ChinaHighSO₂: Daily Seamless 10 km Ground-Level SO₂ Dataset for China (2013–2018)
Description
ChinaHighSO2 is part of a series of long-term, seamless, high-resolution, and high-quality datasets of air pollutants for China (i.e., ChinaHighAirPollutants, CHAP). It is generated from big data sources (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence, taking into account the spatiotemporal heterogeneity of air pollution.
Here is the big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 10 km (i.e., D10K, M10K, and Y10K) ground-level SO2 dataset for China from 2013 to 2018. This dataset exhibits high quality, with a cross-validation coefficient of determination (CV-R2) of 0.84, a root-mean-square error (RMSE) of 10.07 µg m-3, and a mean absolute error (MAE) of 4.68 µg m-3 on a daily basis.
If you use the ChinaHighSO2 dataset in your scientific research, please cite the following reference (Wei et al., ACP, 2023):
-
Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., and Cribb, M. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations. Atmospheric Chemistry and Physics, 2023, 23, 1511–1532. https://doi.org/10.5194/acp-23-1511-2023
Note that the ChinaHighSO2 dataset was improved to a 1 km resolution after 2019:
all (including daily) data for the years after 2019 are accessible at: https://doi.org/10.5281/zenodo.10476944
More CHAP datasets for different air pollutants are available at: https://weijing-rs.github.io/product.html
Notes
Files
Wei_et_al-ACP-2023.pdf
Files
(447.2 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:38a1a3e3678d9d8aa73a4589d933e982
|
71.3 MB | Preview Download |
|
md5:6085905fdc856ddca20a880b23fe46fe
|
71.3 MB | Preview Download |
|
md5:f56e0daef0f8151c901fd097b6ef3980
|
70.1 MB | Preview Download |
|
md5:5f5c91e15ca66c86d4ce19dd3ec3881f
|
69.2 MB | Preview Download |
|
md5:65a68a8c16daf208548b1a8e43b0a97c
|
67.1 MB | Preview Download |
|
md5:e19b2f56052cf052965845cd44bae233
|
65.4 MB | Preview Download |
|
md5:cd7c4f739d81d59b2f1dd3e1b0128967
|
2.3 MB | Preview Download |
|
md5:d39d1b08b7ed14d09daae52a9d7f6d14
|
2.3 MB | Preview Download |
|
md5:70dce25b47e2074e854e525676df9a57
|
2.3 MB | Preview Download |
|
md5:1ba1c4ab1f1f8c33721dfc0ff97d7e52
|
2.2 MB | Preview Download |
|
md5:9d80d08a7c977cdd21ffa13be3e2ba6e
|
2.2 MB | Preview Download |
|
md5:1f50cb2cc4971cb2da1a9df073ba2592
|
2.1 MB | Preview Download |
|
md5:d8782a8a0de825b26862eabd2d2756d4
|
586.3 kB | Download |
|
md5:e93e8d3138868762e4e038dec22a1c97
|
586.3 kB | Download |
|
md5:de462a4fd9a9f58e07305c4e7682d5e9
|
584.4 kB | Download |
|
md5:fc8f0c64042d04a64a3bd6510da6e47c
|
582.4 kB | Download |
|
md5:f4485b21e2a15c205f31e11fda2a04b9
|
580.1 kB | Download |
|
md5:f0d4a69568b5c0c7272b799abecd7661
|
576.3 kB | Download |
|
md5:5cf23a83044dfb7b76d596d0ea8fe0e6
|
3.5 kB | Preview Download |
|
md5:39e31e794393fcfe42477f80f8c312a6
|
15.8 MB | Preview Download |
Additional details
Related works
- Is referenced by
- Journal article: 10.5194/acp-23-1511-2023 (DOI)
References
- Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., and Cribb, M. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations. Atmospheric Chemistry and Physics, 2023, 23, 1511–1532. https://doi.org/10.5194/acp-23-1511-2023