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A B S T R A C T

The estimation of the grapes’ maturity in the field using non-destructive techniques is of high interest for the
high-valued vinified grapes, particularly towards the development of fully automated agrobots that perform
selective harvesting operations. Whereas infrared spectroscopy has been employed using point spectrometers
in the laboratory and in the field, imaging spectrometers have mainly been tested in controlled laboratory
conditions due to issues with varying illumination. In this paper, the application of the autoencoder framework
is proposed, which is employed to transform the raw recorded spectra, regardless of illumination conditions,
into standardized reflectance spectra; thus addressing the inherent difficulties which hamper the direct
application of hyperspectral imaging in the field. To validate the methodology, the sugar content (◦Brix) of
four grape varieties, namely Chardonnay, Malagouzia, Sauvignon-Blanc, and Syrah, is estimated. Two different
autoencoder architectures are examined: deep fully-connected (DAE) and deep convolutional autoencoders
(DCAE), while the estimation of sugar content takes place using as input both from the encoded (latent) space
and from the autoencoders’ output, i.e., the transformed standardized spectra. The use of multiple spectral pre-
treatments is further examined to enhance the accuracy of prediction. Despite that DAE and DCAE showcase
comparable similarity metrics, DCAE statistically outperforms DAE when using both the encoded space and the
autoencoders’ output, attesting to the suitability of the convolutional autoencoder framework. On the other
hand, there is no statistical significant difference when employing multiple input pre-treatments. The accuracy
of estimation (mean RMSE 1.83 ◦Brix, 𝑅2 0.70, RPIQ 2.43) is comparable to other studies that directly work
with standardized reflectance spectra in laboratory conditions.
1. Introduction

The origins of wine production predate recorded history (McGovern,
2013) and throughout antiquity wine was considered a gift from the
gods with the elite of the society reserving the best wines for them-
selves (Bisson et al., 2002). The global market for wine was estimated
at 345.9 Billion USD for 2020, and it is projected to reach a size
of 456.1 Billion USD by 2027 (Global Industry Analysts, 2022). In
2021 grapes were the fifth most widely produced fruit worldwide with
approximately 79.5 million tonnes (FAO, 2021). In 2022, the world
wine production (excluding juices and musts) is estimated at 259.9
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million hectoliters, slightly below its 20-year average but relatively
stable for four consecutive years (International Organisation of Vine
and Wine, 2022b). The vinified production in the European Union in
2021 was 153.7 million hectoliters (approximately 59% of the world
production) from an estimated 22.7 million tonnes of total harvested
grapes for wine, with Italy, Spain and France together accounting for
47% of the world wine production in 2021 (International Organisation
of Vine and Wine, 2022a; Eurostat, 2022). Evidently, the production of
grapes for wine has a considerable worldwide economic impact and is
one of the highest valued crops.
vailable online 7 August 2023
168-1699/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.compag.2023.108098
Received 26 April 2023; Received in revised form 27 June 2023; Accepted 20 July
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

2023

https://www.elsevier.com/locate/compag
http://www.elsevier.com/locate/compag
mailto:tsakirin@ece.auth.gr
mailto:smnikiforos@topo.auth.gr
mailto:kokkassk@auth.gr
mailto:kalopesa@agro.auth.gr
mailto:ntziolas@ufl.edu
mailto:zalidis@agro.auth.gr
https://doi.org/10.1016/j.compag.2023.108098
https://doi.org/10.1016/j.compag.2023.108098
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2023.108098&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers and Electronics in Agriculture 212 (2023) 108098N.L. Tsakiridis et al.
Considering that grapes are non-climacteric fruits (i.e., they do not
ripen any further if harvested) (Prasanna et al., 2007), their maturity
degree is a decisive factor that determines wine chemical composition
and sensory traits (Niimi et al., 2017). Monitoring of grape qual-
ity is traditionally carried out directly in the field using destructive
techniques, in order to ascertain the appropriate harvest time. This
evaluation takes place offline via classical physical and chemical meth-
ods, using a limited number of samples selected by the experts. This
process is however time-consuming, laborious, costly, invasive and
oftentimes subjective. Taking into account that the trend in modern
agricultural practices involves the use of robots and automated solu-
tions throughout the production process, including harvesting (Power
et al., 2019; Fountas et al., 2020), it is important to design an au-
tomated solution that can determine the maturity level of grapes for
appropriate decision making.

Infrared spectroscopy has been employed to estimate phenolic
composition, quality indicators and authenticity in grapes and wines
demonstrating its efficacy as a useful tool to replace the traditional
approaches (Ferrer-Gallego et al., 2022). A review by Power et al.
(2019) studied the evolution on the measurement of grape composition
from the laboratory to the vineyard via new technologies (i.e., fiber
optics, LED, hyperspectral imaging), highlighting the cost and time
saving by using spectroscopy techniques in the field. However, despite
their desirable characteristics, hyperspectral images in the near infrared
obtained from either unmanned aerial vehicles flying on lower altitudes
or on ground hyperspectral are more difficult to process because it is
more complex to compute the reflectance at each pixel. The reason is
that the illumination of the acquired hyperspectral data (even within
a single image) varies depending on the angle of the surface de-
picted (Zhang et al., 2022), due to light scattering, shadowing of plant
components and occlusions, and a complicated interaction between
scattering and shadowing (Mishra et al., 2020). The sort of plants and
their intricate geometry determine how much of an impact these factors
have. Moreover, when obtaining multiple images, due to fluctuating
cloud cover density it is possible that there are considerable changes
of illumination within a narrow time frame. Illumination compensation
has been attempted using custom ground vehicles that cover the canopy
and use artificial light sources (Wendel and Underwood, 2017) or by
custom set-ups that block completely the ambient light (Polder et al.,
2019).

Various approaches in the literature employing hyperspectral cam-
eras have focused on their application only in highly controlled lab-
oratory conditions and mostly using line-scanning technologies which
dictate the need for a linear translation platform (Baiano et al., 2012;
Chen et al., 2015; Gabrielli et al., 2021; Xu et al., 2022). Interestingly,
in some works (Silva et al., 2018; Gomes et al., 2021) the authors
opted to use a single line scan (i.e., not a hyperspectral cube) to extract
the reflectance of the grapes in the laboratory (Benelli et al., 2021)
used a hyperspectral camera in situ to estimate the grape ripeness
in one cultivar, but the camera employed line-scanning to create the
respective hyperspectral cubes which dictates the need for a custom
cart to mount the camera and the data may be influenced by ambient
factors (e.g., wind, bumps in the field, etc.). Moreover, they employed
classifications algorithms to classify the grapes as ripe or non-ripe,
without quantifying their ◦Brix content. Line-scanning imaging for the
classification of grape varieties was also utilized by Gutiérrez et al.
(2018). Rodríguez-Pulido et al. (2022) used a hyperspectral sensor
(400–1000 nm) with push-broom principle to predict chemical com-
pounds (sugar content, phenols, anthocyanins) in whole wine grape
bunches of red varieties. They applied mathematical prediction models
on laboratory conditions and transferred them in field environment
for quantitative chemical analysis, without however accounting for the
difficult ambient conditions (e.g., shadows). Furthermore, it should be
also noted that a review by Silva and Melo-Pinto (2021) examined
different dimensionality reduction methods for prediction of sugar
content from hyperspectral images of wine grape berries, concluding
2

Fig. 1. Location of the Gerovassiliou estate (blue marker in red box) in Northern
Greece.

that Principal Component Analysis (PCA) prevails over more elaborate
methods.

