

Har

Batteries and hydrogen for heavy transport applications in an industrial park

Federico Zenith, Steffen Møller-Holst, Anders Ødegård

World Hydrogen Technology Convention, Prague, July 11, 2017

Outline

Introduction: Mo Industrial Park

Zero-Emission Technologies Batteries Hydrogen Other Alternatives

Comparison of Zero-Emission Alternatives

Outline

Introduction: Mo Industrial Park

Zero-Emission Technologies Batteries Hydrogen Other Alternatives

Comparison of Zero-Emission Alternatives

Mo i Rana and Mo Industrial Park

- Town in Nordland, Norway (18,000)
- Became industrial town in 1955
- Mo Industrial Park (MIP) employs 2300
- Over 100 companies
- Industry very close to residential areas
- History with industrial pollution
- Interest in industrial ZEVs

Industrial Vehicles at MIP

- Owned by Mo Industritransport (MIT)
- Represent 80 % of diesel consumption
 - 3 Svetruck 15120-35 forklifts
 - 3 Caterpillar 980 wheel loaders
 - 11 Volvo A25 dump trucks
 - 2 Volvo A40 dump trucks
- Diesel cost: 0.75 €/L (VAT excluded)
- Focus on *local* emissions (PM, NO_x, etc.)

Clockwise from top left: Svetruck 15120-35, Caterpillar 980, Volvo A40 and Volvo A25

Outline

Introduction: Mo Industrial Park

Zero-Emission Technologies Batteries Hydrogen Other Alternatives

Comparison of Zero-Emission Alternatives

Batteries

- No time for charging stops during day
- Dimension battery for 16 h (two shifts)
- Degradation margin: divide by 80 %
- Li-ion battery type: LFP
 - 140 Wh/kg
 - Lifetime 7200 cycles
 - Cost 900 \$/kWh (BYD)

- No time for charging stops during day
- Dimension battery for 16 h (two shifts)
- Degradation margin: divide by 80 %
- Li-ion battery type: LFP
 - 140 Wh/kg
 - Lifetime 7200 cycles
 - Cost 900 \$/kWh (BYD)

Vehicle	Battery		CAPEX
	kWh	t	k€/pc.
Svetruck	718	5.1	566
C980	1340	9.6	1057
A25	1006	7.2	764
A40	1161	8.3	916

(A Tesla Model S has 60 to 100 kWh)

Chargers

- Dimension for full charge overnight, 8 h
- Current cost of fast chargers: 571 €/kW
- Power tariff in Norway: 29 €/kW/year

A CCS connector can handle up to 200 kW

Chargers

- Dimension for full charge overnight, 8 h
- Current cost of fast chargers: 571 €/kW
- Power tariff in Norway: 29 €/kW/year

A CCS connector can handle up to 200 kW

Vehicle	Power kW	CAPEX k€/pc.	Tariffs k€/y/pc.
Svetruck	72	38	2.4
C980	134	70	4.5
A25	101	53	3.4
A40	116	61	3.9

Fuel Cells

- Dimensioned by engine power
- State-of-the-art PEM:
 - Efficiency up to 60 %
 - Power density 659 W/kg
 - Lifetime 12 000 h

- Dimensioned by engine power
- State-of-the-art PEM:
 - Efficiency up to 60 %
 - Power density 659 W/kg
 - Lifetime 12 000 h
- CAPEX depends on volume:
 - 2000 \$/kW (today, single orders)
 - 300 \$/kW (1000 units/year)
 - 80 \$/kW (100,000 units/year)

Vehicle	Power kW	Weight kg	Cost k€/pc.
Svetruck	144	219	273
C980	300	455	568
A25	235	357	445
A40	350	531	663

- Dimensioned by engine power
- State-of-the-art PEM:
 - Efficiency up to 60 %
 - Power density 659 W/kg
 - Lifetime 12 000 h
- CAPEX depends on volume:
 - 2000 \$/kW (today, single orders)
 - 300 \$/kW (1000 units/year)
 - 80 \$/kW (100,000 units/year)

Vehicle	Power kW	Weight kg	Cost k€/pc.
Svetruck	144	219	39
C980	300	455	82
A25	235	357	64
A40	350	531	96

- Dimensioned by engine power
- State-of-the-art PEM:
 - Efficiency up to 60 %
 - Power density 659 W/kg
 - Lifetime 12 000 h
- CAPEX depends on volume:
 - 2000 \$/kW (today, single orders)
 - 300 \$/kW (1000 units/year)
 - 80 \$/kW (100,000 units/year)

