Published March 27, 2021 | Version 1 (NetCDF)
Dataset Open

ChinaHighSO₂: Daily Seamless 10 km Ground-Level SO₂ Dataset for China (2013–2018)

  • 1. ROR icon University of Maryland, College Park

Description

ChinaHighSO2 is part of a series of long-term, seamless, high-resolution, and high-quality datasets of air pollutants for China (i.e., ChinaHighAirPollutants, CHAP). It is generated from big data sources (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence, taking into account the spatiotemporal heterogeneity of air pollution.

Here is the big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 10 km (i.e., D10K, M10K, and Y10K) ground-level SO2 dataset for China from 2013 to 2018. This dataset exhibits high quality, with a cross-validation coefficient of determination (CV-R2) of 0.84, a root-mean-square error (RMSE) of 10.07 µg m-3, and a mean absolute error (MAE) of 4.68 µg m-3 on a daily basis.

If you use the ChinaHighSO2 dataset in your scientific research, please cite the following reference (Wei et al., ACP, 2023):

Note that the ChinaHighSO2 dataset was improved to a 1 km resolution after 2019:

        all (including daily) data for the years after 2019 are accessible at: https://doi.org/10.5281/zenodo.10476944

More CHAP datasets for different air pollutants are available at: https://weijing-rs.github.io/product.html

Notes

Note that the data are recorded in local time (i.e., Beijing time: GMT+8), and measured at the standard condition (i.e., 273 K and 1013 hPa). The concentrations can be converted to the room condition (i.e., 298 K and 1013 hPa) by dividing by a factor of 1.09375 (MEE, 2018).

This dataset is continuously updated. If you require additional data for related scientific research, please contact us (weijing_rs@163.com or weijing.rs@gmail.com).

Files

Wei_et_al-ACP-2023.pdf

Files (447.2 MB)

Name Size Download all
md5:38a1a3e3678d9d8aa73a4589d933e982
71.3 MB Preview Download
md5:6085905fdc856ddca20a880b23fe46fe
71.3 MB Preview Download
md5:f56e0daef0f8151c901fd097b6ef3980
70.1 MB Preview Download
md5:5f5c91e15ca66c86d4ce19dd3ec3881f
69.2 MB Preview Download
md5:65a68a8c16daf208548b1a8e43b0a97c
67.1 MB Preview Download
md5:e19b2f56052cf052965845cd44bae233
65.4 MB Preview Download
md5:cd7c4f739d81d59b2f1dd3e1b0128967
2.3 MB Preview Download
md5:d39d1b08b7ed14d09daae52a9d7f6d14
2.3 MB Preview Download
md5:70dce25b47e2074e854e525676df9a57
2.3 MB Preview Download
md5:1ba1c4ab1f1f8c33721dfc0ff97d7e52
2.2 MB Preview Download
md5:9d80d08a7c977cdd21ffa13be3e2ba6e
2.2 MB Preview Download
md5:1f50cb2cc4971cb2da1a9df073ba2592
2.1 MB Preview Download
md5:d8782a8a0de825b26862eabd2d2756d4
586.3 kB Download
md5:e93e8d3138868762e4e038dec22a1c97
586.3 kB Download
md5:de462a4fd9a9f58e07305c4e7682d5e9
584.4 kB Download
md5:fc8f0c64042d04a64a3bd6510da6e47c
582.4 kB Download
md5:f4485b21e2a15c205f31e11fda2a04b9
580.1 kB Download
md5:f0d4a69568b5c0c7272b799abecd7661
576.3 kB Download
md5:5cf23a83044dfb7b76d596d0ea8fe0e6
3.5 kB Preview Download
md5:39e31e794393fcfe42477f80f8c312a6
15.8 MB Preview Download

Additional details

Related works

Is referenced by
Journal article: 10.5194/acp-23-1511-2023 (DOI)

References

  • Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., and Cribb, M. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations. Atmospheric Chemistry and Physics, 2023, 23, 1511–1532. https://doi.org/10.5194/acp-23-1511-2023