specific
enabler logic name which owns the task}

NotEnoughResourcesAvailable
containing:

• task id

number of resources acquired

Resource Manager informs a specific
enabler logic which owns the task
about tasks with not enough
resources

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 28 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

3.2.7 Platform Proxy

Table 13. Platform Proxy overview

Component Platform Proxy
Description This component is responsible for accessing IoT Platforms to gather data specified by

Enabler Logic, and found by Resource Manager. Access to platform resources is initiated
by the Enabler Logic. Sensor data can be acquired either by a push or pull mechanism
supported by symbIoTe. The received data is forwarded to Enabler Logic where it is
stored and processed further. This component is also responsible for access to
actuators. When Enabler Logic needs to actuate some resources, it will send a message
to Platform Proxy that will contact appropriate IoT Platforms.

Provided
functionalities

• Sends requests to IoT Platforms to access and use resources
• Forwards acquired data from sensors to Enabler Logic
• Offers the possibility to develop mechanisms for accessing IoT Platforms based on

domain-specific needs

Relation to other
components

Resource Manager (Enabler): The Resource Manager sends the description of the
required resources (resourceIds, acquisition frequency, …) to Platform Proxy.

Enabler Logic: Platform Proxy acquires data from resources and forwards it to Enabler
Logic. Enabler Logic can send request for particular resource data or resource actuation
then Platform Proxy make request to specific resource and returns it to Enabler Logic.

Related use
cases

ALL

Related
requirements

20, 21

Example 3:
An Enabler offers temperature readings for all European capitals. In an application, a user
wants to receive updated values every five minutes from two nearest sensors. Platform
Proxy should acquire these measurements from sensors whose characteristics are
specified by Enabler Logic, and found by Resource Manager.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 29 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Table 14. Platform Proxy interfaces

Interface Name Msg
type

From Msg
Consumers

Address/Queue Payload Description

1 Start
Resource
Acquisition

symbIoTe.enablerPlatformProxy.acquisitionStartRequested RPC Resource
Manager

Platform
Proxy

Exchange:
symbIoTe.enablerPlatformProxy

Routing key: same as name

PlatformProxyAcquisitionStartRequest

Containing task id, list of resources,
name of enabler logic and query
interval

Starts a
periodic
acquisition of
data for a task

2 Start
Resource
Acquisition
response

- RPC
response

Platform
Proxy

Resource
Manager

Answer to the temporary RPC
response queue

Schedule status and taskId Response
containing
status of
starting data
acquisition

3 Stop
resource
acquisition

symbIoTe.enablerPlatformProxy.acquisitionStopRequested RPC Resource
Manager

Platform
Proxy

Exchange:
symbIoTe.enablerPlatformProxy

Routing key: same as name

List of taskIds Stops the
acquisition
task for
specified task
Ids

4 Stop
resource
acquisition
response

- RPC
response

Platform
Proxy

Resource
Manager

Answer to the temporary RPC
response queue

Cancellation message Simple
cancelation
message

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 30 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

3.3 Sequence diagrams

The workflows defined for symbIoTe Enablers are the following:

• Enabler Registration

• Enabler Resource Registration

• Enabler Resource Unregistration

• Enabler Resource Update

• Enabler Resource Availability Reporting

• Scheduled Monitoring of Enabler Resources

• Start Data Acquisition

• Search

• Stop Data Acquisition

• Data Acquisition

• Unresponding Resource During Data Acquisition

• Replacement of a Malfunctioning Resource

• Access to Enabler Resource Using Enabler RAP

• Access to Enabler Resource Using its Domain-specific Interface

• Reporting of Enabler Resource Usage

Hereafter all functional capabilities are presented in the form of UML sequence diagrams,
with detailed description of the exchanged messages. Figure 2 shows the legend for
messages used in the diagrams: mandatory messages, optional messages and mandatory
interactions. A “mandatory interaction” is referred to as a “Procedure” because it presents
a sequence of messages being exchanged between components. These “Procedures” are
mainly related to security mechanisms.

Figure 2. Legend of messages used in sequence diagrams

Components in sequence diagrams are color-coded so that each color is assigned to a
specific domain in the symbIoTe architecture:

• Yellow: Enablers

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 31 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Green: Application / other Enabler

• Blue: symbIoTe Core Services

• Orange: IoT Platform Cloud

3.3.1 Enabler registration

Before entering the symbIoTe ecosystem, each Enabler is obliged to register to symbIoTe
Core. The process is handled by Enabler owner using the symbIoTe Core Administration
application.

Figure 3. Enabler registration

Description:

• Message 1: Enabler owner sends a registration request to symbIoTe by using the
Administration web application. The request is either for a trail or normal
registration.

• Message 2: Administration sends request to the Core Authentication and
Authorization Manager, which requests credentials for the Enabler.

• Message 3: Core Authentication and Authorization Manager returns the generated
certificate and applicationId to Administration.

• Message 4: Administration web application returns certificate and applicationId to
Enabler owner. The Enabler owner can subsequently configure the Enabler to
become L1 Compliant.

3.3.2 Enabler resource registration

Enabler registers its resources in symbIoTe Core so that they can be found by other
applications.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 32 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 4. Enabler resource registration

Description:

• Message 1: Registration is initiated by Enabler Logic.

• Message 2: generated by the Registration Handler and sent to the Resource
Access Proxy in the same Enabler. It is used to register a resource on the Resource
Access Proxy, along with an access policy specifying rules for resource access;

• Message 3 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, this step is not needed.

• Message 4 (optional): generated by the Security Handler and sent to the home
(enabler) AAM in which the Registration Handler is registered. It is used to
authenticate the Registration Handler. If the Registration Handler is already logged
in, this step is not needed.

• Message 5 (optional): generated by the home (Enabler) AAM and sent to the
Security Handler. It is used to provide the home token(s) with attributes included. If
the Registration Handler is already logged in, it is not necessary.

• Message 6 (optional) (PlatformAAInterface): generated by the Security Handler and
sent to the Core AAM in the Core Domain. It is used to trigger the operations for

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 33 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 7 (optional) (SecurityInterface): procedure that allows the Security
Handler acting on behalf of the Registration Handler to demonstrate that it is the
real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 7a (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Registration Handler already has valid core token(s), it
is not necessary.

• Procedure 8 (optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

• Procedure 8a (optional): procedure that, in case it is needed, translates attributes
that the Registration Handler has in the home AAM (Enabler) in a new set of
attributes that it has in the Core Domain. If attributes are the same or the
Registration Handler already has valid core token(s), it is not necessary.

• Message 9 (optional): generated by the Core AAM and sent to the Security Handler.
It is used to deliver the core token(s) with the new attribute(s). If the Registration
Handler already has valid core token(s), it is not necessary.

• Message 10 (optional): generated by the Security Handler and sent to the
Registration Handler. It is used to forward the core token generated at the previous
step.

• Message 11 (RegPlatformInterface): generated by the Registration Handler and
sent to the Registry. Its main purpose is to provide the metadata describing a
resource or a set of resources which the Enabler exposes to the Registry. In
addition to the registration message, it also provides the core token(s) containing
the attributes assigned to the Registration Handler and resource access policies.

• Message 12: generated by the Registry and sent to the Core Security Handler. It is
used to ask the Security Handler to verify token validity.

• Procedure 13 (SecurityInterface): procedure that allows the Security Handler acting
on behalf of the Registration Handler to demonstrate that it is the real owner of the
token(s).

• Procedure 13a: verification of time validity, authenticity and integrity of the provided
token(s).

• Procedure 14: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

• Message 15: generated by the Security Handler in the Core Domain and sent to the
Registry. It is used to communicate the outcome of the token validation procedures
performed by the Core Security Handler.

• Procedure 15a: stores registrations to database and generates ID for the resource

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 34 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 16: Registry sends a message to Core Resource Monitor to add a
scheduled task to check availability of registered resources. Core Resource Monitor
will in the future check resource availability (messages 21-24) and asynchronously
inform Registry about availability with updated status list (message 25).

• Message 17: Registry returns: IDs of registered resources, status list and a
certificate (used to demonstrate the identity of the entity generating the message,
for authentication purposes, the certificate must be validated by the Security
Handler of the component)

• Message 18: Registration Handler forwards the certificate to Security Handler for
validation

• Procedure 18a: Security Handler validates the certificate

• Message 19: Security Handler returns status of validation

• Message 20: Registration Handler forwards status of validation to Enabler Logic.

• Messages 21-24 are used for checking the availability of registered resources

• Message 21 (AccessResourceInterface): Core Resource Monitor sends message to
Resource Access Proxy in order to check availability. It includes the certificate as
well (used to demonstrate the identity of the entity generating the message, for
authentication purposes, the certificate must be validated by the Security Handler of
the component).

• Message 22: Resource Access Proxy sends the certificate to Security Handler for
validation

• Procedure 22a: Security Handler validates the certificate

• Message 23: Security Handler returns status of validation

• Message 24: Resource Access Proxy returns availability status

• Message 25: Core Resource Monitor collects all availability status, makes a status
list and sends it to Registry

• Procedure 25a: Updates availability in database

• Message 26 (optional): Registry sends asynchronous message with availability list
and the certificate to Registration Handler

• Message 27 (triggered by 25) (RegistrationHandlerInterface): Registration Handler
forwards the certificate to Security Handler for validation

• Procedure 27a: Security Handler validates certificate

• Message 28: Security Handler returns status of validation

3.3.3 Enabler resource unregistration

Enabler unregisters its resource in the symbIoTe Core Domain that will no longer be
offered to applications.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 35 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 5. Enabler resource unregistration

Description:

• Message 1: Unregistration is initiated by Enabler Logic.

• Message 2: generated by the Registration Handler and sent to the Resource
Access Proxy in the same Enabler. It is used to unregister the resource on the
Resource Access Proxy;

• Message 3 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, it is not necessary.

• Message 4 (optional): generated by the Security Handler and sent to the home
AAM in which the Registration Handler is registered. It is used to authenticate the
Registration Handler. If the Registration Handler is already logged in, it is not
necessary.

• Message 5 (optional): generated by the home AAM in the Enabler and sent to the
Security Handler. It is used to provide the home token(s) with attributes included. If
the Registration Handler is already logged in, it is not necessary.

• Message 6 (optional) (Enabler AAInterface): generated by the Security Handler and
sent to the Core AAM in the Core Domain. It is used to trigger the operations for
obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 7 (optional) (Security Interface): procedure that allows the Security
Handler that is acting on behalf of the Registration Handler to demonstrate that it is
the real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 36 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Procedure 7a (optional): verification of time validity, authenticity and integrity of the
provided token(s). If the Registration Handler already has valid core token(s), it is
not necessary.

• Procedure 8 (optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

• Procedure 8a (optional): procedure that, in case it is needed, translates attributes
that the Registration Handler has in the Enabler in a new set of attributes that it has
in the Core Domain. If attributes are the same or the Registration Handler already
has valid core token(s), it is not necessary.

• Message 9(optional): generated by the Core AAM and sent to the Security Handler.
It is used to deliver the core token(s) with the new attribute(s). If the Registration
Handler already has valid core token(s), it is not necessary.

• Message 10 (optional): generated by the Security Handler and sent to the
Registration Handler. It is used to forward the core token generated at the previous
step.

• Message 11 (RegEnablerInterface): generated by the Registration Handler and sent
to the Registry. It is used to provide, along with the unregistration message, the
core token(s) containing the attributes assigned to the Registration Handler.

• Message 12: generated by the Registry and sent to the Core Security Handler. It is
used to ask the Security Handler to verify the complete validity of the token.

• Procedure 13 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Registration Handler to demonstrate it is the real owner of
the token(s).

• Procedure 13a: verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 14: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

• Message 15: generated by the Core Security Handler and sent to the Registry. It is
used to communicate the outcome of the token validation procedures performed by
the Core Security Handler.

• Procedure 15a: Registry deletes resource in database

• Message 16: Registry sends message to Core Resource Monitor to delete
availability and cancel scheduled monitoring tasks

• Message 17: returns call

• Message 18: Registry informs Core Resource Access Monitor that specific source
is unregistered and that the users of that resource need to be informed

• Message 19 (optional) (ApplicationInterface): Core Resource Access Monitor
informs each reachable (open connection or registered endpoint)
Application/Enabler that uses specific resource about deletion of resource

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 37 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 20 returns call

• Message 21 returns call

• Message 22: Registry returns deleted IDs and certificate to Registration Handler
(certificate is used to demonstrate the identity of the entity generating the message,
for authentication purposes, certificate must be validated by the Security Handler of
the component)

• Message 23: Registration Handler forwards certificate to Security Handler for
validation

• Procedure 23a: Security Handler validates certificate

• Message 24: Security Handler returns status of validation

• Message 25: Registration Handler forwards status of validation to Enabler Logic.