Autoencoders (Bank et al., 2020) are a class of self-supervised neural
networks, and, in their simplest form, are a lossy algorithm mapping
an input to compressed representation (called latent space) using an
encoder, and then back to itself via a decoder. It can be considered
as a generalization of Principal Component Analysis, where instead of
constructing a low dimensional hyperplane for the compressed feature
space, it is able to learn a non-linear manifold (Hinton and Salakhut-
dinov, 2006). Denoising autoencoders (Vincent et al., 2008) are a
robust framework that is used for error correction, where the input is
disrupted by a noise with the autoencoder expected to reconstruct the
original (undisrupted) input. Convolutional autoencoders (Masci et al.,
2011) extend the autoencoder framework by employing the operation
of convolution; the encoder uses convolution and max pooling layers,
whereas the decoder employed deconvolution and upscaling layers. Au-
toencoders have various applications; for example, they have been used
for cyber security intrusion detection systems (Berman et al., 2019;
Ferrag et al., 2020), metagenome binning and assembly (Nissen et al.,
2021), and for epileptic seizures detection in electroencephalography
signals (Shoeibi et al., 2021). Variations of the autoencoder framework
have also been applied in hyperspectral imagery (Signoroni et al.,
2019), in cases such as spectral unmixing (Su et al., 2019; Palsson et al.,
2021), anomaly detection (Zhang and Cheng, 2019; Lv et al., 2023),
dimensionality reduction (Nalepa et al., 2020; Mantripragada et al.,
2022), feature selection (Wang et al., 2021) and land cover and crop
type classifications (Kussul et al., 2017). Deep autoencoders have also
been employed in infrared spectroscopy, both in point spectroscopy and
hyperspectral imaging, for performing feature extraction to enhance the
final model estimations (Liu et al., 2017; Zhang et al., 2020, 2021; Liu
et al., 2022).

In this paper, we examine the application of deep learning tech-
niques on in situ hyperspectral VNIR data for the estimation of the
grapes’ sugar content. The main novelty of this approach lies in the
usage of the autoencoder framework to address the impact of the in
situ illumination conditions on the spectral signal. Thus, this paper
focuses on the application of infrared hyperspectral imaging in real
field conditions and hence examining the potential of mounting such
devices on robotic platforms for real-time harvesting.
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Fig. 2. A flowchart illustrating the data collection process for a single sample of the Sauvignon-Blanc variety.
2. Materials and methods

2.1. Study area

The field data were collected in Ktima Gerovassiliou, which is
situated in the Epanomi region, located 25 km south-east of Thessa-
loniki within the administrative borders of the Municipality of Ther-
maikos and the Prefecture of Thessaloniki in Northern Greece (Fig. 1).
Epanomi is a peninsula suitable for viticulture and has been used
for grape cultivation for many decades. The climate of the region is
classified as Csb under the Köppen climate classification system. The
estate itself covers an area of around 72 ha and many different grape
varieties are cultivated there. We selected four different grape vari-
eties, namely Chardonnay, Malagouzia, Sauvignon-Blanc, and Syrah.
Malagouzia (also spelled as Malagousia) is an aromatic white variety
grown primarily in Central Greece and Greek Macedonia, best known
for its citrus and peach characteristics. It was selected as a represen-
tative of local grape varieties. Chardonnay and Sauvignon-Blanc are
also white varieties, while Syrah is a red variety. These three are
amongst the top 10 most widely cultivated varieties throughout the
world (International Organisation of Vine and Wine, 2017).

2.2. Data collection

The process of data collection is summarized in Fig. 2. Field visits
took place in the cultivating period (i.e., July–August) of the 2021
vintage. All data (including spectral measurements) was recorded in-
situ with real-world environmental conditions. In order to construct a
robust dataset encapsulating the within-field variability that may be
found in situ, it is important not only to include grapes spanning the
entire maturity period (from veraison to harvesting), but also from
different areas of the vineyard, corresponding to different conditions.
As far as the monitored maturity period is concerned, according to the
BBCH scale (Lorenz et al., 1995) describing the phenological growth
stages of the grapevine, we monitored stages 81 (beginning of ripening
where berries begin to brighten in color) through 89 (berries ripe for
harvest). For each of the examined grape variety, we selected at least
two different regions in the vineyard and, for each region, we took care
to monitor vine trees showcasing different vigour.

To ensure that on each successive field visit the same vine trees were
recorded, as well as future reference through photos could be readibly
3

established, four rows corresponding to the four cultivars were selected
and labels were placed accordingly on the trees. For each grape variety
we selected 20 trees, with the exception of the local grape cultivar of
Malagouzia where 30 trees were selected (i.e., a total of 90 trees). On
each field visit, the following was recorded from each of the selected
trees:

1. First, at least one hyperspectral VNIR image was recorded us-
ing a snapshot hyperspectral camera capturing the bunches of
grapes; the camera was mounted on a tripod and directed man-
ually towards the grapes.

2. Then, a single berry was randomly selected from one of the
bunches that was recorded with the camera, and its point VNIR–
SWIR diffuse reflectance with a contact probe was recorded;

3. Finally, the sugar content from the selected berry was deter-
mined by crushing it, collecting its juice, and using a portable
refractometer.

In the following subsections, we analyze each of the aforementioned
steps.