Vehicle	Power kW	Weight kg	Cost k€/pc.
Svetruck	144	219	11
C980	300	455	23
A25	235	357	18
A40	350	531	27

Hydrogen Tanks

- Assume 350 bar CH₂ tanks
- Commercial CAPEX 30 \$/kWh
- Lifetime: likely more than vehicle

Toyota's Mirai tanks

- Assume 350 bar CH₂ tanks
- Commercial CAPEX 30 \$/kWh
- Lifetime: likely more than vehicle

Toyota's Mirai tanks

Vehicle	Capacity kg _{H2}	Weight kg	Cost k€/pc.
Svetruck	29	586	25
C980	54	1094	47
A25	41	822	35
A40	47	948	41

Hydrogen Refuelling Station

- Common electrolyser station
- CAPEX 4400 \$/(kg/d)
- Efficiency 72 %
- Lower tariffs for power:
 - Dimension for average, not peak
 - Energy spread across all 24 h
 - Can accept temporary disconnection
- Oxygen has a value too
 - Industrial users in MIP
 - Also aquaculture industry close by
 - Current price is confidential

Air Liquide's HRS in Rosenholm, Oslo

Other Alternatives Not considered in this study

- Biodiesel
 - Not a zero-emission solution
 - Local emissions are main concern
- Dynamic power supply
 - Catenary or inductive
 - Dismissed by MIP as impractical
 - Height constraints
 - Low flexibility, high CAPEX
 - Difficult to set up a pilot

Siemens and Scania's prototype

Outline

Introduction: Mo Industrial Park

Zero-Emission Technologies Batteries Hydrogen Other Alternatives

Comparison of Zero-Emission Alternatives

Equivalent Annual Cost Comparison Criterion

- Different lifetimes
- Use Equivalent Annual Cost *A*, equivalent to Net Present Value

$$I \equiv NPV = \sum_{i=1}^{n} \mathbf{A} \, (1+r)^{-i}$$

• Simply add to OPEX

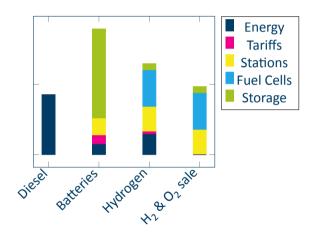
Equivalent Annual Cost Comparison Criterion

- Different lifetimes
- Use Equivalent Annual Cost *A*, equivalent to Net Present Value

$$I \equiv NPV = \sum_{i=1}^{n} A \left(1+r\right)^{-i}$$

• Simply add to OPEX

Example


- CAPEX *I*: 1 million €
- Lifetime n: 20 years
- Interest rate r: 4 %
- Annualised CAPEX A: 73 582€
- OPEX 15 000 €
- Equivalent annual cost: 88 582 €

Techno-Economic Results

Classified by equivalent annual cost

- Tariffs \approx energy costs for batteries
- Battery chargers cost ⅔ of HRS
- Batteries prohibitively expensive
- Fuel cell cost 300 \$/kW
- O₂ sale at 210 €/t covers energy & power costs for hydrogen
- If O₂ value >286 €/t hydrogen is best

Way Ahead Future studies and pilot project

Missing data:

- Power profiles
 - Not logged
 - Cannot evaluate hybridisation
 - Smaller FC with buffer battery
 - Same hydrogen tank, HRS
- Diesel efficiency
 - Assumed 33%, could be worse
 - Could decisively increase diesel costs
- Oxygen price for MIP
 - Strictly confidential
 - Market survey in area

- Prototype: modified A25
- Batteries ("A25B"):
 - Batteries: 800 000 €
 - Charging station: 53 000 €
 - Energy costs: 3370 €/year
- Hydrogen ("A25H")
 - Fuel cells: 446 000 €
 - Hydrogen tanks: 35 300 €
 - Hydrogen (trucked in): 50 000 €/year
- EU project?

Conclusions

- Hydrogen at a significant advantage over batteries
- Diesel is still competitive, but with small margins
- Oxygen valorisation can be decisive
- Hydrogen-battery hybrid could give an even better result
- MIP interested in follow-up. Any takers?

Conclusions

- Hydrogen at a significant advantage over batteries
- Diesel is still competitive, but with small margins
- Oxygen valorisation can be decisive
- Hydrogen-battery hybrid could give an even better result
- MIP interested in follow-up. Any takers?

Thank you for your attention!

Technology for a better society