3.3.4 Enabler resource update

Enabler updates the resource exposed through symbIoTe Core. By doing that, it can be
ensured that resource descriptions at the symbIoTe Core are up-to-date.

Figure 6. Enabler resource update

Description:

• Message 1: Update is initiated by Enabler Logic.

• Message 2: generated by the Registration Handler and sent to the Resource
Access Proxy in the same Enabler. It is used to update the resource on the
Resource Access Proxy;

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 38 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 3 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, it is not necessary.

• Message 4 (optional): generated by the Security Handler and sent to the home
AAM in which the Registration Handler is registered. It is used to authenticate the
Registration Handler. If the Registration Handler is already logged in, it is not
necessary.

• Message 5 (optional): generated by the home AAM in the Enabler and sent to the
Security Handler. It is used to provide the home token(s) with attributes included. If
the Registration Handler is already logged in, it is not necessary.

• Message 6 (optional) (EnablerAAInterface): generated by the Security Handler and
sent to the Core AAM in the Core Domain. It is used to trigger the operations for
obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Message 7 (optional) (SecurityInterface): procedure that allows the Security
Handler that is acting on behalf of the Registration Handler to demonstrate that it is
the real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 7a (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Registration Handler already has valid core token(s), it
is not necessary.

• Message 8 (optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

• Procedure 8a (optional): procedure that, in case it is needed, translates attributes
that the Registration Handler has in the Enabler in a new set of attributes that it has
in the Core Domain. If attributes are the same or the Registration Handler already
has valid core token(s), it is not necessary.

• Message 9 (optional): generated by the Core AAM and sent to the Security Handler.
It is used to deliver the core token(s) with the new attribute(s). If the Registration
Handler already has valid core token(s), it is not necessary.

• Message 10 (optional): generated by the Security Handler and sent to the
Registration Handler. It is used to forward the core token generated at the previous
step.

• Message 11 (RegEnablerInterface): generated by the Registration Handler and sent
to the Registry. It is used to provide, along with the update message, the core
token(s) containing the attributes assigned to the Registration Handler.

• Message 12: generated by the Registry and sent to the Security Handler in the
Core Domain. It is used to ask to the security handler to verify the complete validity
of the token.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 39 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 13 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Registration Handler to demonstrate that it is the real owner
of the token(s).

• Procedure 13a: verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 14: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

• Message 15: generated by the Security Handler in the Core Domain and sent to the
Registry. It is used to communicate the outcome of the token validation procedures
performed by the Core Security Handler.

• Procedure 15a: Registry updates resource in database

• Message 16: Registry ends request to Core Resource Monitor to update availability
and to schedule availability check

• Message 17: Core Resource Monitor schedules task for checking availability for
specified resources

• Message 18: returns call

• Message 19: Registry sends message to Core Access Resource Access Monitor to
inform current user of updated resources

• Message 20 (optional) (ApplicationInterface): Core Resource Access Monitor
informs each reachable (open connection or registered endpoint)
Application/Enabler that uses specific resource about resource update

• Message 21 returns call

• Message 22 returns call

• Message 23: Registry returns updated IDs including a certificate

• Message 24: Registration Handler forwards certificate to Security Handler for
validation

• Procedure 24a: Security Handler validates certificate

• Message 25: Security Handler returns status of validation

• Message 26: Registration Handler forwards status of validation to Enabler Logic.

3.3.5 Enabler resource availability reporting

Enabler registers Enabler resources to Core Resource Monitor. Availability check will be
initiated by Core Resource Monitor (described in Section 3.3.6).

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 40 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 7. Enabler Resource availability reporting

Description:

• Message 1 (optional): generated by the Registration Handler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Registration Handler is already logged in, it is not necessary.

• Message 2 (optional): generated by the Security Handler and sent to the home
AAM in which the Registration Handler is registered. It is used to authenticate the
Registration Handler. If the Registration Handler is already logged in, it is not
necessary.

• Message 3 (optional): generated by the home AAM in the Enabler and sent to the
Security Handler. It is used to provide the home token(s) with attributes included. If
the Registration Handler is already logged in, it is not necessary.

• Message 4 (optional) (EnablerAAInterface): generated by the Security Handler and
sent to the Core AAM in the Core Domain. It is used to trigger the operations for
obtaining the core token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Message 5 (optional) (SecurityInterface): procedure that allows the Security
Handler acting on behalf of the Registration Handler to demonstrate that it is the
real owner of the token(s). If the Registration Handler already has valid core
token(s), it is not necessary.

• Procedure 5a (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Registration Handler already has valid core token(s), it
is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 41 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 6 (optional) (AAInterface): verification of any asynchronous revocation of
the token(s) (i.e., if any token(s) have been revoked by the home AAM before the
expiration time indicated within the token itself). If the Registration Handler already
has valid core token(s), it is not necessary.

• Procedure 6a (optional): procedure that, in case it is needed, translates the
attributes that the Registration Handler has in the Enabler in a new set of attributes
that it has in the Core Domain. If attributes are the same or the Registration Handler
already has valid core token(s), it is not necessary.

• Message 7 (optional): generated by the Core AAM and sent to the Security Handler.
It is used to deliver the core token(s) with the new attribute(s). If the Registration
Handler already has valid core token(s), it is not necessary.

• Message 8 (MonitorResInterface): generated by the Registration Handler and sent
to the Core Resource Monitor. It is used to provide, along with the update message,
the core token(s) containing the attributes assigned to the Registration Handler.

• Message 9: generated by the Core Resource Monitor and sent to the Core Security
Handler. It is used to ask the security handler to verify the complete validity of the
token.

• Message 10 (SecurityInterface): procedure that allows the Security Handler that is
acting on behalf of the Registration Handler to demonstrate that it is the real owner
of the token(s).

• Procedure 11: verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 11a: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

• Message 12: generated by the Core Security Handler and sent to the Core
Resource Monitor. It is used to communicate the outcome of the token validation
procedures performed by the Core Security Handler.

• Messages 13: returns core token to Registration Handler

• Message 14: schedules task for checking availability of specified resources (IDs)

• Message 15: returns status of availability scheduling and certificate (used to
demonstrate the identity of the entity generating the message, for authentication
purposes, the certificate must be validated by the Security Handler of the
component)

• Message 16: Registration Handler sends certificate to Security Handler for
validation

• Procedure 16a: validate certificate

• Message 17: returns result of certificate validation

3.3.6 Scheduled monitoring of Enabler resources

Core Resource Monitor checks the availability of the resources exposed by Enabler and
reports it to Registry.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 42 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 8. Scheduled monitoring of Enabler resources

Description:

• Message 1 (AccessResourceInterface): when the availability checking task is
executed it starts with this message from Core Resource Monitor to Resource
Access Proxy (includes certificate)

• Message 2: Resource Access Proxy sends certificate for validation to Security
Handler

• Procedure 2a: validates certificate

• Message 3: returns result of certificate validation

• Message 4: Resource Access Proxy returns result of availability to Core Resource
Monitor

• Message 5: Core Resource Monitor collects all availability results, creates status list
and sends it to Registry

• Procedure 5a: updates availability in database

• Message 6: returns call

3.3.7 Start data acquisition

When an Enabler is started it should be initialized to start data acquisition in case
Underlying resources are sensors.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 43 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 9. Start data acquisition

Description:

• Message 1: Enabler Logic sends a request to Resource Manager to start data
acquisition. It sends generated acquisitionTaskId to Resource Manager.

• Procedure 1a: Resource Manager searches relevant resources and filters them
(details are in next diagram).

• Message 2: Resource Manager returns chosen resourceIds to Enabler Logic.

• Message 3: Enabler Logic saves list of resources and acquisitionTaskId to internal
database.

• Message 4: Resource Manager sends message for starting data acquisition.

3.3.8 Search

Enabler searches for resources needed for operations within Enabler logic.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 44 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 10. Search

Description:

• Message 1: Enabler Logic sends request to Resource Manager to find resources
needed by Enabler Logic according to certain criteria.

• Message 2 (optional): generated by the Resource Manager and sent to the Enabler
Security Handler. It is used to trigger the recovery of the core token(s). If the
Enabler is already logged in, it is not necessary.

• Message 3 (optional): generated by the Enabler Security Handler and sent to the
Core AAM in which the Enabler is registered. It is used to authenticate the Enabler.
If the Enabler is already logged in, it is not necessary.

• Message 4 (optional): generated by the Core AAM and sent to the Enabler Security
Handler. It is used to provide the home token(s) with attributes included. If the
Enabler is already logged in, it is not necessary.

• Message 5 (optional): generated by the Enabler Security Handler and sent to the
Resource Manager. It is used to deliver the core token(s).

• Message 6: generated by the Resource Manager and sent to the Search Engine. It
sends a search query and the core token(s) to the Search Engine.

• Message 7: generated by the Search Engine and sent to the Core Security Handler.
It is used to ask to the Security Handler to verify the complete validity of the token.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 45 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Procedure 8: procedure that allows the Enabler Security Handler acting on behalf of
the Resource Manager to demonstrate that it is the real owner of the token(s).

• Procedure 8a: verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 9: verification of any asynchronous revocation of the token(s) (i.e., if any
token(s) have been revoked by the Core AAM before the expiration time indicated
within the token itself).

• Message 10: generated by the Core Security Handler and sent to the Search
Engine. It is used to communicate the outcome of the token validation procedures
performed by the Core Security Handler.

• Message 11: generated by the Search Engine and sent to the Core Security
Handler. It is used to deliver the core token(s) previously verified and the results of
the search operation.

• Procedure 11a: procedure that checks, for each resource, if the attributes contained
in the core token(s) satisfy the access policy associated to that resource.

• Message 12: generated by the Core Security Handler and sent to the Search
Engine. It is used to deliver the result of the previous procedure.

• Message 13: generated by the Search Engine and sent to the Resource Manager
asynchronously. It is used to deliver the result of the search operation (available
resources).

• Procedure 13a: executes ranking of resources

• Message 14 (optional): asynchronously sends ranking update to Resource Manager

• Message 15 (optional): asynchronously sends a message about the availability of
an initial ranked list of relevant results

• Message 16 (optional): synchronously sends a message about the availability of the
final ranked list of relevant results

• Procedure 16a (optional): filtering of received search results by Resource Manager
according to criteria defined in message 1

• Message 17: returns filtered search results to Enabler Logic

3.3.9 Stop data acquisition

Sometimes it is necessary that Enabler Logic stops an active process of data acquisition,
which is initiated as defined in the Section 3.3.7.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 46 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 11. Stop data acquisition

 Description:

• Message 1: Enabler Logic sends a request to Resource Manager to stop data
acquisition.

• Message 2: Enabler Logic deletes an entry of the data acquisition in its internal DB

• Procedure 2a: Resource Manager clears its entry of the data acquisition task which
is stopped.

• Message 3: Resource Manager sends a stopping request to Platform Proxy to stop.

• Procedure 3a: Platform Proxy clears all entries regarding the data acquisition task
which is stopped.

3.3.10 Data acquisition

Platform Proxy acquires data from resources either, periodically or using subscriptions.

Figure 12. Data acquisition

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 47 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

 Description:

• Message 1: When Resource Manager starts data acquisition then Platform Proxy
schedules tasks for acquiring data

• Message 2: Platform Proxy sends request for resource access in platform 1

• Message 3: Platform Proxy receives data from platform 1

• Message 4: Platform Proxy sends request for resource in platform 2

• Message 5: Platform Proxy receives data from platform 2

• Message 6: After all data from platforms are received, Platform Proxy sends them
to Enabler Logic in one message

• Message 7: Enabler Logic stores data to internal DB for further processing. Enabler
Logic can start internal processing upon receiving this message or in scheduled
tasks

3.3.11 Unresponding resource during data acquisition

This diagram shows what happens when Platform Proxy gets an error message or
platform is not responding to a request for data from its resource.

Figure 13. Unresponding resource

 Description:

• Message 1: When Platform Proxy schedules a data acquisition task, it sends this
message to platform.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 48 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 2: To prevent deadlock when a response message from the IoT platform
is not received by Platform Proxy, a timeout is used. This message triggers timeout.

• Message 3: When there is an error in resource access, this message is received by
Platform Proxy.

• Procedure 3a: Platform Proxy identifies that the resource is not responding (either
because of timeout or error) and starts sending the following message.

• Message 4: Platform Proxy sends message to Resource Manager that a specific
resource is not responding.

• Procedure 4a: Resource Manager starts the procedure to find another resource for
the specified task. It could have cached potential resources and can chose from
them or it can start search for resources in the Core (using the diagram Search)

• Message 5: After Resource Manager has found a substitute resource, it informs
Enabler Logic about that.

• Message 6: Resource Manager informs Platform Proxy about updates of resources
for specific acquisition taskId.