2.2.1. Recording of hyperspectral VNIR datacubes
Hyperspectral cubes were recorded in situ via the Cubert FireflEYE

V185 snapshot hyperspectral sensor, which was mounted on a tripod.
The sensor works in 450–1000 nm with a spectral sampling of 4 nm and
full width at half maximum of 8 nm at 532 nm. Thus, it captures 3D
cubes with a resolution of 50 × 50 pixels in the 2D spatial dimensions
and 128 channels in the spectral dimension. Based on the sensor’s
general specifications (i.e., field of view, lens angle etc.) the optimal
distance from the grapes was calculated to 1.5 m. Undoubtedly, in
situ measurements using hyperspectral cameras involve several obsta-
cles, mainly in terms of sensor calibration, due to climate condition
variations and lighting sensitivity which are addressed in this paper
with the novel methodology of autoencoders. The data acquisition took
place between the morning and noon (i.e., 09:00 to 14:00 local time)
and the camera’s exposure time was set manually between 12 and
20 ms depending on the ambient conditions and as determined through
test images (e.g., no overexposure of any pixels). Measurements taken
closer to noon are subject to higher ambient temperatures and the
accumulated heating effect from recording data at prolonged times; we
thus took efforts to keep the equipment in the shade at all times, and
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Fig. 3. Visualization of the hyperspectral cubes recorded for the Chardonnay and Syrah varieties; (a) and (d) depict the panchromatic (grayscale) 1000 × 1000 pixel image
corresponding to the hyperspectral cubes of (b) and (e) respectively, whereas (c) and (f) illustrate some example signatures extracted from the hyperspectral cubes.
use both passive and active cooling on all instruments to improve heat
dissipation and cooling. In this context, the use of the dark subtract
processing mode was nevertheless utilized to remove the dark current
noise. This mode is activated after calibrating the sensor in the black
area by placing a completely black and high-quality material (provided
by the manufacturer) on the lens and by closing the camera’s shutter.
The dark measurements were repeated after 10 measurements to ensure
the stability of the recordings. The output of this mode is a spectral
signature expressed as a digital number (DN) as shown in Figs. 3(c)
and 3(f).

2.2.2. Using the spectrometer to record reference VNIR–SWIR spectra
The PSR+3500 (Spectral Evolution Inc., Lawrence, MA, USA) spec-

trometer was also used to record in situ the reference VNIR–SWIR
spectrum (350–2500 nm) of the grapes. It is a portable high accu-
rate contact probe spectrometer which came into contact with the
berries in the bunches to record their spectrum. Direct reflectance mode
was utilized after the necessary calibration process by using a white
reference plate made of Spectralon® material. Every 10 successful mea-
surements the calibration procedure was repeated in order to ensure the
robustness and accuracy of the sensor. It should be noted that despite
recording the entire 350–2500 nm range, only the 450–1000 nm range
was retained to match the spectral range of the hyperspectral camera.

Because two separate spectral measurements were conducted, one
for the VNIR datacubes and one for the reference VNIR–SWIR spectra,
it is important to perform the matching between the two. A careful
note was made of the berry whose reflectance was measured, to allow
it to be matched with its corresponding pixel in the hyperspectral cube.
This process was implemented manually by an expert who performed
the matching operation using open source geospatial tools.
4

2.2.3. Estimation of sugar content
The grape sugar content estimation was performed immediately

after the hyperspectral camera and the spectroradiometer data acqui-
sition. A portable refractometer (RHB-32ATC- Laxco Inc., Bothell, WD,
USA) was used to record the soluble solid content expressed in degrees
Brix (◦Brix) which is a measurement of the relative density of dissolved
sucrose in unfermented grape juice, in grams per 100 milliliters. The
refractometer has a range of 0–32 ◦Brix, an accuracy of 0.20 ◦Brix and
a resolution of ±0.20◦Brix. The berry of each bunch that was previously
used for the point spectra information with the contact probe spectro-
radiometer, was selected for the ◦Brix measurement with a destructive
effect on the fruit. The berry was carefully cut and squeezed to use its
juicy for analysis while specific measurement protocols were followed
such as cleaning the prism of the refractometer with deionized water
after each measurement to ensure the quality and their reliability of the
measurement for each berry.

2.3. Spectral pre-treatments

Spectral data can be complex, noisy, and difficult to interpret, and
pre-treatment methods are applied to enhance the quality of the data
and to remove sources of variability that can impede the effectiveness
of chemometric analysis. Such sources are baseline offsets, noise, and
various interferences. Pre-treatments can also help to highlight features
of interest in the spectra and to remove irrelevant information that may
obscure the underlying signal.

Standard normal variate (SNV) is a widely employed spectral pre-
processing method in chemometrics, aiming to correct the baseline
offset and to reduce the scattering in the spectra. It involves a trans-
formation of the spectra to create a new spectrum of zero mean and
unit variance, i.e., standardized to a standard normal distribution. The
transformation is performed by subtracting the mean value of each
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Fig. 4. Overall approach undertaken for each grape cultivar.

spectrum and then dividing the result by its standard deviation It is
particularly useful when analyzing spectra from different sources or
instruments, as it can help to remove systematic differences in the data
that may arise from varying experimental conditions or instrumental
drift.

First and second derivatives using Savitzky–Golay filters are another
widely used spectral pre-processing technique in chemometrics. The
Savitzky–Golay filter is a smoothing algorithm that is applied to a
moving window of data points in the spectrum. The algorithm calcu-
lates the slope or curvature of the data within the window, and then
replaces the central data point with the calculated value; the result
is a smoothed, differentiated spectrum. By taking the first or second
derivative of the spectrum, it is possible to highlight subtle changes
in the spectral signal that may be difficult to discern in the original
data. This can be particularly useful in applications where the goal is
to identify and quantify spectral features, such as in the analysis of
complex mixtures of compounds.

2.4. Analysis using artificial intelligence

The subsections that follow entail the analysis steps taken to es-
timate the sugar content from the raw hyperspectral images. It is
important to note that the analysis was conducted separately for each
grape cultivar. The overall approach is presented in Fig. 4.

2.4.1. Dataset split
To train the autoencoder and the machine learning models, the

dataset was randomly split into calibration (70%) and tests set (30%),
as indicated in step 2 of Fig. 4. Following this, the calibration set
was further divided into a training (70%) and a validation set (30%)
used to train the autoencoders (step 3). The first is used for parameter
fitting (i.e., model weights) while the latter to avoid overfitting. After
transforming 𝐗hs the machine learning models were fitted. In this
case, the calibration set was randomly divided into 5-folds which were
utilized for hyperparameter tuning of the learning algorithms, where
the optimal hyperparameter set is selected as the one providing the
lowest prediction error in the held-out sets. The final model per each
learning algorithm was established using the whole calibration set and
5

the optimal hyperparameter set.
Fig. 5. The general autoencoder framework; the input data are compressed using an
encoder to a latent representation, which is accordingly decompressed via the decoder
to reconstruct the output.

2.4.2. Autoencoders
Fig. 5 presents the simple autoencoder framework. An autoencoder

consists of two main parts: an encoder, which maps the input data
to a lower-dimensional representation (also known as the encoding or
latent representation), and a decoder, which maps the encoding back
to the original input data. In its simple form, as indicated in the figure,
it is comprised of fully connected (or dense) layers. In the training
phase, the reconstruction error between the original input and the
output is minimized. This forces the network to learn a meaningful
representation of the input data in the encoding space, while preserving
the important features and structure in the data.

Denoising autoencoders are a variant mainly used to remove noise
from an input signal. The network is trained by corrupting the input
data using random noise and the output is expected to match the
noise-free input. The goal is to encourage the network to learn a
robust representation of the input that is robust to the presence of
noise and can effectively ‘‘denoise’’ the input. They are also used as
a stochastic version of the simple autoencoder in cases where there are
more hidden layers than inputs, because then there is a risk that the
learning algorithm will only learn the identity function. The difference
in the training process is that because the input is the noisy version
of the original data, the reconstruction error is computed between the
clean (noise-free) data and the output of the network, with the network
parameters updated accordingly to minimize this error.