3.3.12 Replacement of a malfunctioning resource

Enabler Logic in some cases can detect that a resource is malfunctioning (e.g., it may
send erroneous data) and in such case it can ask the Resource Manager to replace this
resource with another one.

Figure 14. Replacement of a malfunctioning resource

 Description:

• Message 1: Enabler Logic receives resource readings from Platform Proxy.

• Procedure 1a: Enabler Logic detects that the data is erroneous.

• Message 2: Enabler Logic asks Resource Manager to find a substitute resource.

• Procedure 2a: Resource Manager searches for another resource. It could have
cached potential resources and can choose either from an existing list of potential

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 49 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

resources or can start the search procedure in the Core Domain (using the previous
sequence diagram Search).

• Message 3: Resource Manager sends information about a substitute resource to
Enabler Logic.

• Message 4: Resource Manager informs Platform Proxy about updates of resources
for a specific acquisition taskId.

3.3.13 Access to Enabler resource using Enabler RAP

This is a typical Enabler usage scenario when a symbIoTe application uses resources
offered by the Enabler. Access is enabled the Enabler RAP. The Core Resource Access
Monitor (Core RAM) in symbIoTe Core needs to be informed of this interaction.

Figure 15. Access to Enabler resource using its RAP

Description:

• Message 1 (optional): generated by the Application/Other Enabler and sent to the
Security Handler. It is used to trigger the recovery of the core token(s). If the
Application/Other Enabler is already logged in, it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 50 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 2 (optional): generated by the Security Handler and sent to the home
AAM in which the Application/Other Enabler is registered. It is used to authenticate
the Application/Other Enabler. If the Application/Other Enabler is already logged in,
it is not necessary.

• Message 3 (optional): generated by the home AAM in the IoT platform and sent to
the Security Handler. It is used to provide the home token(s) with attributes
included. If the Application/Other Enabler is already logged in, it is not necessary.

• Message 4 (optional): generated by the Security Handler and sent to the
Application/Other Enabler. It is used to deliver the core token(s).

• Message 5 (optional): generated by the Application/Other Enabler and sent to
Application Security Handler. It is used to trigger the operations for obtaining the
foreign token(s) from IoT platform. If the Application/Other Enabler already has valid
foreign token(s), it is not necessary.

• Message 6 (optional): generated by the Application Security Handler and sent to the
foreign AAM in IoT platform. It is used to trigger the operations for obtaining the
foreign token(s). If the Application/Other Enabler already has valid foreign token(s),
it is not necessary.

• Procedure 7 (optional) (AppSecurityInterface): procedure that allows the Security
Handler that is acting on behalf of the Application/Other Enabler to demonstrate that
it is the real owner of the token(s). If the Application/Other Enabler already has valid
foreign token(s), it is not necessary.

• Procedure 7a (optional): verification of the time validity, authenticity and integrity of
the provided token(s). If the Application/Other Enabler already has valid foreign
token(s), it is not necessary.

• Procedure 8 (optional): verification of any asynchronous revocation of the token(s)
(i.e., if any token(s) have been revoked by the home AAM before the expiration time
indicated within the token itself). If the Application/Other Enabler already has valid
foreign token(s), it is not necessary.

• Procedure 8a (optional): procedure that, in case it is needed, translates attributes
that the Application/Other Enabler has in the home IoT platform in a new set of
attributes that it has in the Core Domain. If attributes are the same or the
Application/Other Enabler already has valid foreign token(s), it is not necessary.

• Message 9 (optional): generated by the foreign AAM and sent to the Application
Security Handler. It is used to deliver the foreign token(s) with the new attribute(s).
If the Application/Other Enabler already has valid foreign token(s), it is not
necessary.

• Message 10 (optional): generated by the Application Security Handler and sent to
the Application/Other Enabler. It is used to forward the foreign token generated at
the previous step.

• Message 11: Application/Other Enabler sends request access to selected resources
to Core Resource Access Monitor. Message includes foreign token obtained in
previous message

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 51 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 12: Core Resource Access Monitor returns list of URLs for selected
resources in IoT platform

• Message 13: generated by the Application/Other Enabler and sent to the Resource
Access Proxy in the foreign IoT platform. It is used to access resources, while
providing the foreign token previously obtained.

• Message 14: generated by the Resource Access Proxy and sent to the Security
Handler in the foreign IoT platform. It is used to ask to the security handler to verify
the complete validity of the token.

• Procedure 15: procedure that allows the Application Security Handler that is acting
on behalf of the Application/Other Enabler to demonstrate that it is the real owner of
the token(s).

• Procedure 15a: verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 16: verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the home AAM before the expiration time
indicated within the token itself).

• Message 17: generated by the Security Handler in the foreign IoT platform and sent
to the Resource Access Proxy. It is used to communicate the outcome of the token
validation procedures performed by the Foreign Security Handler.

• Message 18: generated by the Resource Access Proxy and sent to the Security
Handler. It is used to deliver the core token(s) previously verified and the access
policy of the requested resource to the Security Handler.

• Procedure 18a: it is used to check if the attributes included in the core token(s)
satisfy the access policy associated to the requested resource.

• Message 19: generated by the Security Handler and sent to the Resource Access
Proxy. It is used to deliver the result of the operation executed at the previous step.

• Procedure: In this procedure, the Enabler internally calculates results or fetch data
from IoT platforms or services and generates messages 20-22. This procedure is
defined in Using Resource diagram.

• Message 20: asynchronously emit resource usage per use/per stream start

• Message 21: this message can be synchronous, then Resource Access Proxy
returns data. If it is asynchronously then it can emit asynchronous messages for
some time

• Message 22: if previous message is asynchronous then this message informs Core
Resource Access Monitor when the stream is ended

3.3.14 Access to Enabler resource using its Domain-specific Interface

This is another typical usage scenario when a symbIoTe application uses resources
offered by the Enabler. In this case the application uses Enabler’s Domain-specific
Interface. The application needs to be registered only with the Enabler.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 52 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 16. Access to Enabler resource using Domain-specific Interface

Description:

• Message 1 (optional): generated by the application and sent to the Domain-specific
Interface. It is used to get Enabler token for accessing its services. If the application
is already logged in, it is not necessary.

• Message 2 (optional): generated by the Domain-specific Interface and sent to the
Enabler’s AAM in which the application is registered. It is used to authenticate the
application. If the application is already logged in, it is not necessary.

• Message 3 (optional): generated by the Enabler’s AAM and sent to the Domain-
specific Interface. It is used to provide the token(s) with attributes included. If the
application is already logged in, it is not necessary.

• Message 4 (optional): generated by the Domain-specific Interface and sent to the
application. It is used to deliver the token(s).

• Message 5: generated by the application and sent to the Domain-specific Interface.
It is used to access resources, while providing the token previously obtained.

• Message 6: generated by the Domain-specific Interface and sent to the Security
Handler in the Enabler. It is used to ask the Security Handler to verify the complete
validity of the token.

• Procedure 7: verification of any asynchronous revocation of the token(s) (i.e., if any
token(s) have been revoked by the Enabler’s AAM before the expiration time
indicated within the token itself).

• Message 8: generated by the Security Handler in the Enabler and sent to the
Domain-specific Interface. It is used to communicate the outcome of the token
validation procedures performed by the Enabler Security Handler.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 53 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 9: generated by the Domain-specific Interface and sent to the Security
Handler. It is used to deliver the token(s) previously verified and the access policy
of the requested resource to the Security Handler.

• Procedure 9a: it is used to check if the attributes included in the token(s) satisfy the
access policy associated to the requested resource.

• Message 10: generated by the Security Handler and sent to the Domain-specific
Interface. It is used to deliver the result of the operation executed during the
previous step.

• Procedure: In this procedure, the Enabler internally calculates results or fetches
data from IoT platforms or services and generates message 11. This procedure is
defined in the diagram Using Resource from enabler application.

• Message 11: If this message is synchronous, then Domain-specific Interface returns
processed sensor data. If it is asynchronously then it emits asynchronous message
with processed sensor data.

3.3.15 Reporting Enabler resource usage

Enabler is reporting on usage of resources it offers to applications.

Figure 17. Enabler resource usage reporting

Description:

• Message 1 (optional): Generated by the Monitoring and sent to the Security
Handler. It is used to trigger the recovery of the core token(s). If the Monitoring is
already logged in, it is not necessary.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 54 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 2 (optional): Generated by the Security Handler and sent to the home
(Enabler) AAM in which the Monitoring is registered. It is used to authenticate the
Monitoring. If the Monitoring is already logged in, it is not necessary.

• Message 3 (optional): Generated by the home (Enabler) AAM in the IoT platform
and sent to the Security Handler. It is used to provide the home token(s) with
attributes included. If the Monitoring is already logged in, it is not necessary.

• Message 4 (optional): Generated by the Security Handler and sent to the Core AAM
in the Core Domain. It is used to trigger the operations for obtaining the core
token(s). If the Monitoring already has valid core token(s), it is not necessary.

• Procedure 5 (optional): Procedure that allows the Security Handler that is acting on
behalf of the Monitoring to demonstrate that it is the real owner of the token(s). If
the Monitoring already has valid core token(s), it is not necessary.

• Procedure 5a (optional): Verification of the time validity, authenticity and integrity of
the provided token(s). If the Monitoring already has valid core token(s), it is not
necessary.

• Procedure 6 (optional): Verification of any asynchronous revocation of the token(s)
(i.e., if any token(s) have been revoked by the home AAM before the expiration time
indicated within the token itself). If the Monitoring already has valid core token(s), it
is not necessary.

• Procedure 6a (optional): Procedure that, in case it is needed, translates attributes
that the Monitoring has in the home IoT platform in a new set of attributes that it has
in the Core Domain. If attributes are the same or the Monitoring already has valid
core token(s), it is not necessary.

• Message 7 (optional): Generated by the Core AAM and sent to the Security
Handler. It is used to deliver the core token(s) with the new attribute(s). If the
Monitoring already has valid core token(s), it is not necessary.

• Message 8(optional): Generated by the Security Handler and sent to the Monitoring.
It is used to forward the core token generated at the previous step.

• Message 9: Monitoring generates usage report and sent it to the Core Resource
Access Monitoring.

• Message 10: Generated by the Core Resource Access Monitoring and sent to the
Core Security Handler. It is used to ask to the security handler to verify the
complete validity of the token.

• Procedure 11: Procedure that allows the Security Handler that is acting on behalf of
the Monitoring to demonstrate that it is the real owner of the token(s).

• Procedure 11a: Verification of the time validity, authenticity and integrity of the
provided token(s).

• Procedure 12: Verification of any asynchronous revocation of the token(s) (i.e., if
any token(s) have been revoked by the Core AAM before the expiration time
indicated within the token itself).

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 55 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 13: Generated by the Security Handler in the Core Domain and sent to
the Core Resource Access Monitoring. It is used to communicate the outcome of
the token validation procedures performed by the Core Security Handler.

• Message 13a: Stores report data to database

• Message 14: returns call

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 56 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

4 Components basic information tables

This chapter presents the basic information about symbIoTe Enablers’ components
implemented for the v1.0.0 and presents it in tabular style for each component in
alphabetical order.

4.1 Authentication and Authorization Manager

Component/service name Authentication and Authorization Manager

URL of source codes https://github.com/symbiote-h2020/AuthenticationAuthorizationManager

URL of Javadoc documentation https://symbiote-
h2020.github.io/AuthenticationAuthorizationManager/doxygen/

List of release v1.0.0 features
included

Registration of a new application (actor/user) in the core AAM
through Administration UI and in the platform AAM by means of the
platform owner
Obtaining foreign token using home token
Retrieval of the AAM certificates
Tokens & certificates validation against:

- signatures and expirations,
- cross-aam comms for foreign tokens validation,
- (WIP) forged trust chain (offline validation),
- (WIP) revoked credentials.

(WIP) Fine grained Issuing actors clients’ certificates (using CSRs,
user, password)
(WIP) Login with signed username and clientId tupple (issuing
home tokens)
Login with home tokens (issuing foreign tokens)
(WIP) Login for guest actors (issuing guest tokens)

• (WIP) Revoking credentials

4.2 Enabler Logic

Component/service name Enabler Logic

URL of source codes https://github.com/symbiote-h2020/EnablerLogic

URL of Javadoc documentation https://symbiote-h2020.github.io/EnablerLogic/doxygen/

List of release v1.0.0. features
included

• RAP plugin (resource read, actuation, service calling)
• Resource registration, update, unregistration
• Spring boot starter implementation
• Handling broken or unresponsive resources
• Stopping data acquisition

4.3 Monitoring

Component/service name Monitoring

URL of source codes https://github.com/symbiote-h2020/Monitoring

URL of Javadoc documentation https://symbiote-h2020.github.io/Monitoring/doxygen/

List of release v1.0.0. features • Icinga2 server has been installed in a public machine in
order to enable test by partners without the need of

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 57 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

included installing Icinga2.

4.4 Platform Proxy

Component/service name Platform Proxy

URL of source codes https://github.com/symbiote-h2020/EnablerPlatformProxy

URL of Javadoc documentation https://symbiote-h2020.github.io/EnablerPlatformProxy/doxygen/

List of release v1.0.0. features
included

• Allows scheduling and managing data acquisition tasks
• Periodically contacts the resources for each acquisition

task to download observation data
• Informs Enabler Logic about new observation data
• Allows getting observation data on request

4.5 Registration Handler

Component/service name Registration Handler

URL of source codes https://github.com/symbiote-h2020/RegistrationHandler

URL of Javadoc documentation https://symbiote-h2020.github.io/RegistrationHandler/doxygen/

List of release v1.0.0. features
included

• Rest interfaces has been implemented
• Storage in mongo db is being done
• messaging (AMQP) has been implemented. They you

communicate using the RPC RabbitMQ communication
pattern with Interworking Interface and Routing-direct
RabbitMQ communication pattern with RAP component.

4.6 Resource Access Proxy

Component/service name Resource Access Proxy

URL of source codes https://github.com/symbiote-h2020/ResourceAccessProxy

URL of Javadoc documentation https://symbiote-h2020.github.io/ResourceAccessProxy/doxygen/

List of release v1.0.0. features
included

• asynchronous messaging (AMQP) interface implemented
(to receive registration messages from Resource Handler)

• Internal storage of Platform and Resource IDs mapping
• translating Platform and Resource IDs to forward requests

to IoT platforms
• REST support to access to resources
• OData support to access to resources
• Filtering support for resources historical data
• Internal asynchronous messaging (AMQP) interface

implemented (to decouple generic rap features from
platforms’ proprietary access to resources)

• WebSocket implementation for push mechanism
• Custom information model support (BIM, PIM) with OData

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 58 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

4.7 Resource Manager

Component/service name Resource Manager

URL of source codes https://github.com/symbiote-h2020/EnablerResourceManager

URL of Javadoc documentation https://symbiote-h2020.github.io/EnablerResourceManager/doxygen/

List of release v1.0.0. features
included

• Update Task
• Cancel Task
• Support for caching resource ids
• Support for not informing Platform Proxy about tasks
• Enhance search to add more parameters, request rank

results and support SPARQL queries
• Listen for unavailable resources from Platform Proxy
• Listen for resources with wrong data from Enabler Logic
• Integrate new Security Handler

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 59 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

5 Design of symbIoTe Use Case Enablers

This section focuses on generic Enabler components (Resource Manager, Platform Proxy,
and Enabler Logic) which are domain-specific and relevant to symbIoTe use cases. It is
envisioned that symbIoTe use cases will use Enablers (if and when appropriate) to
facilitate application development. Enablers perform all processes to identify, access and
analyze sensors data originated from the underlying IoT resources.

5.1 Smart Mobility & Ecological Urban Routing Use Case

The Smart Mobility and Ecological Urban Routing (SMEUR) use-case addresses the
problem of inefficient transportation and poor air quality that many European cities face
nowadays. This use case offers the ecologically most preferable routes for motorists,
bicyclists and pedestrians based on the available traffic and environmental data acquired
through various platforms. This scenario is extremely relevant for people who travel within
the major European cities, since a constant exposure to pollutants can cause severe
health problems. It is also of the interest of the municipalities' governing bodies that, by
helping their citizens to avoid these health problems, they can reduce health care costs.
Additionally, the use case will provide a way for users to search for Points of Interests,
filtered by certain factors such as air quality, noise pollution and parking availability.
SymbIoTe empowers this use case by providing platform interoperability, allowing for
developers to easily access and handle data from different platforms and domains in the
same manner.

The use case showcases platform interoperability within the Application and Cloud Domain
with a potential for business models for bartering and trading of resources, which also
require IoT platform federations. Through symbIoTe, it is possible to obtain and use air
quality data from different platforms without having to worry about their format.
Additionally, it facilitates the development of reusable applications for urban services.

Enablers facilitate the implementation of SMEUR applications by handling air quality data
from underlying IoT platforms, and by integrating this data with external Routing Services
to find ecological routes. Furthermore, integrated air quality data exposed by the Enabler
can also serve as input to other applications, not just the one envisaged within this use
case. An example application could be the monitoring of air quality in the city to alarm
citizens in the event of pollution with potential peril for human health.

5.1.1 SMEUR workflows and Enabler Architecture

Workflows of the SMEUR use case are mapped to the Enabler Architecture, and Enabler
components are identified which are responsible for executing processes within the use
case. Workflows defined within the use case are the following:

1. Data Acquisition

2. Data Interpolation

3. Calculation of Green Route

4. Point of Interest Search.

Each of the workflows is mapped to Enabler-specific components shown in Figure 18. As
mentioned in Section 3, Enabler-specific components (Enabler Logic, Platform Proxy and
Resource Manager) need to be created and implemented according to domain-specific

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 60 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

requirements. In SMEUR domain, Enabler-specific components are defined based on the
aforementioned workflows.

Data Acquisition workflow is implemented within Resource Manager and Platform Proxy.
Data Interpolation, Calculation of Green Route and Point of Interest Search are
functionalities implemented within Enabler Logic, as shown in Figure 18. IoT platforms
used within the use case are sources of air-quality data. These platforms are OpenIoT,
UWEDAT, and MoBaaS. In the use case there also exist external services for adding
value to air-quality data from the aforementioned IoT platforms and exposed through
symbIoTe. These external services are the Routing Service (RS), and Point of Interest
(PoI) Search Service. Routes and PoIs are found by combining the best routes and PoIs
with air-quality data. Those external services can also be situated within IoT platforms (as
RS within MoBaas). Even such service within a specific IoT platform is “enriched” by using
symbIoTe because it can use resources from other symbIoTe Compliant Platforms, not
only from its own platform.

In the following parts of this Section workflows of the SMEUR use case are described in
detail, and sequence diagrams showing how these functionalities are implemented within
Enablers are introduced.

5.1.2 Data Acquisition

The workflow Data acquisition is responsible for finding resources and acquiring sensor
data from underlying IoT platforms: wearable sensors from the OpenIoT platform hosted
by UNIZG-FER, fixed stations from AIT’s UWEDAT System and sensors from Ubiwhere’s

Figure 18. Architecture of Smart Mobility & Ecological Urban Routing Enabler

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 61 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

MoBaaS platform. Resource Manager is responsible for finding the resources and Platform
Proxy for acquiring data from resources and forwarding it to Enabler Logic, where the data
is stored. All three platforms provide different sensor readings through the harmonized
interface so they can be used in a uniform way for the different locations. Acquired data is
handled by components within Enabler Logic, and offered to applications.

5.1.3 Data Interpolation

The workflow Data Interpolation finds relevant resources by using Resource Manager and
takes sensor readings as input. It has an internal state, which consists mostly of
interpolated values together with some auxiliary values (e.g., date of acquisition, version of
the underlying street grid, etc.). The component is planned to be implemented in the
Enabler-specific component – Enabler Logic.

It produces air quality indexes for street segments. The set of street segments is aligned
with those used by the Routing Service (Figure 19).

5.1.3.1 Interpolator initialization and workflows

The Interpolator and the RS use a network of street segments. Usually the RS already
works with such a network thus it makes sense to let the RS provide the network for the
Interpolator. The Interpolator component obtains its data from the underlying IoT platforms.
The selection of the resources to be used within Interpolator is done through Resource
Manager which contacts the symbIoTe Search Engine in Core Services (Figure 19).
Platform Proxy is responsible for acquiring the necessary data, so that interpolation is
made possible (Figure 20).

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 62 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 19. Initialization of Interpolator

Description:

• Message 1: Enabler Logic’s Green Route Controller sends a registration message
with street segment list of Routing Service.

• Message 2: Unique Id and Street Segment List is forwarded to Interpolator.

• Procedure 3: Interpolator saves the SSL with UID received from EL Interpolator.

• Procedure 4: Interpolator fetches the SSL to start the interpolation on each
segment.

• Message 5: SSL list is delivered to Interpolator.

• Message 6: Interpolator sends a request to fetch relevant sensors on each segment
to EL Interpolator.

• Procedure 7: Acquisition task Id is generated for the requested data acquisition.

• Message 8: EL Interpolator sends a request to Resource Manager to find relevant
sensors in SymbIoTe Core.

• Message 9: RM searches the SymbIoTe Core to find requested relevant sensors.

• Message 10: List of relevant sensors in a given area is returned to RM.

• Message 11: RM returns a search result list of sensors to EL interpolator.

• Message 12: EL Interpolator returns a list of relevant sensors with generated taskId
to Interpolator.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 63 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 20. Data Acquisition for Interpolation

Description:

• Message 1,3: Platform Proxy sends a message to query a specified sensor
registered under Platform in Cloud Domain.

• Message 2,4: Sensor data is returned to PP.

• Message 5: Acquired sensor data is sent to Enabler Logic’s Interpolator.

• Message 6: Received sensor data is forwarded to Interpolator where it is stored in
database.

There are two alternatives for triggering the Interpolator to do a new interpolation:

1. Time trigger. The Interpolator will be started on a regular base using a timer. This
method can be used to simplify the effort of implementation (Figure 21), which is
why the first version will be implemented following this scenario.

2. Event triggered. The Interpolator registers itself with the platforms and will be
informed via an event when new relevant data is available. This method ensures
the use of the most up-to-date data.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 64 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 21. Data Interpolation

Description:

• Message 1: Interpolator fetches the sensor data for each street segment from
database.

• Message 2: Sensor data is returned to Interpolator.

• Message 3: Interpolation on available sensor data is done for each street segment.

• Message 4: Interpolated value for each street segment is stored to database.

5.1.3.2 Interface for providing Interpolated Data

Once an interpolation is available, the Green Route Controller obtains it and sends the
results to the RS which requires another interface/method. Interpolated data for street
segments can be treated as if there is an (artificial) sensor for each street segment. To
keep the different interfaces homogenous with other components of symbIoTe it is
desirable to shape this interface the same way as other IoT platforms. Thus, the interface
will use the same design and behave as a RAP. This allows the Green Route Controller to
obtain data in bulk. It also allows the Green Route Controller to register for various artificial
“sensors” events and get (only) relevant updates in near real-time. This data can then be
sent to the corresponding Routing Services.

5.1.3.3 Implementation architecture and environment

A convenient set of libraries for the interpolation task is available for the Python (CPython)
environment. Since Java does not provide a similar convenient functionality, the
implementation is done in Python.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 65 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

5.1.4 Calculation of Green Route

The workflow Calculation of Green Route is implemented in Enabler-specific component
Green Route Controller. The workflow for the calculation of Green Routes allows users to
obtain routes that avoid areas with high pollution (and, possibly, other factors, such as
traffic). These services (Routing Service within MoBaaS platform or external Routing
Service, as shown in Figure 18) use the Enabler to obtain air quality data associated with
street segments (as described in the previous Data Interpolation section). This data is
used by the services in the calculations of the routes, penalizing routes that go through
highly polluted areas. As such, an additional component Green Route Controller is
developed to serve as a bridge between the Interpolator, the RS (whether as external
services or services within IoT platform) and the applications requesting ecological routes.

Note that the difference between external Routing Services and platform Routing Services
is in the following: The platform service must communicate with the Enabler through the
Platform Proxy while the external service communicates with the Green Route Controller
directly.

5.1.4.1 Obtaining Data

The RS consumes the street air quality data provided by the Interpolator so it could
provide routes through areas with low pollution. The main concern with this process is that,
whenever a route request is made, it is neither feasible nor efficient that the entire city air
quality data is obtained from IoT platforms.

As such, it is envisioned that, after the first bulk of air quality data is obtained during the
initialization of the Green Route Controller (Figure 22), only updates (and not the whole
data set) are then obtained in the future. This way, data exchange between the various
services is reduced and, by having the data stored and immediately available when a route
request is made, the whole process is done more quickly. Additionally, RS may operate
only in a restricted area and might not want to receive data from areas it does not operate
in. It is also expected that, on registering with the Enabler, RS can specify which data it
wants to receive (street id, restricted area, city, etc).

Figure 22. Initialization of the Green Route Controller

Description:

• Message 1: Enabler Logic’s Green Route Controller service sends a request to
fetch air-quality data of street segments in specified area.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 66 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 2: Enabler Logic’s Interpolator returns requested interpolated air-quality
data.

• Procedure 3: Enabler Logic’s GRC service proceeds with registration (described in
following diagrams).

There are two distinct flows designed to implement the functionalities mentioned above.
The first one is presented in Figure 23, where the Green Route Controller registers a RS.
In return, the RS send its preferences describing the data it wants to receive. Alternatively,
this can simply be a data request (e.g. the service lost all of its data and needs the Enabler
to send it again). The Green Route Controller will store the platform’s preferences and,
return the street segment list for the preferred area. Afterwards, available data for specified
street segments is sent to the platform where it is then stored and used for the calculations
of routes.