Convolutional autoencoders incorporate the convolutional layers
and their associate layers, like pooling, transpose convolution, and
batch normalization into the encoder–decoder architecture. The con-
volutional layers provide many advantages over the typical fully-
connected layers, including position invariance and fewer parameters.
Pooling layers may also be replaced by convolutions with stride, pro-
viding comparable or better results without loss of information (Sprin-
genberg et al., 2014).

2.4.3. From raw signal to reflectance using autoencoders
To address the issue of different illumination conditions on each

captured scene, this study proposes the use of autoencoders (step 3 of
Fig. 4). This transformation framework is presented in Fig. 6. Various
architectures were considered using both fully connected and convolu-
tional layers, with the aim to optimize the aforementioned evaluation
metrics. The following autoencoders architectures are considered in this
paper:

1. Deep denoising autoencoder, using fully connected layers, with
the input being the SNV transformed raw signatures from the hy-
perspectral camera and the output the corresponding reflectance
signature from the point spectrometer. This network consists
of three hidden layers in both the encoder and the decoder.
The first layer in the encoder has 240 neurons and a linear
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Fig. 6. The proposed de-noising framework; the input spectrum 𝐱 collected from the
hyperspectral camera in raw mode is transformed to the output reflectance spectrum
𝐱′ via the autoencoder. The autoencoder is trained using as reference output data
the reflectance recorded from the handheld spectrometer. The machine learning (ML)
models to predict the sugar content (�̂�) may be accordingly developed either from the
atent representations or from the de-noised output 𝐱′.

activation, the second layer 120 neurons with a tanh activation,
while the third layer employs 60 neurons and a tanh activation
function. The latent representation consists of 30 neurons and
uses a linear activation function. Finally, the decoder uses the
same architecture as the encoder in reverse. The architecture is
presented in Table 1. This network employs 138,038 trainable
parameters.

2. Deep multi-input denoising autoencoder, where instead of the
raw input, the following pre-treatments are further considered,
namely the SNV transformation, the first-derivative and SNV,
and the second-derivative and SNV. All these spectral sources
are concatenated to form a single continuous vector. The same
architecture as above is used, with the distinction that the input
and output layers have three times the length of the respective
layers used above. This network employs 261,174 trainable
parameters.

3. Deep convolutional denoising autoencoder, using convolutional
layers and as input the SNV transformed raw signatures from the
hyperspectral camera. The encoder consists of four layers, using
successively 256, 128, 128, and 64 filters with a kernel size that
is progressively reduced from 21 to 5, while the deconvolution
process uses the reverse process, as indicated in Table 2. By
employing a stride step the input is successively halved and
reaches from a length of 128 to 32 in the latent space. The total
number of trainable parameters is 1,712,514.

4. Deep convolutional multi-input denoising autoencoder, using
the aforementioned pre-treatments as multiple input channels,
and the network architecture of Table 2. The number of trainable
parameters is increased due to the use of the multi-channel input
to 1,725,828.

It is worth noting that the autoencoders use a mix of linear and tanh
activation functions because it allows the network to learn a wider
range of functions. The advantage is that linear activations in both
input and output enable the model to extrapolate to ranges outside
those defined in the input, while the tanh activations are useful in the
hidden layers of the encoder and decoder because they help normalize
the data and prevent the network from becoming too sensitive to small
changes in the input. Regarding the specific configuration of neurons
for the encoders and decoders, we chose a progressive reduction and
expansion scheme. In the proposed architectures, the encoder progres-
sively reduces the dimensionality of the input data through layers with
decreasing neuron counts, ultimately reaching the desired latent space
of 30 neurons for the fully connected layers and 32 neurons for the
convolutional encoder. Similarly, the decoders mirror this progression
6

in reverse order to reconstruct the original input, allowing the model s
Table 1
The network architecture of the DAE using a single
pre-treatment as input; for the multi-input case (i.e.,
when 3 spectral pre-treatments are employed), the
input and output neurons are 128 × 3 = 384.

Layer Neurons Activation

Input 128
Encoder 1 240 linear
Encoder 2 120 tanh
Encoder 3 60 tanh
Latent 30 linear
Decoder 1 60 linear
Encoder 2 120 tanh
Decoder 3 240 tanh
Output 128 linear

Table 2
The network architecture of the DCAE, where 𝑃 denotes the number of pre-treatments
used; for the multi-input case (i.e., when 3 spectral pre-treatments are employed), the
input and output neurons are 128 × 3 = 384.

Layer Filters Kernel size Strides Activation

Input Neurons: 128, channels: 𝑃
Encoder 1 256 21 1 linear
Encoder 2 128 15 2 linear
Encoder 3 128 9 2 tanh
Encoder 4 64 7 2 tanh
Latent 1 5 1 linear
Decoder 1 64 7 2 linear
Decoder 2 128 9 2 tanh
Decoder 3 128 15 2 tanh
Decoder 4 256 21 1 linear
Output 𝑃 3 1 linear

to capture hierarchical and abstract representations in the latent space
while enabling effective reconstruction of the input data. Moreover,
the choice of kernel size for the convolutions was chosen with the
motivation of enabling the first layers of the models to learn higher-
level features (larger kernel size) while the deeper layers to identify
more detailed features (smaller kernel size). The autoencoders using
fully connected layers are henceforth denoted as DAE (Deep AutoEn-
coders), while those employing the convolution operations as DCAE
(Deep Convolutional AutoEncoders).

The models were trained for 300 epochs using the AMSGrad (Reddi
et al., 2019) stochastic optimization method that optimized a custom
loss function. AMSGrad seeks to fix a convergence issue with the
popular Adam-based optimizers, using a running maximum of the
squared gradients instead of an exponential moving average to update
the parameters. While at first a natural choice for the loss functions
is the mean squared error between 𝐗′ and 𝐗sp nevertheless this does
not guarantee that the spectral features are retained. For example, if
a small sinusoidal noise is applied on the target reference spectrum
then the mean squared error between the noisy values and the original
values will be low, however numerous new spectral absorption bands
are introduced which hinders the ability of ML models to predict
correctly the soil properties and assign importance to specific bands.
For this reason, the custom loss function is defined as the function that
simultaneously minimizes the mean squared error and maximizes the
cosine similarity between the target spectrum 𝐱 and the transformed
spectrum 𝐱′ each comprised of 𝑀 spectral bands:

(𝐱, 𝐱′) =
𝑀
∑

𝑖=1
(𝑥𝑖 − 𝑥′𝑖)

2 ⋅ (1 − 𝐱 ⋅ 𝐱′
|𝐱 ∥ 𝐱′|

) (1)