Figure 23. Registration and Data Request – external RS

Description:

• Message 1: Enabler Logic’s GRC service sends registration request directly to
external Routing Service.

• Message 2: Routing Service sends its preferences for data it wants to receive.

• Procedure 3: EL GRC registers RS with received preferences and saves it
internally.

• Message 4: EL GRC sends street segments to external RS where requested data is
available.

• Message 5: RS requests interpolated data for specified street segments.

• Message 6: EL GRC sends a response containing the requested data.

Figure 24 shows the same feature as in Figure 23 but this time the RS is part of the
platform and Green Routing Controller needs to communicate with it by using the Platform
Proxy and platform’s RAP.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 67 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 24. Registration and Data Request – RAP

Description:

• Message 1: Enabler Logic’s GRC service sends registration request to Platform
Proxy.

• Message 2: PP forwards the received registration request to Resource Access
Proxy.

• Message 3: RAP forwards the registration request to Routing Service in Cloud
Domain.

• Message 4: Routing Service sends its preferences for data it wants to receive to
RAP.

• Message 5: RAP forwards the received preferences to PP.

• Message 6: PP forwards the received preferences to EL GRC.

• Procedure 7: EL GRC registers RS with received preferences and saves it
internally.

• Message 8: EL GRC sends street segments where requested data is available, to
PP.

• Message 9: PP forwards received street segments to RAP.

• Message 10. RAP forwards received street segments to RS in Cloud Domain.

• Message 11: RS in Cloud Domain sends a request for interpolated data to RAP.

• Message 12: RAP forwards the received request to PP.

• Message 13: PP forwards request to EL GRC.

• Message 14: EL GRC sends a response containing the requested data to PP.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 68 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 15: PP forwards the response to RAP.

• Message 16: RAP delivers a response with the requested data to RS in Cloud
Domain.

The second flow relates to obtaining data updates from the Interpolator. Only changes of
the air quality state in the street segments are needed, since the rest of the data is already
stored by the RS. This reduces the amount of data that needs to be sent between the
Interpolator and the RS. Additionally, it reduces the time for the processing of a route
request, since the RS containing the service only updates the information it needs for
processing. As can be seen in Figure 25, the Interpolator sends its data updates to the
Green Route Controller, which sends the relevant information to RS.

Figure 25. Air Quality Data Updates – external RS

Description:

• Message 1: Enabler Logic’s Interpolator sends refreshed interpolated data for street
segments where changes occurred.

• Message 2: For each registered external Routing Service updates with new values
of interpolated data for street segments are sent accordingly.

Error! Reference source not found. shows the same flow as in Figure 25 but this time
the RS is part of the platform and Green Route Controller needs to communicate using its
Platform Proxy and platform’s RAP

Figure 26. Air Quality Data Updates – RAP

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 69 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Description:

• Message 1: Enabler Logic’s Interpolator sends refreshed interpolated data for street
segments where changes occurred.

• Message 2: For each registered Routing Service in Cloud Domain updates with new
values of interpolated data for street segments are sent accordingly to Platform
Proxy first.

• Message 3: PP forwards received updates to Resource Access Proxy.

• Message 4: RAP forwards received updates to RS in Cloud Domain.

Using these diagrams, the RS will have an updated set of data regarding the air quality for
the relevant street segments.

5.1.4.2 Obtaining Route

As can be seen in Figure 27, the process of obtaining an ecological route is performed
with a low overhead since an RS already stores up-to-date information needed for route
calculation, as explained in the previous subsection. A registered application makes a
request to the Green Route Controller within the Enabler, who directs it to the appropriate
RS which can answer its request. The RS uses the collected air quality data, plus any
other available data (e.g. traffic density data) to calculate the route. For this particular use
case, the used RS will be provided by the AIT’s routing service and Ubiwhere’s MoBaaS
platform.

Figure 27. Obtaining Ecological Route – external RS

Description:

• Message 1: Application sends a request for green route to Domain-Specific
Interface or Resource Access Proxy.

• Message 2: Request is forwarded towards Enabler Logic’s Green Route Controller.

• Message 3: EL GRC contacts directly external Routing Service to calculate best
route according to its preferences.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 70 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Procedure 4: RS calculates the best route based on the available interpolated data
on street segments between starting point and end point.

• Message 5: RS sends the calculated route to EL GRC.

• Message 6: EL GRC forwards received route to DSI/RAP.

• Message 7: Requested route is sent to application that requested it as a response.

Figure 28 is the same as Figure 27 but this time the RS is in the platform and Green Route
Controller needs to communicate by using Platform Proxy and RAP.

Figure 28. Obtaining Ecological Route – RAP

Description:

• Message 1: Application sends a request for green route to Domain-Specific
Interface or Resource Access Proxy.

• Message 2: Request is forwarded towards Enabler Logic’s Green Route Controller.

• Message 3: EL GRC forwards the received request to Platform Proxy.

• Message 4: PP forwards the request to Resource Access Proxy.

• Message 5: RAP forwards the message to Routing Service in Cloud Domain.

• Procedure 6: RS calculates the best route based on the available interpolated data
on street segments between starting point and end point.

• Message 7: RS sends the calculated route to RAP.

• Message 8: Rap forwards the received route to PP.

• Message 9: PP forwards the received route to EL GRC.

• Message 10: Received route is returned to DSI/RAP.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 71 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 11: Requested route is sent to application that requested it as a response.

5.1.5 Point of Interest Search

The workflow Point of Interest (PoI) Search is planned to be implemented in an Enabler-
specific component named PoI Search. The workflow allows users to search for PoIs, such
as restaurants or bars. Furthermore, for the PoI location air quality data is fetched (and
any other available data) so the user can choose and filter received results according to
his/her preferences. The required data characterizing a PoI is obtained through symbIoTe-
compliant platforms. It can then be possible for an application to use the PoI Search
component to obtain a destination and subsequently to use the Green Route Calculator
component to find a way to reach it.

As can be observed in Figure 29, an application makes a request to the Enabler, asking
for preferred PoIs near a certain location. The PoI Search component requests from an
external PoI Search Service the PoIs near the location. The PoI Search component
abstracts this PoI Search Service for the application. For this use case, the
OpenStreetMap (OSM) APIs is used, but others, such as Foursquare, can also be
integrated and used. After obtaining requested PoIs, the PoI Search component, for each
item, requests the interpolated air quality data from Interpolator on a specified segment
where the PoI is located. PoIs are then filtered according to proposed preferences and
finally returned to the application with all available data so the user can easily choose a
desired PoI according to his/her preferences.

Figure 29. Point of Interest Search

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 72 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Description:

• Message 1: User/Application sends a request (REST) for specified points of interest
in a specified area to Domain-Specific Interface or Resource Access Proxy.

• Message 2: DSI/RAP forwards the request to Enabler Logic’s Point of Interest
service (RabbitMQ).

• Message 3: EL-PoI service sends a request to OSM APIs to fetch the required PoIs
in a specified area.

• Message 4: OSM returns a list of found matching PoIs.

• Message 5,6: For each received PoI EL-PoI service fetches interpolated air-quality
data on a street segment where PoI is located.

• Procedure 7 (optional): PoIs are filtered according to preferences if needed.

• Message 8: Results are returned to DSI/RAP (RabbitMQ).

• Message 9: Response is forwarded to Application as a HTTP-response.

5.2 Smart Yachting – Use Case

The focus of Smart Yachting is to provide advanced services for the Yachting industry
based on IoT solutions. The use case is divided in two specific showcases:

• Smart Mooring aims to automate the mooring procedure of the port, which is quite a
bureaucratic and tedious process, since Marinas operate in strongly regulated
contexts. For this use case, the workflow logic is provided by a Navigo application
(Portnet).

• Automated Supply Chain aims to automatically identify the needs for goods and
services on board of the Yacht, so that automated requests for offers can be issued on
the marketplace platform of the Port, provided in the use case by another application of
the Navigo infrastructure (Centrale Acquisti).

Both showcases exploit data from IoT sensors to automatically acquire information from
the Yacht and to pass them to the aforementioned business applications that are
connected to the Port infrastructure.

We assume that the Mooring and the Supply Chain Management systems are connected
to the symbIoTe ecosystem through an Enabler. This should facilitate the integration of the
two business applications with symbIoTe, by encapsulating the technical details of the
whole IoT infrastructure within the Enabler to expose only the minimum set of methods to
the applications, while guaranteeing that the required communication and data exchange
is performed to facilitate the use case.

This is particularly important, since each Port that in the future might adhere to symbIoTe
for implementing the Smart Yachting use case, must integrate their Mooring and Supply
Chain Management systems. We are not aiming in fact to integrate only Navigo's port
applications but other software systems used in Ports: it is therefore of paramount
importance to simplify how these applications can integrate symbIoTe-enabled IoT
solutions into their use case.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 73 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

There is a huge variety of software systems in Marinas. Their integration of the Smart
Yachting use case must be as simple as possible, and totally hassle-free. In theory, they
must be able to ignore the inner details of the M2M interactions (and of symbIoTe) and
that's exactly the main "added value" that an Enabler provides in this use case.

As already stated, currently the Smart Yachting Enabler eases the integration of data from
the yachts with data in the ports and port applications, to facilitate the mooring and supply
process. Looking in perspective, this specific Enabler could offer integrated data from a
larger number of ports and a larger number of yachts on a wider area, to better match the
needs of yachtsmen with port facilities and offer alternative services to the yachts
according to the current conditions and offerings. For instance, based on the offering in
marinas, the location of the yacht and the preferences of the passengers onboard (e.g.,
they look for specific services in the port they are about to stop), the Enabler could
recommend to the yachtsman the port at which to moor. Moreover, the enabler could
present in real time the number of free places for boats or the weather forecasts in all the
ports integrated in symbIoTe’s Smart Yachting, so that the yachtsman can choose the best
port for mooring.

The Smart Yachting use case assumes to be Level 1 (L1), Level 3 (L3) and Level 4 (L4)
compliant for Smart Mooring and L1 for the Automated Supply Chain showcase: at present
the implementation of the Smart Space middleware (which will be used in Smart Mooring)
is still in the design phase, therefore the hypotheses presented herein are based on the
current state of the analysis for L3 and L4 symbIoTe components.

5.2.1 Smart Mooring

Smart Mooring simplifies, through M2M interactions, the mooring authorization workflow. It
allows the Port’s workflow management system to automatically retrieve data from the
Yacht that is needed for the workflow authorization.

We want to intercept a particular phase of the Mooring process, which starts when the
Yacht is approaching to a destination port and ends when it finally berths into one of its
piers. We assume that the initial mooring request (a sort of "booking" for the boat in the
Port) always starts off-line or in any case outside symbIoTe.

The hypotheses that we are considering for Smart Mooring involve several interactions
amongst the Boat, the Port IoT System and the symbIoTe components. In details:

• Since the Yacht is a roaming Smart Device (symbIoTe L4 device), its ID must be
maintained in the Registry. Here two specific properties will be associated (and kept
updated) for each Yacht: ConnectionStatus and ConnectedInPort. The former
registers how (and if) the Yacht is connected and can assume as possible values:
“disconnected”, “LoRaWAN” and “WiFi”. The latter, when ConnectionStatus is not
“disconnected”, will take as the value the ID of the Port where the Yacht is
connected (note: in WP4 it has been assumed that Roaming Devices’ properties
are maintained in the Core Registry).

• LoRaWAN connectivity will be used: we assume therefore that a specific LoRaWAN
controller is attached to the Smart Space (SSP) middleware.

• When approaching the port, the vessel – as a Smart Device (SDEV) – is detected
by the SSP LoRaWAN controller and registered by it to the SSP Innkeeper (which,
in turn, updates the Yacht/SDEV properties in the symbIoTe Core Registry).

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 74 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• The mooring application receives through its enabler a notification that a new Smart
Yacht SDEV has been registered to the SSP of the port: this event activates the
mooring workflow.

When the Yacht is near the port, again through LoRaWAN, a Wi-Fi password is
transmitted to the Yacht SDEV, which starts a full Internet connection. Therefore, the
Yacht, as a SDEV, first connects via LoRaWAN and then connects via Wi-Fi when the
latter signal is strong enough. This connection change allows PortNet’s Enabler to request
the retrieval of data from boat sensors.

The interactions described above are depicted in the following UML sequence diagrams.
We have divided the mooring process in two parts: the first one describes the moment in
which the Yacht is approaching the port. In details:

1. The Mooring Management System (PortNet) waits for the incoming Yacht; it
requests to the Enabler Logic (via a Domain-specific Interface or the RAP) to detect
the Yacht arrival.

2. The Enabler Logic will request the Resource Manager to query at a specified
frequency (e.g. every 5 minutes), the ConnectionStatus property of the Yacht in the
symbIoTe Core Registry (via the Core Search Engine), so that it can detect when it
becomes different from “disconnected”.

3. The Yacht approaches the port; its LoRaWAN sensor connects to the Port's
Antenna and sends its ID.

4. The LoRaWAN controller, which will be supervised by the Smart Space Middleware,
will update the ConnectionStatus and ConnectedInPort properties of the Yacht in
the Registry.

5. The Resource Manager queries once again the symbIoTe Core and retrieves the
values for the properties ConnectionStatus and ConnectedInPort to the Enabler
Logic. This time the ConnectionStatus == “LoRaWAN”, so Enabler Logic notifies
Portnet, via the Domain-specific Interface/RAP, of the incoming ship.

6. PortNet automatically starts the mooring procedures for the specific Boat and alerts
the Port Authority operators and Port personnel.

688156 - symbIoTe - H2020-ICT-2015

Version 1.0
 © Copyrig

Figure 30. Sequence Diagram of the Smart Mooring showcase

The second sequence diagram shows the arrival of the Yacht in the harbour and the
accomplishment of the mooring procedure.

2015 D2.6 – Domain-Specific Enablers and Tools
Public

right 2017, the Members of the symbIoTe consortium

Sequence Diagram of the Smart Mooring showcase – 1. The Yacht
the Port

The second sequence diagram shows the arrival of the Yacht in the harbour and the
accomplishment of the mooring procedure.

Specific Enablers and Tools

Page 75 of 97

. The Yacht approaches

The second sequence diagram shows the arrival of the Yacht in the harbour and the

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 76 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 31. Sequence Diagram of the Smart Mooring showcase – 2. The Yacht arrives in
the Port

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 77 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

In details:

• Message 1: Through LoRaWAN the Yacht receives the credentials to connect to the
Port’s Wi-Fi network: they will be sent by the SSP middleware (note: the actual
process to implement this is still under investigation in WP4).

• Message 2: Yacht detects strong Wi-Fi signal.

• Message 2a: The Yacht connects to Wi-Fi.

• Message 3: When Yacht connects to Wi-Fi network the symbIoTe-Agent of the
Yacht connects to the SSP.

• Message 4: The SSP middleware updates the Yacht property ConnectionStatus to
“WiFi” in the symbIoTe Core’s Registry.

• Message 5: The Resource Manager queries once again the symbIoTe Core and
retrieves the values for the properties ConnectionStatus and ConnectedInPort.

• Message 5a: The symbIoTe Core returns requested data (ConnectionStatus,
ConnectedInPort).

• Message 5b: Resource Manager sends to the Enabler Logic search results from the
symbIoTe Core

• Message 5c: Enabler logic checks if the ConnectionStatus == “WiFi”. This time it is
true so it continues with following messages.

• Message 5d: Enabler Logic sends request to the Resource Manager to stop data
acquisition for the Yacht’s properties.

• Message 6: The Enabler Logic requests the Platform Proxy to acquire data from the
Yacht IoT platform, by invoking once its two services getLatestSensorDataService
and getLatestRouteService.

• Message 7: The Platform Proxy invokes the services of the Yacht.

• Message 8: The Yacht grants access and returns its data.

• Message 9: The Platform Proxy receives these data and passes them to the
Enabler Logic.

• Message 9a: Enabler Logic verifies the data.

• Message 9b: Enabler Logic informs Portnet about the Yacht by sending YachtID
and status.

• Message 10: Portnet updates the workflow, processes the incoming data.

• Message 10a: Portnet sends alert to the Port Authority Operator.

• Message 10b: Portnet sends alert to the Port Personnel.

• Message 11: Enabler Logic requests Resource Manager to start fetch data (with a
short frequency, e.g. every minute) from the Port IoT platform, to verify if the Yacht
has arrived at the specified pier.

• Message 11a: Resource Manager starts data acquisition by sending request to
Platform Proxy.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 78 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 11b: Platform Proxy periodically acquires data of the presence sensor
attached to the Port’s pier (Port IoT Platform).

• Message 11c: Port IoT Platform returns sensor reading to Platform Proxy.

• Message 11d: Platform Proxy forwards data to Enabler Logic.

• Message 11e: Enabler Logic checks data.

• Procedure 12: Yacht IoT Platform is berthing in Pier X.

• Message 12a: The Yacht arrives at the pier and through RFID sensors the Port IoT
platform acknowledges its presence.

• Message 13: Platform Proxy queries the Port IoT platform.

• Message 13a: Port IoT Platform returns sensor reading.

• Message 13b: Platform Proxy sends acquired data to Enabler Logic.

• Message 13c: Platform proxy verifies that the Yacht has arrived at the correct
destination.

• Message 13d: Enabler Logic updates workflow data with the yacht status to the
Portnet.

• Message 14: Portnet sends an alert to the Port Authority Operator and closes the
mooring workflow.

Currently the use case has been concentrated on the process of intercepting the Yacht
arrival in the Port, which is the only action that the Mooring workflow applications (like
Navigo’s Portnet) consider. From a Smart Space viewpoint, it should be also taken in
consideration the case of the Yacht leaving the port, which must induce to update the
Yacht properties in the Core. At present, it hasn’t been finalized yet how to face this
situation: we can expect for example an explicit “departure” action performed by Yacht’s
symbIoTe Agent but generally speaking we will use the same design pattern that emerges
in WP4 to manage the use case of a Roaming Device leaving a Smart Space.

5.2.2 Automated Supply Chain

The Automated Supply Chain (ASC) workflow can be seen as a particular case of the
latter part of the Mooring use case. The Centrale Acquisti web application (by Navigo),
through an Enabler, accesses the resources of the Yacht (sensors) to retrieve information
about the needs (of goods or services) onboard.

We will integrate Navigo’s Supply Chain application (Centrale Acquisti) but the overall goal
is to implement a general solution, as simple and straightforward as possible, that allows
any software vendor that has a Supply Chain system for Marinas to make it compatible
with this use case. We want to hide all the inner details about the interactions with the
yacht sensors and the symbIoTe infrastructure by encapsulating the integration logic in the
Enabler.

In order to make Smart Yachting successful we have to guarantee that the largest
numbers of ports (and therefore of their IT systems) can support easily the use case. We
are not aiming in fact to integrate only Navigo's port applications but other software

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 79 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

systems used in Ports as well, which are quite often implemented with simple and not
modern technologies (e.g. Access, Visual Basic, …).

Like in the previous case, we assume that the showcase will always start off-line or in any
case outside symbIoTe.

The following sequence diagrams illustrate the steps of the Automated Supply Chain
showcase.

Figure 32. Sequence Diagram of the Automated Supply Chain showcase

Message details:

• Message 1: While the yacht is berthed in a "smart" port, a yachtsman connects to
the Centrale Acquisti (CA) supply chain application through a common web
browser.

• Message 1a: CA acknowledges the receipt of yacht’s registration.

• Message 2: CA sends request to the Domain-specific Interface/RAP to acquire data
from the Yacht.

• Message 2a: Domain-specific Interface/RAP forwards request to Enabler Logic.

• Message 3: Enabler Logic requests Platform Proxy to invoke once two services of
the Yacht, getMaintenanceNeedsService and getConsumableNeedsService.

• Message 4: Platform Proxy sends request to the yacht’s IoT platform to invoke
those services.

• Message 5: The yacht’s IoT Platform grants access, invokes the services and
returns the results to the Platform Proxy.

688156 - symbIoTe - H2020-ICT-2015

Version 1.0
 © Copyrig

• Message 6: Platform Proxy

• Message 6a: Enabler Logic

• Message 6b: Enabler Logic returns
Interface/RAP.

• Message 6c: Domain-specific Interface/RAP returns data

• Message 7: CA tries to find a possible match with the
services in the port area.

Message 7a: CA returns to the yachtsman a list of proposals
will manage these proposals in the CA web application

5.3 Smart Residence – Use Case

The Smart Residence use case
home IoT solutions through a generalized abstract model to describe inter
objects, providing a dynamic configuration of available services a
homogeneous user experience.

A health monitoring system, in addition to the smart living platform, has the ability to create
a comfortable, safe and helpful living/residence environment, supporting a scenario where
residents are provided with context
home.

Figure

5.3.1 Location based resource filtering

The Energy Story showcase

) presents a couple of typical home automation situation,
seamlessly adapts to meet its users' needs: the first
the surrounding changes according to predefined user comfort valu
scenario is the Dynamic Interface Adaptation,
the devices in range. In both cases the system must be able to select physical devices
based on their location inside the space; moreover, this proper
symbolic location (e.g. room, floor, etc.) and not by coordinates. Enabler
implementation of Smart Residence

2015 D2.6 – Domain-Specific Enablers and Tools
Public

right 2017, the Members of the symbIoTe consortium

atform Proxy returns these data to the Enabler Logic

Message 6a: Enabler Logic verifies received data.

Message 6b: Enabler Logic returns the information to the Domain

specific Interface/RAP returns data to CA.

ries to find a possible match with the suppliers of
services in the port area.

the yachtsman a list of proposals for supplies.
in the CA web application.

Use Case

use case aims to demonstrate interoperability across different smart
home IoT solutions through a generalized abstract model to describe inter
objects, providing a dynamic configuration of available services a
homogeneous user experience.

A health monitoring system, in addition to the smart living platform, has the ability to create
a comfortable, safe and helpful living/residence environment, supporting a scenario where

ith context-aware and personalized health and comfort services at

Figure 33. Smart Residence showcases

Location based resource filtering

Energy Story showcase (Figure 33Figure 33. Smart Residence showcases

a couple of typical home automation situation, where the environment
to meet its users' needs: the first scenario is the Energy Saving

changes according to predefined user comfort valu
Dynamic Interface Adaptation, with a user control interface

in range. In both cases the system must be able to select physical devices
on their location inside the space; moreover, this property must be addressed as a

symbolic location (e.g. room, floor, etc.) and not by coordinates. Enabler
Smart Residence applications by offering an indoor location system for

Specific Enablers and Tools

Page 80 of 97

these data to the Enabler Logic.

the Domain-specific

.

suppliers of goods and

for supplies. The yachtsman

aims to demonstrate interoperability across different smart
home IoT solutions through a generalized abstract model to describe inter-connected
objects, providing a dynamic configuration of available services and a natural and

A health monitoring system, in addition to the smart living platform, has the ability to create
a comfortable, safe and helpful living/residence environment, supporting a scenario where

aware and personalized health and comfort services at

Smart Residence showcases

where the environment
Energy Saving, where

changes according to predefined user comfort values, the second
user control interface able to manage

in range. In both cases the system must be able to select physical devices
ty must be addressed as a

symbolic location (e.g. room, floor, etc.) and not by coordinates. Enabler facilitates the
offering an indoor location system for

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 81 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

the Smart Space (implies L3 compliance): this was necessary as the GPS system is not
suitable for indoor location purposes.

SSPs are defined as physical areas where one or more IoT platforms coexist, each of
them providing some kind of service: in this way, they define abstract boundaries for the
IoT services and platforms they embrace. Different platforms, though, can use different
names for the same spaces, areas and locations. For example, a platform could split a
building in many floors, and register devices indicating to which floor they belong, as well
as another platform can use rooms to indicate symbolic locations for its resources. This
presents is a different way to subdivide the same building.

It is necessary for this use case to manage all the symbolic locations defined for an SSP,
to classify them in some kind of a tree view, to allow the Enabler to understand the actual
hierarchy of the SSP’s topology. This operation is provided by a manual configuration
made by the SSP administrator, that must be able to rearrange all the registered areas to
specify whether one contains or is contained by another (e.g. floors in buildings, rooms in
floors, etc.); for this purpose, an administration console has to be provided to the SSP
supervisor.

The Location based resource filtering Enabler must be able to filter devices of the Smart
Space basing on their registered position (which can be a building, floor, room, etc.), after
the results gathered from the Search component. This means that an additional filtering is
applied to the result coming from the symbIoTe Core Services. To achieve this goal, the
Enabler will implement and register a Service in the Core.

For instance, we could have an SSP where some resources are registered with bedroom
A as location and some others with a more generic first floor (obviously bedroom A is a
room located at the first floor). Whether the application has searched for resources at first
floor, the Enabler Logic, by knowing the hierarchy of locations, will include bedroom
resources in results, in addition to the ones registered as located at the first floor.

The use of an Enabler is motivated by the fact that not all Smart Residence environments
need to have such hierarchy and that, in cases it is needed, it is obviously specific to this
particular use case.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 82 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 34. Indoor Location search

Every time an application needs the list of resources based on their location, the sequence
of events is triggered, as shown in Figure 34 (for hidden steps see Section 3.3.8 and
Figure 10):

• Massage 1: Application sends a search request specifying the SSP and one of
its locations (e.g. "bedroom").