.4.4. Machine learning algorithms for regression
As indicated in Figs. 4 and 6, to predict the sugar content, two

pproaches were tested for each of the autoencoder architectures con-
idered: (1) using the latent space as predictors, and (2) using the
enoised spectra as predictors. An aspect that should be clarified in the
econd case listed above, is that when multiple pre-treatments are used
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in the input signal, the machine learning algorithms examine an equal
number of scenarios to the number of pre-treatments considering that
the denoised spectra are also in the form of the same pre-treatments.
The learning algorithms detailed below were applied in each case:

1. XGBoost, which stands for Extreme Gradient Boosting, is a scal-
able, distributed gradient-boosted decision tree (GBDT) machine
learning library (Chen and Guestrin, 2016). The algorithm can
be used for both regression and classification tasks and has been
designed to work with large and complicated datasets. Whereas
GBDTs iteratively train an ensemble of shallow decision trees,
with XGBoost trees are built in parallel following a level-wise
strategy, scanning across gradient values and using these partial
sums to evaluate the quality of splits at every possible split in
the training set. XGBoost has demonstrated its efficacy across a
wide variety of applications, with a key to a success being the
proper tuning of its various hyperparameters. In this work, we
tuned the following hyperparameters in their respective search
spaces: (i) the maximum depth of a tree, {3, 4,… , 8}, (ii) 𝜂 or the
learning rate, {0.02, 0.05, 0.1, 0.2, 0.3}, (iii) the number of trees,
{10, 50, 100, 200, 500}, (iv) the subsample ratio of columns when
constructing each tree, {0.3, 0.5, 0.8}, (v) the L1 regularization
term on weights, {0, 5, 10}.

2. The method of Random Forests, an important ensemble learning
method, widely used in both classification and nonparametric
regression (Breiman, 2001). It builds multiple decision trees
and combines their predictions to produce a more accurate and
stable prediction. The algorithm works by randomly selecting a
subset of features and training a decision tree on those features.
This process is repeated multiple times to create a forest of
trees, each with a different subset of features. The final pre-
diction is made by averaging the predictions of all the trees
in the forest. The algorithm aims to reduce overfitting and
improve the generalization ability of the model. In terms of
its hyperparameter optimization process, the number of trees
were selected from within {50, 100, 150, 200} while the number of
features to consider when looking for the best split was searched
in {𝑀,

√

𝑀, 𝑙𝑜𝑔2(𝑀)} with 𝑀 being the total number of features.
3. Cubist, an algorithm for regression problems that combines de-

cision trees with linear models (Kuhn and Johnson, 2013). The
algorithm starts by building a decision tree, and then identifies
the leaf nodes that are most predictive of the target variable. A
linear model is then fit to each of these leaf nodes, where the
predictors are the features and the response is the target vari-
able. The final prediction for a given input is made by weighting
the predictions from each of the linear models, with the weights
determined by the path from the root node of the decision tree to
the corresponding leaf node. The algorithm aims to achieve the
stability of linear models with the non-linear flexibility of deci-
sion trees. Cubist further utilizes: (i) a boosting-like mechanism
termed committees which generate iteratively more rule-based
models trying to compensate for the prediction errors of the
previous iterations, and (ii) composite models which repair the
errors of the rule-based models through instance-based learning.
Its hyperparameters include the number of committees, whose
search space was {1, 5, 10, 20} and the number of neighbors used
to repair the errors of prediction searched within {0, 1, 5, 9},
where 0 indicates that no error-correction was employed.

4. Support Vector Regression (SVR), a type of regression analysis
in which the prediction is done through a linear equation in a
high-dimensional feature space, called kernel space, in which
the data are mapped (Cortes and Vapnik, 1995; Awad and
Khanna, 2015). SVR creates a flexible tube with a small radius
symmetrically surrounding the estimated function, such that the
absolute values of errors less than a certain threshold are ignored
7

both above and below the estimate. In this way, points above or
below the function that are inside the tube are not penalized,
but points outside the tube are. A radial basis kernel function
was used, while its two hyperparameters that were optimized
are 𝜖 from {0.025, 0.05,… , 0.5} and 𝐶 from {2−3, 2−2,… , 29}.

2.4.5. Evaluation metrics
To evaluate the efficacy of the proposed autoencoders to transform

the raw hyperspectral measurements to the calibrated reference re-
flectance spectra, three distance metrics were employed to assess the
difference between the reference spectra and the autoencoders’ output:

1. Pearson’s correlation coefficient (𝜌), a measure of the linear
association between the two, whose values range between −1
and 1 and indicate a strong negative and a strong positive linear
relationship, respectively;

2. Lin’s concordance correlation coefficient (𝜌𝑐) (Lin, 1989), a
scalar value between −1 and 1 that indicates the strength and
direction of the relationship which unlike 𝜌 takes into account
both the linear and non-linear relationships; and

3. The distance according to spectral angle mapper (SAM) (Kruse
et al., 1993), based on the idea of finding the angle between the
two spectra in feature space; the smaller the angle, the greater
the similarity between them. This is equivalent to the cosine
similarity.

These three metrics are calculated as follows to quantify the distance
between the target spectrum 𝐱 and the transformed spectrum 𝐱′ each
comprised of 𝑀 spectral bands:

𝜌(𝐱, 𝐱′) =
∑𝑀

𝑖=1(𝑥𝑖 − 𝑥)(𝑥′𝑖 − 𝑥′)
√

∑𝑀
𝑖=1(𝑥𝑖 − 𝑥)2

√

∑𝑀
𝑖=1(𝑥

′
𝑖 − 𝑥′)2

(2)

𝜌𝑐 (𝐱, 𝐱′) =
2
𝑀

∑𝑀
𝑖=1(𝑥𝑖 − 𝑥)(𝑥′𝑖 − 𝑥′)

𝑆2
𝑥 + 𝑆2

𝑥′ + (𝑥 − 𝑥′)2
(3)

SAM(𝐱, 𝐱′) = arccos
∑𝑀

𝑖=1 𝑥𝑖𝑥
′
𝑖

√

∑𝑀
𝑖=1 𝑥

2
𝑖

√

∑𝑀
𝑖=1 𝑥′

2
𝑖

(4)

where 𝑥, 𝑆2
𝑥 and 𝑥′, 𝑆2

𝑥′ are the mean values and variances of the
eference and transformed spectra, respectively.

On the other hand, the following metrics were utilized to validate
he machine learning models that predict the ◦Brix content on the
ndependent test set:

1. the root mean squared error (RMSE);
2. the coefficient of determination 𝑅2; and
3. the ratio of performance to interquartile range (RPIQ).

RMSE is the standard deviation of the residuals (prediction errors)
nd is calculated thusly:

MSE(𝐲, �̂�) =

√

∑𝑁
𝑖=1(𝑦𝑖 − �̂�𝑖)

𝑁
(5)

where 𝐲, �̂� are the vector of ground truth data and the model predic-
tions, respectively, of the 𝑁 patterns.

𝑅2 is determined via:

𝑅2(𝐲, �̂�) = 1 −
∑𝑁

𝑖=1 (𝑦𝑖 − �̂�𝑖)
2

∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦)2

(6)

with 𝑦 representing the mean ground truth value.
RPIQ (Bellon-Maurel et al., 2010) is defined as the interquartile

ange of the ground truth data divided by the RMSE of the prediction,
nd because it does not make any assumptions about the distribution
f the observed values is considered a more robust accuracy metric:

PIQ(𝐲, �̂�) =
𝑄3 −𝑄1

RMSE(𝐲, �̂�)
(7)

where 𝑄 and 𝑄 are the first and third quartiles of 𝐲, respectively.
1 3
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Table 3
Descriptive statistics of the ◦Brix of the sampled berries per each grape variety, where std is the standard deviation, min and max are then
minima and maxima, while 𝑄1, 𝑄2, and 𝑄3 are the 1st, 2nd, and 3rd quartiles, respectively.

Variety N mean std min 𝑄1 𝑄2 𝑄3 max

Chardonnay 54 21.9 3.3 12.0 20.2 22.1 24.0 30.0
Malagouzia 71 21.3 2.7 16.9 19.7 21.2 22.8 30.0
Sauvignon-Blanc 53 23.3 4.4 10.0 21.5 24.9 25.9 31.4
Syrah 55 20.0 3.4 14.2 17.0 20.1 22.6 28.3
It should be noted that because the models employed herein are
on-linear, the coefficient of determination loses its interpretation of
roportion of variance explained, thus its magnitude alone may not be
ufficient to assess the models’ goodness of fit (Kvalseth, 1985; Willett
nd Singer, 1988). Therefore, 𝑅2 should always be complemented

with the RMSE metric and an understanding of the dataset’s output
distribution (Table 3) for a proper interpretation of model performance.

2.4.6. Statistical tests
The Wilcoxon signed-rank test is a non-parametric statistical test

hypothesis test employed to ascertain whether two populations using
paired samples differ (Hollander et al., 2015). One of its merits is that
it makes no assumptions about the data’s underlying distributions, and
instead, it relies on the ranks of the data. The test works by comparing
the differences between the two samples, and then calculating the ranks
of those differences. The signed-ranks are then used to calculate a test
statistic, which is compared to a critical value from a table of values or a
𝑝-value is calculated. If the test statistic is greater than the critical value,
or the 𝑝-value is less than the significance level, then the null hypothesis
is rejected, indicating that the two samples are significantly different. In
this hypothesis test, the null hypothesis 𝐻0 is that the median difference
between the two populations is zero while one- or two-sided alternate
hypotheses may be formed. The Wilcoxon signed-rank test is employed
herein to ascertain whether there are statistical differences between the
proposed methodologies, and more specifically: (i) if DCAE outperforms
DAE; (ii) if there is a difference between using the encoded or the best
decoded space as the input to the machine learning models; and (iii)
if using simultaneously multiple pre-treatments is better than the best
single pre-treatment. In all tests a confidence interval of 𝛼 = 0.05 is
used.

3. Results

3.1. Dataset

In total, the dataset is comprised of 233 individual measurements,
each corresponding to a single berry and consisting of: (i) in situ
spectra extracted from the VNIR hyperspectral cubes, (ii) in situ spectra
collected using the handheld VNIR–SWIR spectrometer, (iii) the sugar
content in ◦Brix, (iv) the grape variety, and (v) the date corresponding
to the measurement.

The major statistical moments of the ◦Brix content across all vari-
eties are provided in Table 3. As these results indicate, there is sufficient
variability in terms of the maturity of the grapes, capturing the most
critical phases to select the optimal harvest time which depends on
the variety. For red wine varieties the optimal values are usually be-
tween 23–26◦Brix, whereas white varieties are slightly lower at about
21–24◦Brix.

The spectral signals extracted from the hyperspectral camera and
the reflectance spectra recorded by the point spectrometer are pre-
sented in Fig. 7. It should be noted that although overlaid, they depict
different physical quantities with the hyperspectral camera present-
ing the raw recorded spectrum in digital number (DN), while the
point spectrometer providing the reference reflectance data. It is pos-
sible to discern that the white grape varieties (namely, Chardonnay,
Malagouzia and Sauvignon-Blanc) have similar spectra while the major
absorbance peaks at about 680 and 770 nm for are identifiable in both
8

Table 4
Mean similarity between 𝐗′ and 𝐗sp for each autoencoder strategy considered.

Method Pre-treatment Mean similarity

𝜌 𝜌𝑐 SAM

DAE

SNV 0.8288 0.6575 0.8517
SG1+SNV 0.8185 0.6364 0.8744
SG2+SNV 0.7374 0.4745 1.0636
Multi 0.7948 0.5892 0.9349

DCAE

SNV 0.8328 0.6648 0.8427
SG1+SNV 0.8007 0.5918 0.9249
SG2+SNV 0.7264 0.4512 1.0947
Multi 0.7937 0.5854 0.9338

spectral sources. On the other hand, for Syrah (the red grape variety)
there are notable differences compared to the white grape varieties in
terms of the shape of the spectral signatures, and there is only a slight
absorbance peak at approximately 770 nm. In all cases, the largest
differences in the shapes is to be found in the near infrared range and
particular at above 800 nm; the spectrometer has high reflectance val-
ues compared to the raw measurement from the hyperspectral camera.
This is attributed to the fact that the hyperspectral camera records
using the sun as an illumination source and its blackbody radiation
curve has lower intensity in these range, whereas the reflectance of the
spectrometer is a calibrated value which takes into account the white
reference measurement.

3.2. Autoencoder

The results of the different autoencoder architectures considered
were evaluated using the similarity metrics between the transformed
spectra and the reference reflectance data, and are provided in Ta-
ble 4. As indicated, according to all the metrics, the highest similarity
may be found when using either the dense autoencoders (i.e., DAE)
or the convolutional autoencoders (i.e., DCAE) but only employing
a single pre-treatment and more precisely the SNV transform. The
worst pre-treatment appears to be SG2+SNV which yields the lowest
mean similarity in both scenarios, something that ostensibly also af-
fects the multi-channel scenario whose similarity values are potentially
skewed due to the inclusion of also this pre-treatment method. This
indicates that the process of de-noising is more involved when the
spectral derivatives are concerned, and particularly so when the second
derivative is used; this effect is less pronounced in the SG1+SNV
scenario.

Fig. 8 presents an example of the input and output of the DCAE
using multiple input spectral pre-treatments for a spectral signature
extracted from a single pixel of a hyperspectral cube depicting the
Chardonnay variety. The input to the DCAE is comprised of three
channels corresponding to three spectra pre-treatments applied in the
recorded uncalibrated (show in subfigures a, d, and g). Its output, as
well as the reference spectra with which it is compared, is presented in
subfigures b, e, and h; the difference between the two is showcased
in the third column and specifically in subfigures c, f, and i. It is
noteworthy that the autoencoder has identified the spectral information
present in the ranges above 800 nm where the input data exhibit less

information than the reference spectra.
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Fig. 7. Mean spectra with the 95% confidence interval per each of the four grape varieties showcasing the raw uncalibrated data from the hyperspectral camera (source, 𝑦-axis
labels on the left) and the target reflectance spectra from the spectrometer (reference, 𝑦-axis labels on the right).