• Message 2: The Enabler Resource Access Proxy receives the request and
forwards it to the Enabler Logic.

• Message 3: Then the Enabler Logic, through the Resource Manager, sends the
following message.

• Message 4: Resource Manager queries the Core Search component in order to
retrieve all the resources registered in the SSP.

• Message 5: Core Search component returns search results.

• Message 6: Resource Manager forwards search results to Enabler Logic.

• Procedure 7: The results are filtered by the Enabler Logic basing on their indoor
location.

• Message 8: The final list of resources in specified location is sent to the
Resource Access Proxy.

• Message 9: Resource Access Proxy returns filtered results to the Application

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 83 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Locations need to be registered within the Core Services in accordance with the
Information Model specified by the platforms involved in this use case and those locations
must be human understandable definitions, to allow the SSP administrator to be able to
manage their relationships.

5.3.2 Smart healthy indoor air

S&C will develop an application based on the indoor/outdoor air quality monitoring and
pursues to improve indoor air quality through recommendations. Also, the application will
monitor the sleep quality by using a sensor that will be located beneath a mattress. The
device tracks heart rate, breathing, and movement without requiring the user to wear
anything.

Air pollution does not just have a negative impact on the environment. The World Health
Organization has found that air pollution may be a predictor of poor sleep. Improving
indoor air quality may be one way to enhance sleep health and comfort.

The S&C’s platform named nAssist (symbIoTe L2-compliant) will acquire, store and
process all data characterizing indoor air quality, e.g. temperature, humidity and CO
sensors will be used. Without this information, usually we ventilate rooms late and for too
long. This application (smart healthy indoor air) will indicate when, how and for how long a
room should be ventilated taking into consideration that windows is the easiest ventilation
option but not the healthiest one depending on the outdoor air quality. There are other
ways to provide healthy flow of air throughout the room, such as turning on the air
conditioner or individual air purifiers. Also, this application will correlate sleep quality with
indoor air quality by monitoring the sleep pattern.

Given the limited number of fixed monitoring stations available and placed at
representative spots, an accurate assessment of outdoor spatial variation of air quality is
highly required. Spatial interpolation techniques applied to the available monitoring data to
provide air quality information closest to the location of the smart home to be monitored.
This functionality will be provided by the component named as Interpolator, implemented
within the module Enabler Logic. The outdoor air quality can be measured through the
nAssist platform or by using external services, e.g. the Network of Vigilance and Forecast
of the Quality of the Air provided by the Catalan Government.

nAssist will make the outdoor sensors and their data available to symbIoTe. This
application will send the GPS location of the smart home and will get from symbIoTe the
estimated value about the air quality for this specific location which will use the SMEUR
Enabler – Data Interpolation workflow (section 5.1.3).

Also, nAssist will offer the sleep quality information acquired by the sensor located
beneath the mattress. The monitoring of sleep quality and vital signs could be done
through the Smart Health Mirror developed by AIT in combination with the health
parameters monitored by SMILA (Smart Mirror Living Assistant). In this way, symbIoTe will
enable to extend the current SMILA application by including new health indicators acquired
by the platform nAssist and also extend the ‘Smart Healthy Indoor Air’ application by
including other health indicators that could extend the assessment of the environmental
impact of poor indoor air quality on human health. Details of the complete use case are
included in D5.2 [8].

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 84 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

5.4 Smart Stadium – Use Case

Indoor location (and subsequently navigation) is a field in which existing solutions are not
providing a universal and generally applicable solution, though there is a growing need to
provide a universal and generally useable solution.

Outdoor location and navigation is generally provided by Global Navigation Satellite
Systems (GNSS) such as GPS, Galileo and GLONASS which provide very precise
outdoor positioning. With the introduction of satellite positioning functions in almost all
smartphone platforms, coupled with internet-based maps and navigation systems, many
very useful applications have been developed and are widely used (from general
positioning, street turn-by-turn navigation, to live route recalculation coupled with real-time
traffic information). However, outdoor location and navigation cannot be used for indoor
location where GNSS signals cannot penetrate. Satellite navigation also cannot be used in
long street/urban canyons with high aspect ratio or near large infrastructures which
obscure large portions of the sky.

Various proposals and methods for indoor location exist today, but most of them are
limited in precision or scope. Typical solutions are based on WiFi (discovering nearest
WiFi hotspots) which can provide location with a precision of 5 to 10m. Such systems can
be augmented with Bluetooth beacons which can improve the precision to 1-3m range, but
require a large number of additional beacons to be installed and managed in indoor
spaces.

The best precision is achieved by proprietary solutions using Ultra-Wideband transmitters
and locator tags, bringing the precision to 10-30cm in controlled environments where such
precision is required usually by industrial application – locating and managing autonomous
fork-lifts in warehouses or manufacturing spaces.

Within 3GPP-based mobile networks, Location Services (LCS) are included as part of the
standards since the beginning, mostly based on the data extracted from the OSS
(Operations Support Systems) environment. Lower precision is obtained by detecting the
cell in which the user equipment (UE) currently resides (typically by capturing data on the
probes monitoring the signaling traffic and detecting the events such as Location Updates
when a user changes an active cell, or other types of events such as calls, text messages,
data sessions, which also contain the information about the active cell). Enhanced
positioning tools extract the data from radio interfaces and can calculate a position more
precisely by triangulation of the signals received from multiple neighboring radio towers.

Within initiatives for further development of next-generation mobile networks (grouped
within 5G), technical specification (TS) 22.261 for Release 16 defines the requirements for
UE positioning based on hybrid approaches using both the 3GPP and non-3GPP
technologies. The aim is to provide a standardized solution for a “higher-accuracy
positioning” with an expected precision of 30-50cm (even 10 cm in autonomous vehicle
use case), covering both indoor and outdoor usages. Since deployments of 5G networks
based on Release 15 are expected in the end of 2018 and based on Release 16 in 2020,
standardized solutions for higher-accuracy UE positioning in 5G networks will not be
available during the lifetime of the symbIoTe project.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 85 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

5.4.1 Network-based Location Enabler

Similar to the requirements for UE positioning in Release 16, a Network-based Location
Enabler (NLE) is using a hybrid solution for indoor location, collecting the data from all
available location providers (other Platforms) and then performing the calculation of the UE
position which is then returned to a requesting user.

A typical problem for indoor location and navigation is also that actual coordinates in the
indoor environment are not very useful, and that a “human-readable” definition of indoor
location is required. Thus, symbIoTe applies the Smart Space (SSP) concept to different
indoor environments, e.g., campus, residence, shopping mall, parking space or
stadium/arena, proposing a tree-like structure to define symbolic locations within SSPs, as
defined in Section 5.3.1, where the tagging of areas within an SSP needs to be performed
by an administrator for each SSP.

Indoor location is performed by a user device (typically a smartphone) as a sensor which
detects various network technologies present in its environment (Cell information from
mobile network, nearby WiFi access points, visible Bluetooth beacons and any other
possible sources) and sends this information as a parameter in a location query to a NLE.
NLE needs to know which platforms it can query to receive relevant information for a
certain SSP. It can query the symbIoTe Core Services to identify relevant platforms for the
SSP. Alternatively, the list of such platforms can be predefined since indoor navigation is
typically used by smartphone applications tailored for a certain SSP (e.g., applications
provided by event organizers in Smart Stadium/Arena, shopping mall guide application,
home management system for Smart Residence).

5.4.2 Source platforms for an Enabler

Main problem of all indoor location systems (and also in general of WiFi-based location
services) is quality of the underlying data where data is typically collected by wardriving or
crowd sourcing where even if data is collected from the air, when it’s sent to the collecting
system it’s not precisely located (as sensor collecting it cannot know from GPS or any
other system its precise indoor location). Only way to improve this is by infrastructure
owners or network owners to publish exact positions (including the vertical coordinate and
symbolic location description) of WiFi hotspots, BLE beacons and mobile network
components, together with the indoor map of the area.

The usability of mobile network data for indoor positioning and navigation dramatically
improves with new designs of indoor coverage systems, which are deployed by utilizing
smaller cells and more precise antenna systems (beamforming and massive MIMO),
especially in the areas where high user density is expected (stadiums and closed arenas,
airports, shopping malls, office buildings, public buildings) or in the outdoor cases where
sky visibility is limited (urban canyons, large structures).

688156 - symbIoTe - H2020-ICT-2015

Version 1.0
 © Copyrig

Figure 35. Cellular

Therefore, an NLE would need to
which could (but not limited to) include

• Mobile network OSS
especially in small cell indo
cell can be exactly mapped from the design and installation documentation to the
location and provided indoor map.

• WiFi infrastructure from the manager of the venue/campus
publishing information
installation information with installation from WiFi network controllers (such as Cisco
WLC platform or Ubiqutiy airControl or other such systems).

• Bluetooth beacons deployed
mapped to the indoor map.

2015 D2.6 – Domain-Specific Enablers and Tools
Public

right 2017, the Members of the symbIoTe consortium

Cellular network coverage map (semi-closed stadium)

would need to send a query for indoor location
which could (but not limited to) include the following:

OSS – reports UE’s currently active and
especially in small cell indoor scenario where location and coverage of the small
cell can be exactly mapped from the design and installation documentation to the
location and provided indoor map.
WiFi infrastructure from the manager of the venue/campus

ormation from installed WiFi infrastructure, combining the physical
installation information with installation from WiFi network controllers (such as Cisco
WLC platform or Ubiqutiy airControl or other such systems).

deployed and managed by the venue/facility
mapped to the indoor map.

Specific Enablers and Tools

Page 86 of 97

stadium)

indoor location to various sources,

and neighboring cells,
or scenario where location and coverage of the small

cell can be exactly mapped from the design and installation documentation to the

WiFi infrastructure from the manager of the venue/campus – extracting and
from installed WiFi infrastructure, combining the physical

installation information with installation from WiFi network controllers (such as Cisco

y the venue/facility which are precisely

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 87 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 36. Indoor WiFi coverage map (an office building example)

Due to fragmentation of potential sources, an Enabler is appropriate to provide symbolic
location information for indoor spaces since the provided service is indeed generic, but
also domain-specific as it depends on the configuration of each SSP where location
information is needed. For example, a NLE can query the symbIoTe Core to find adequate
platforms which provide location or positioning services for a certain SSP, and each
platform responds with a position (e.g., physical coordinates, including the height). The
NLE then utilizes a workflow similar to the Interpolator from SMEUR use case to provide
an estimate of symbolic location which is usable within the SSP for end user applications.

5.4.2.1 Enabler Workflow

Indoor location service would be deployed on a UE as part of a Client Application provided
by an event/facility/campus manager (Music Festival application, Sport club, shopping
mall, campus/organization application) or abstractly as a service to other applications. The
NLE workflow is depicted in the diagram included in Figure 37.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 88 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Figure 37. NLE workflow for indoor positioning

• Message 1: A client detects its approximate last-known position from the user

device (can be read on certain platforms) and the network fingerprint information.
The client sends them in a positioning request to the Enabler (Domain-specific
Interface or Resource Access Proxy, DSI/RAP).

• Message 2: DSI/RAP forwards the positioning request to Enabler Logic which
includes an Indoor Positioning component.

• Message 3: Enabler Logic sends the request to Resource Manager to search for
indoor location services in the vicinity of client’s last-known position.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 89 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

• Message 4: Resource Manager sends request to the symbIoTe Core for indoor
location services in the vicinity of client’s last-known position.

• Procedure 4a: symbIoTe Core searches its DB.
• Message 5: The list of nearby Indoor Location Provider services is returned to the

Resource Manager.
• Message 6: Result from the symbIoTe Core is returned to Enabler Logic.
• Messages 7-8 are sent to each indoor positioning platform.
• Message 7: Enabler Logic sends the network fingerprint information to an indoor

positioning platform.
• Procedure 7a: Positioning service determines client position based on the network

fingerprint information.
• Messages 8: Indoor positioning platform returns location estimation (GPS position,

vertical position and precision).
• Procedure 8a: Enabler Logic calculates the position from the received data by doing

a weighted average of the data received from multiple positioning platforms.
• Message 9: Enabler could return the numerical location to the Client,
• Message 10: An alternative is to find symbolic location from numeric position.

Enabler Logic sends request to Resource Manager to search for symbolic location
service.

• Message 11: Resource Manager searches the symbIoTe Core for symbolic location
service for a specified GPS location.

• Procedure 11a: symbIoTe Core searches its DB.
• Message 12: symbIoTe Core returns list of nearby symbolic location service

providers.
• Message 14: Enabler Logic sends request to Platform Proxy to send one time

request to the Symbolic Location Positioning Platform with GPS location, height and
precision.

• Message 15: Platform Proxy forwards request to Symbolic Location Positioning
Platform.