Fig. 8. Example of the denoising procedure for the DCAE approach using three channels corresponding to spectral pre-treatments (namely, SNV, SG1 + SNV, and SG2 + SNV)
for a single measurement. The first column (i.e., subfigures a, d, and g) depicts the uncalibrated signals recorded from the hyperspectral camera which is the input to the DCAE,
the second column (i.e., subfigures b, e and h) shows the output of DCAE which is the transformed signal and the reference (calibrated) spectrum, while the third column
(i.e., subfigures c, f and i) illustrates the difference between them.
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Table 5
Best sugar content (◦Brix) prediction results in the independent test set across the four grape varieties, autoencoder methodology, and input space used; the best results per each
variety are denoted with bold.

Autoencoder Space Channels Pre-treatment Model Accuracy

RMSE 𝑅2 RPIQ

Chardonnay

DAE Decoded single SG2+SNV Cubist 1.72 0.72 2.50
Encoded single SG2+SNV Random Forest 𝟏.𝟔𝟔 𝟎.𝟕𝟒 𝟐.𝟔𝟎

DCAE Decoded single SG1+SNV Random Forest 1.84 0.68 2.34
Encoded single SG1+SNV Cubist 1.79 0.69 2.40

Malagouzia

DAE Decoded multi SG2+SNV XGBoost 𝟏.𝟕𝟐 𝟎.𝟔𝟐 𝟏.𝟗𝟖
Encoded single SNV Random Forest 1.79 0.59 1.90

DCAE Decoded single SG2+SNV XGBoost 1.86 0.55 1.82
Encoded single SNV XGBoost 1.78 0.59 1.91

Sauvignon-Blanc

DAE Decoded single SNV Random Forest 2.53 0.68 1.71
Encoded single SNV Random Forest 2.73 0.63 1.58

DCAE Decoded multi SG1+SNV XGBoost 𝟐.𝟐𝟗 𝟎.𝟕𝟒 𝟏.𝟖𝟗
Encoded single SNV Random Forest 2.43 0.70 1.78

Syrah

DAE Decoded single SG1+SNV Random Forest 1.92 0.58 2.81
Encoded single SG1+SNV XGBoost 1.70 0.67 3.18

DCAE Decoded single SNV Support Vector Regression 𝟏.𝟔𝟔 𝟎.𝟔𝟗 𝟑.𝟐𝟓
Encoded single SNV Random Forest 1.92 0.58 2.81
3.3. Modeling

The results in the independent test set are provided in Table 5;
due to the large number of experiments conducted, the table presents
the best results per each variety, autoencoder methodology, and the
input space (i.e., the encoded latent space or the decoded spectra) and
pre-processing method employed. Moreover, it is noted that the best
results in each variety are denoted with boldface. The rest of the results
are summarized in the form of boxplots in Fig. 9 which enable the
comparison of the various methodologies presented herein. It is worth
remarking that there is considerable variance in the results, indicating
that careful tuning and exploration of the various pre-treatments and
machine learning algorithms ought to take place.

To ascertain if there is a statistical difference between the two au-
toencoder methodologies, namely DAE or DCAE, the Wilcoxon signed-
rank test is employed using the RMSE as the measurement values. The
null hypothesis 𝐻0 is that the median of their differences is zero, while
the one-sided alternative hypothesis 𝐻1 is that the DCAE outperforms
DAE. The test statistic yields a value of 𝑊 = 2642 which is equivalent
to a 𝑝-value of 0.012; when compared to the confidence interval of
𝛼 = 0.05, it suggests that the 𝐻0 is rejected while 𝐻1 holds, thus DCAE
statistically outperforms DAE.

Another interesting comparison pertains to the input provided to
the machine learning algorithms, and the investigation whether the
encoded (latent) space is more suitable for predictions as opposed to the
denoised transformed spectra. To this end, the null hypothesis 𝐻0 of the
Wilcoxon signed-rank test is that the median of their RMSE differences
is zero, with the two-sided alternative hypothesis 𝐻2 being that there is
a statistically significant difference between them. The result of the test
is 𝑊 = 368 corresponding to a 𝑝-value of 0.661 > 𝛼, indicating that the
null hypothesis hold, i.e., there is no statistically significant difference
between the usage of the encoded or the decoded spaces. Thus, as also
evidenced by Fig. 9, both approaches ought to be tested to identify the
optimal model.

As a final comparison, it was investigated whether the best single
input channel outperforms the combined usage of multiple input chan-
nels. In this case, the null hypothesis 𝐻0 states that the two approaches
are equivalent, with the one-sided alternative hypothesis 𝐻1 being that
the best single input channel is better. The test statistic is equal to 𝑊 =
2890, with the equivalent 𝑝-value being 0.0003 < 𝛼, hence signifying
that the multi-input channels yield statistically worse results.
10
4. Discussion

While the application of hyperspectral imaging in the laboratory
has successfully demonstrated its capacity to robustly estimate various
maturity indicators in fruits (including grapes), there are limited studies
in real-life field conditions. This is mainly due to two factors: (i) many
commercial hyperspectral imaging devices employ push-broom (or line-
scanning) technologies thus require either a linear translation unit or
very stable (e.g., lack of wind) conditions for robust measurements,
and (ii) the field conditions demonstrate significant variability due
to varying illumination conditions both within a single scene (due to
e.g., shadows) and among different scenes (e.g., partial cloud presence
obstructing momentarily the sun), In this paper, we address the first
limitation by using a snapshot hyperspectral camera, and the second
limitation by proposing the usage of the autoencoder framework to
transfer raw recorded spectra to calibrated reflectance values. Another
major advantage of this technique, is its capacity to overcome the
inherent difficulty of continuously calibrating the camera using white
reflectance panels in the field, which is still present even when custom
set-ups are employed which utilize artificial light sources as these may
fluctuate (e.g., depending on the ambient temperature) or the sensor’s
response may change as it overheats from continuous usage.

To this end, firstly, various autoencoder architectures are exam-
ined, namely the deep autoencoder framework which employs fully
connected layers and the deep convolutional autoencoder framework
utilizing the convolutional operation. Furthermore, the combined us-
age of multiple spectral input sources (as formed through common
pre-processing techniques) is investigated. As a first step, the paper
examines the similarity between the output of the autoencoders’ which
are the transformed spectra 𝐗′ and the reference reflectance measure-
ments 𝐗sp (Table 4). The closest similarity is observed when using
the SNV or the SG1+SNV pre-treatments, i.e., only a simple scatter
correction technique or the calculation of the first derivative. The use of
the second derivative, denoted as SG2+SNV, yields the worst similarity,
which may be attributed to the fact they are calculated by taking the
derivative of the first derivative. They are thus ipso facto in general
more sensitive to noise in the signal and may potentially amplify the
noise and cause distortions in the signal, such as amplifying high-
frequency noise or smoothing out sharp peaks in the signal. Specifically
this impedes the process of transforming the raw measurements by the
hyperspectral camera 𝐗hs into the more noisy second-derivative spectra
of 𝐗 , particularly in the infrared where the signal-to-noise ratio is
sp
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Fig. 9. Prediction results in the independent test set summarized across the four grape
varieties, grouped per each autoencoder methodology, number of input channels and
input space used; higher values are better.

higher. At the same time, it is noteworthy that there is no significant
difference between DAE and DCAE despite the latter employing about
10 times more trainable parameters.

Following this de-noising framework, the second step involves the
application of machine learning models to predict the sugar content.
The input to the model may be either the compressed latent space from
the autoencoder, or the denoised spectra produced by the autoencoder
(i.e., the decoder’s output 𝐗′). Interestingly, despite the fact the similar-
ity metrics employed indicated that there is not a significant difference
between DAE and DCAE, nevertheless the performance of the machine
learning models indicates otherwise. More specifically, although DAE
yields the best models for Chardonnay and Malagouzia whilst DCAE is
11
the best method for Sauvignon-Blanc and Syrah, the Wilcoxon signed-
rank test signified that the median RMSE of DCAE is statistically lower
than the one of DAE. This may signify that DCAE better captures the
information which is considered as spectrally important for the models
to more robustly determine the ◦Brix content, and is thus more favor-
able for the herein presented application. When the use of the encoded
space is compared to the decoded spectra, no statistically significant
differences were the observed. Despite this, it bears mentioning that
both approaches ought to be tested, considering that as shown in Fig. 9
in some cases the encoded space fares better (e.g., Chardonnay with
DCAE and Syrah with DAE) while in other cases the decoded space
yields enhanced prediction results (e.g., Sauvignon-Blanc with DCAE).
In the third statistical comparison that took place, it was demonstrated
that the use of multiple input channels is statistically worse than the
best single input channel. This is probably due to the inclusion of the
second derivative, which as evidenced in Table 4, is more difficult to
predict. The effect of incorporating the second derivative in the multi-
input channels appears to deteriorate the performance of the machine
learning because the autoencoder attempts to encode the noisy part of
the spectrum and the transformed spectra have a lower resemblance to
the reference values.

All in all, the best models exhibit excellent performance (RPIQ
> 2) in the Chardonnay and Syrah varieties and provide good estima-
tions (RPIQ ≈ 2) for the Malagouzia and Sauvignon-Blanc varieties.
The RMSE values of the best models range between 1.66 ◦Brix and
2.29 ◦Brix which although they are larger than the resolution of the
refractometer that provided the ground truth measurements (at 0.2
◦Brix), they nevertheless provide a fair estimate for the sugar content
of the grapes in terms of their maturity stage. Thus, the effect of
the accuracy of estimation of the ground truth measurements in the
developed models is considered negligible. Compared to other studies
which predict the sugar content via point spectroscopy (like e.g., in
Kalopesa et al., 2023) the results are understandably slightly worse, but
are still comparable. In the same varieties, Kalopesa et al. (2023) report
a mean RPIQ of 3.70, whereas here the mean RPIQ is 2.43. Rodríguez-
Pulido et al. (2022) report an RMSE of 1.40 ◦Brix in the examined
varieties (Syrah and Tempranillo) when transferring their laboratory
model in the field, which is comparable to the RMSE of 1.66 ◦Brix for
Syrah reported herein. Their application however uses a push-broom
portable hyperspectral camera and requires continuous white reference
measurements close to the target which is less than ideal for robotic
platforms. This testifies to the robustness of the herein introduced
methodology.

With respect to the limitations of the present study, it should be
noted that whereas the proposed framework successfully manages to
map the uncalibrated signal from the hyperspectral camera to the
calibrated signature of the handheld spectrometer, nevertheless this
transformation is device specific and hence the training of the autoen-
coder has to re-take place if a different hyperspectral camera is used,
even if it uses the exact same spectral range and bands. Moreover,
although the data collected in the present study was without artificial
light sources, nevertheless the integration time was picked in the field
during each measurement, and hence a more automated and structured
practice is needed. Closely related to this, is the inclusion of more
outlying values (e.g., very dimly or very brightly illuminated targets)
to the examine the robustness of the proposed methodology. The effect
of the ambient temperature and of the prolonged in-situ operation of
the hyperspectral camera which causes heating on the spectral acqui-
sitions should also be studied in the future. Undoubtedly, the current
study focused only on four varieties; considering the plethora of grape
varieties and growing conditions present in viticulture, further work
is necessary on more diverse datasets to validate the generalization
ability of the proposed framework. Lastly, it should be noted that to
incorporate this method on a moving robotic platform (compared to

the stationary approach employed herein) more analysis is required,
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although due to the sensor’s low integration time (ca. 20 ms) the effect
of the movement on the hyperspectral cube is expected to be limited.

In the future, automatic segmentation techniques (like e.g. in Lu
et al., 2022) for real-time detection of the grape bunch could be
deployed in combination with our proposed methodology to enable in
situ detection of grape maturity via robotic platforms. An optimization
procedure to automatically select the most optimal integration time
from a given scene could also be studied, to further automate the
procedure. Finally, other maturity indicators that are essential to gauge
the grapes’ ripeness like pH and total acidity, ought to be included
in future studies, in addition to ◦Brix (Chávez-Segura and Vejarano,
022).

. Conclusions

In this paper a novel autoencoder-based framework was presented
hich enables hyperspectral imaging to become more operational in

he field, by collecting raw signatures and transforming them into
eference reflectance data accounting for the different illumination
onditions and shadowing effects. The proposed technique assists in
vercoming the aforementioned difficulties and enables the mounting
f hyperspectral cameras on robotic platforms for continuous moni-
oring, without the need to use artificial light sources or continuous
hite reference measurements (i.e., device calibration). In terms of

he most suitable autoencoder architecture, it was demonstrated that
oth dense and convolutional autoencoders can sufficiently transform
he raw spectra to standardized values. In the particular case of the
stimation of sugar content in vinified grapes examined in this pa-
er, the convolutional autoencoders result in higher overall accuracy
hile the use of either the encoded (latent) space or the decoded

ransformed spectra lead to similar performances. When the use of
ultiple spectra pre-treatments was investigated, it was shown that the

imple SNV pre-treatment performs better in terms of reconstruction
rror and prediction performance when compared to the use of spectral
erivatives, which also led to lower accuracy when all pre-treatments
ere combined simultaneously and served as input to the autoencoder.
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