• Procedure 15a: Symbolic Location Positioning Platform converts location based on
numeric position data (GPS location, vertical position, precision) to the symbolic
location (building/floor/room).

• Message 16: Symbolic Location Positioning Platform returns symbolic location to
the Platform Proxy.

• Message 17: Platform Proxy returns result to Enabler Logic.
• Procedure 17a: Enabler needs to consolidate symbolic location if there is more than

one symbolic location determined by Symbolic Location Positioning Platform
• Message 18: Enabler Logic returns to DSI/RAP consolidated symbolic location
• Message 19: DSI/RAP returns symbolic location to the Client Application.

Exact numerical location can be useful for displaying client position on an indoor map
provided within the Client Application (especially if Client Application uses an indoor map),
while additional value is given by the symbolic location information, provided by a facility
management Platform that can translate the numerical positions into symbolic tree
(campus/building/floor/room or stadium/stand/sector), as human-readable information can
be more appropriate for a number of end-user applications, as already stated in Section
5.3.1use case.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 90 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

6 Implementation of Smart Mobility & Ecological Urban
Enabler

The design of SMEUR Enabler is included in Section 5.1. This section includes
implementation details of the SMEUR-specific components with pointers to component
source code and Javadoc on symbIoTe GitHub repository.

6.1 Domain-Specific Interface

Component/service name Domain-Specific Interface

URL of source codes https://github.com/symbiote-h2020/DomainSpecificInterfaceSMEUR

URL of Javadoc documentation https://symbiote-
h2020.github.io/DomainSpecificInterfaceSMEUR/doxygen/

List of 3
rd

 release features
included

• Expose REST-interface for the usage of Point of Interest
service

• Synchronous communication with EL-PoI component to
process user requests

Table 15. Enabler Logic - Domain-Specific Interface interfaces

Interface Name Msg
type

From Msg
Consumers

Address/Queue Payload Description

1 POI search
request

POI request HTTP Application/
User

DSI HTTP endpoint Latitude,
longitude,
radius,

amenity

POI request
with parameters

2 Green
route
request

GRC
request

HTTP Application/
User

DSI HTTP endpoint From & To
Locations
(lat/lon)

Mode of
Transportation

Optimization
Criteria

Green route
request with
parameters

6.2 Enabler Logic – Green Route Controller

Component/service name Enabler Logic – Green Route Controller

URL of source codes https://github.com/symbiote-h2020/EnablerLogicGreenRouteController

URL of Javadoc documentation https://symbiote-
h2020.github.io/EnablerLogicGreenRouteController/doxygen/

• List of 3
rd

 release features
included

• Provides Interpolator with Street Segments to be used
• Provides Routing Services with Interpolated data
• Provides interface to request routes from Routing Services

Table 16. Enabler Logic - Green Route Controller interfaces

Interface Name Msg type From Msg Address
/

Payload Description

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 91 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

Consumers Queue

1 Push Air
Quality Data

 RabbitMQ Interpolator Green Route
Controller

 Updated list of streets'
OSM ids and
respective air quality
(for areas of
preference of the
service)

End point to
receive updates
from the
interpolator, that
then propagates
these updates to
the routing
services that
want them

2 Send Route
Request

 RabbitMQ Domain-
Specific
Interface
/
Resource
Access
Proxy

Green Route
Controller

 From & To Locations
(lat/lon)

Mode of
Transportation

Optimization Criteria

Returns:

Route Geometry
(Polyline)

Route Properties
(distance, travel time,
air quality rating)

Navigation
Instructions

End point that
receives route
requests from
applications and
sends them to
the correct
routing service

6.3 Enabler Logic – Point of Interest Search

Component/service name Enabler Logic – Point of Interest Search

URL of source codes https://github.com/symbiote-h2020/EnablerLogicPoISearch

URL of Javadoc documentation https://symbiote-h2020.github.io/EnablerLogicPoISearch/doxygen/

List of 3
rd

 release features
included

• Synchronous communication with Domain-Specific
Interface

• Processing of received request, and formatting HTTP
request for fetching PoIs in a specified area

• REST communication with OpenStreetMap-API
(overpass-api)

• Synchronous communication with EL-Interpolator

Table 17. Enabler Logic - Point of Interest Search interfaces

Interface Name Msg type From Msg
Consumers

Address/Queue Payload Description

1 PoI search
request

 RabbitMQ RAP/
DSI

EL-PoI Latitude,

longitude,

radius,

amenity

PoI request

2 Request
PoIs in a
specified
area

 HTTP-
GET

EL-PoI OpenStreetMap
Overpass-API

Overpass-api
URL

Amenity,
Bounding box

Query for
searched PoIs

3 Request
interpolated
data for
each PoI

 RabbitMQ EL-PoI EL-Interpolator Map<Id, Point> Air quality
data for each
PoI

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 92 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

6.4 Enabler Logic-Interpolator

Component/service name Enabler Logic - Interpolator

URL of source codes https://github.com/symbiote-h2020/EnablerLogicInterpolator

URL of Javadoc documentation https://symbiote-h2020.github.io/EnablerLogicInterpolator/doxygen/

List of 3
rd

 release features
included

• Management of Regions (Street Segments)
• Interpolation of measurement values with respect to street

segments
• (simplified) search for PoI’s (simplified as no extra

interpolation is done but the nearest street segment is
used as reference)

Table 18. Enabler Logic - Interpolator interfaces

Interface Nam
e

Msg type From Msg
Consume
rs

Address/Queue Payload Description

1 Register
Regions

 RabbitM
Q

GRC ELI Street Segments

Requested
Properties

RegionID

Auxiliary
Information

Make the street
segment list and the
requested
ObservedProperties
known to the ELI

2 Query
sensors

 RabbitM
Q

ELI Resource
Manager

 RegionID Query Sensor
readings for Region

3 Sensor
Readings

 RabbitM
Q

Resource
Manager

ELI Observations Sensor readings as
requested in #1

2 Query
Interpolate
d Values

 RabbitM
Q

GRC ELI StreetSegments
with interpolated
values

 Get interpolated
values for a region

2
a

Push
interpolate
values

 RabbitM
Q

ELI GRC StreetSegments
with interpolated
values

 Alternative to #2.
Not requested but
pushed as soon as
available

3 Query PoI
interpolate
values

 RabbitM
Q

ELPol ELI PoIs with
interpolated
values

 Request interpolated
values for a set of
PoIs

Note: Due to the availability of numerical libraries needed for the interpolation algorithm,
the interpolator is implemented in Python. The program is a command line oriented one
that is invoked from the ELI with data exchange through files and command line
arguments.

The program is not implemented as a microservice and has thus no RESTfull interface in
the sense as requested here.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 93 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

6.5 Implementation Summary

The current document reports the current implementation status of symbIoTe Enablers.
The outcome of this work at the current stage is the final design of generic components for
symbIoTe Enablers, design of 4 Enablers that will be used in symbIoTe use cases, as well
as implementation details of both generic Enablers’ components and specific components
for SMEUR Enabler. The relevant source code and its documentation are published as
open source under the BSD-3-Clause licence in the GitHub service organized in GitHub
super-projects: generic Enabler components https://github.com/symbiote-
h2020/SymbioteEnabler and SMEUR Enabler: https://github.com/symbiote-
h2020/EnablerSMEUR.

There are 3 generic Enabler components implemented and 3 supporting projects with
separate repositories. Other generic components are reused from SymbioteCloud super
project. For the SMEUR Enabler there are 4 components implemented and 4 supporting
projects.

The generic Enabler modules are: EnablerLogic, EnablerPlatformProxy,
EnablerResourceManager. Reused modules from the SymbioteCloud: Interworking
Interface, Monitoring, Registration Handler, Resource Access Proxy, and Security Handler
(contained in SymbioteLibraries). The supporting projects are: EnablerConfigService,
EurekaService and ZipkinService.

The SMEUR Enabler modules are: DomainSpecificInterfaceSMEUR,
EnablerLogicGreenRouteController, EnablerLogicInterpolator, EnablerLogicPoISearch.
Reused generic enabler modules are: EnablerLogic, EnablerPlatformProxy,
EnablerResourceManager. Reused modules from SymbioteCloud are: Interworking
Interface, Monitoring, Registration Handler, Resource Access Proxy, and Security Handler
(contained in SymbioteLibraries). The supporting projects are: SMEURLibraries,
EnablerConfigService, EurekaService and ZipkinService.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 94 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

7 Conclusion

The document reports the generic architecture of symbIoTe enablers including a design of
generic Enabler components which are developed to serve as a framework for design and
implementation of future symbIoTe domain-specific enablers. The entire process of
Enabler implementation is showcased on a Domain-Specific Enabler for SMEUR: The
SMEUR Enabler is designed, mapped to the generic architecture, and all enabler-specific
components are implemented. This demonstrates that generic Enabler components are
indeed usable in practice. In addition, four Enablers relevant to symbIoTe use cases have
been defined and their design is reported in this deliverable.

As future work, the designed Enablers need to be implemented following the SMEUR
Enabler example to be used by applications which are implemented in Task 5.2. During
this implementation process, future improvements or bug fixes of generic Enabler
components will be performed as well as further refinement of user (development)
documentation.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 95 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

8 References

[1] Open Mobile Alliance (OMA): OMA and Machine-to-Machine (M2M)
Communication, annual report, 2011, url: http://openmobilealliance.org/static/oma-
annual-reports/documents/oma%20collateral%20m2m%205-11.pdf

[2] Tom Rebbeck, Analysys Mason: Telecoms Operators’ Approaches To M2M and
IoT, whitepaper, 2015, url:
http://www.analysysmason.com/Research/Content/Reports/M2M-IoT-operators-
approaches-May2015/

[3] The symbIoTe Consortium, “D1.2 – Initial Report on System Requirements and
Architecture”, 2016.

[4] The symbIoTe Consortium, “D1.4 – Final Report on System Requirements and
Architecture”, 2017.

[5] symbIoTe GitHub account with code sources: https://github.com/symbiote-h2020

[6] The symbIoTe Consortium, “D2.3 – Report on symbIoTe Domain-Specific Enablers
and Tools”, 2017.

[7] The symbIoTe Consortium, “D2.5 – Final symbIoTe Virtual IoT Environment
Implementation”, 2017.

[8] The symbIoTe Consortium, “D5.2 – Symbiosis of smart objects across IoT
environments”, 2017.

[9] The symbIoTe Consortium, “D2.2 – symbIoTe Virtual IoT Environment
Implementation”, 2017.

[10] The symbIoTe Consortium, “D1.3 – Final Specification of Use Cases and Initial
Report on Business Models”, 2017.

[11] The symbIoTe Consortium, “D5.1 – Implementation Framework”, 2017.

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 96 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

9 Glossary

Application developers build IoT applications based on the IoT services exposed by
various IoT platforms (reside at the symbIoTe APP domain).

Core Services services in symbIoTe Application Domain enabling applications
and Enablers to find desired resources from underlying IoT
platforms; and enabling IoT platforms to offer their resources to
applications and Enablers

Enabler developers build domain-specific functionalities within symbIoTe-provided
Enablers to facilitate cross-platform application development

Enabler resources resources offered by Enablers to Application developers. They
are created by processing Underlying resources from IoT
platforms according to domain-specific functionalities

External services services outside IoT platforms that can be used within Enablers
to add value to symbIoTe provided data

L1 Compliant Platform an IoT platform that registers its resources to Core Services,
and opens its Interworking Interface to enable applications and
Enablers to access those resources

Resource a uniquely addressable entity in symbIoTe architecture and, as
a generic term, may refer to IoT devices, virtual entities,
network equipment, computational resources and associated
server-side functions (e.g., data stream processing). This
definition is on purpose highly generic and abstract to allow its
unified, recursive use across all layers of the envisioned
symbIoTe stack.

Smart Space physical environments (e.g. residence, campus, vessel, etc.)
with deployed things where one or more IoT platforms provide
IoT services.

Underlying resources resources from underlying IoT platforms used by Enablers.
Enabler Logic functions process these resources to create
Enabler resources and offer them to Application developers

688156 - symbIoTe - H2020-ICT-2015 D2.6 – Domain-Specific Enablers and Tools
 Public

Version 1.0 Page 97 of 97
 © Copyright 2017, the Members of the symbIoTe consortium

10 Abbreviations

ABAC Attribute-Based Access Control

APP symbIoTe Application Domain

CLD symbIoTe Cloud Domain

HTTP Hypertext Transfer Protocol

ICT Information and Communications Technology

IoT Internet of Things

JSON JavaScript Object Notation

JWT JSON Web Tokens

MoBaaS Mobility Backend as a Service

OGC Open Geospatial Consortium

OSM OpenStreetMap

OWL Web Ontology Language

PoI Point of Interest

RAP Resource Access Proxy

RDF Resource Description Framework

REST Representational state transfer

RS Routing Service

SMEUR Smart Mobility and Ecological Urban Routing

