

PSDI – Pathfinder 4

FAIR Data for the Biomolecular Simulation Community

James Gebbie-Rayet & Jas Kalayan

Webinar Structure

- Overview of domain (James)
- ► Aims of the project (James)
- Technical overview of platform so far (Jas)
- ► Technical demonstration (Jas)
- Questions (You)

Biologists are brilliant with data!

Other areas of biology are very organised about data!

https://www.rcsb.org/

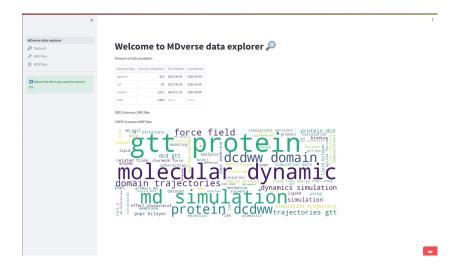
https://www.ebi.ac.uk/empiar/

https://www.ebi.ac.uk/emdb/

https://www.uniprot.org/help/uniprotkb

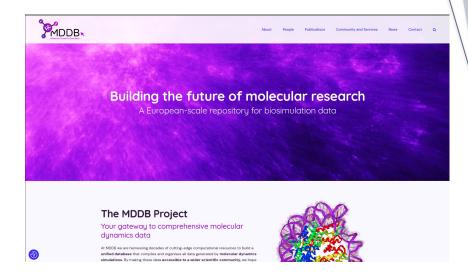
https://gpcrdb.org/

https://www.ncbi.nlm.nih.gov/genbank/


What about Biomolecular Simulation?

Not much in the way of established production databases or services in UK!!

What's there already/coming?


EU Initiatives focussed purely on biomolecular simulation:

https://mdverse.streamlit.app/

Focuses on mining common file shares

Difficult to FAIR-ise data

https://mddbr.eu/

Large EU project bringing together several small Dbs

Challenging issue around integrating many sources, unclear how FAIR data will be

Existing Generic Sharing Platforms

Some existing ways we as researchers share our data:

https://zenodo.org/

https://figshare.com/

- Great for sharing files
- ► Great for getting persistent identifiers
- ► No requirement to share data that is FAIR
- ▶ Researchers left to own devices on what is shared!

https://osf.io/

https://www.mendeley.com/

What's the Main Issues in Domain?

The main issues that our pathfinder aims to tackle are:

- ▶ No consistent approach to storing or sharing simulation data across the community.
- No real infrastructure or route to make simulation data accessible.
- ▶ Usage of existing or emerging platforms not FAIR
- ► The funding, research, publish cycle in the field currently discourages researchers to think or do anything about sharing data.
- Research papers in biomolecular simulation do not often contain information to allow fully reproducible studies.
- ► Even publications where simulations are well described, are difficult to reproduce due to full provenance of model creation not being present.
- ▶ Difficult to know exactly which experimental data sets/sources involved in research studies.

What is PSDI Pathfinder Doing?

Objective is to establish data infrastructure prototype and tools to improve data practices in field without major cultural shifts:

- ► Main aim is to improve data practices in domain align with FAIR principles
- Prototype tools to capture full data provenance for model creation, simulation and analytics (FAIR)
- ► Prototype infrastructure tools to store, access, find and share data (FAIR)
- ► Establish long term collaboration with other data initiatives (EBI, EU and US funded)
- ► Establish hard data links to experimental data sources
- "I" (FAIR) not yet in scope of this pathfinder (excellent projects in wider community)

We want data to be easy!

Our philosophy is that data practice should be baked into the way we work, if it adds extra burden then we won't do it!

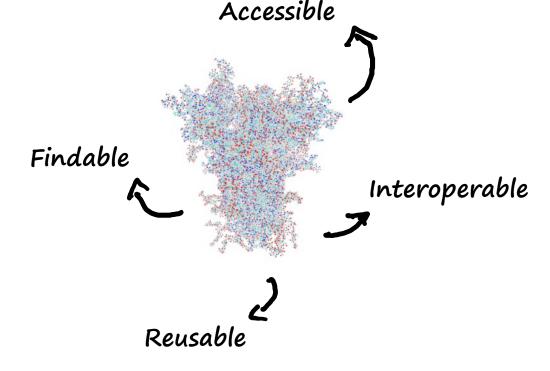
- ▶ We want to eliminate having to fill in web forms with huge numbers of fields
- Our tooling is designed to harvest data and metadata in an automated way
- ▶ We do this in a way that avoids you having to change much about how you work
- ► You should be in control of your data at all times and choose if and when to share
- ▶ It should be easy to generate overviews of your data to make publishing simpler
- Much more is under development!

What could it enable?

We think that better data practices unlock enormous potential!

- ► As a research field we can avoid duplication of effort
- ► Having our full data out in the open will enable exploitation by other domains (AI/ML)
- ► Collecting and sharing full model provenance will enable full reproducibility
- ► Sharing simulation data can improve statistical/physical understanding of systems when studied with different codes/methods (we saw this during SARS-COV2)
- ► Sharing simulation data is climate friendly simulations on HPC are energy intensive!
- ► We can use high quality datasets to inform novel method development and evaluate the quality of existing and emerging forcefield, physics etc
- ► Knowledge will bleed between research groups since model creation can be shared
- ► Councils and other funders will be able to see the true cost of research, by linking with experimental databases and collecting contributors in the chain

Over to Jas!

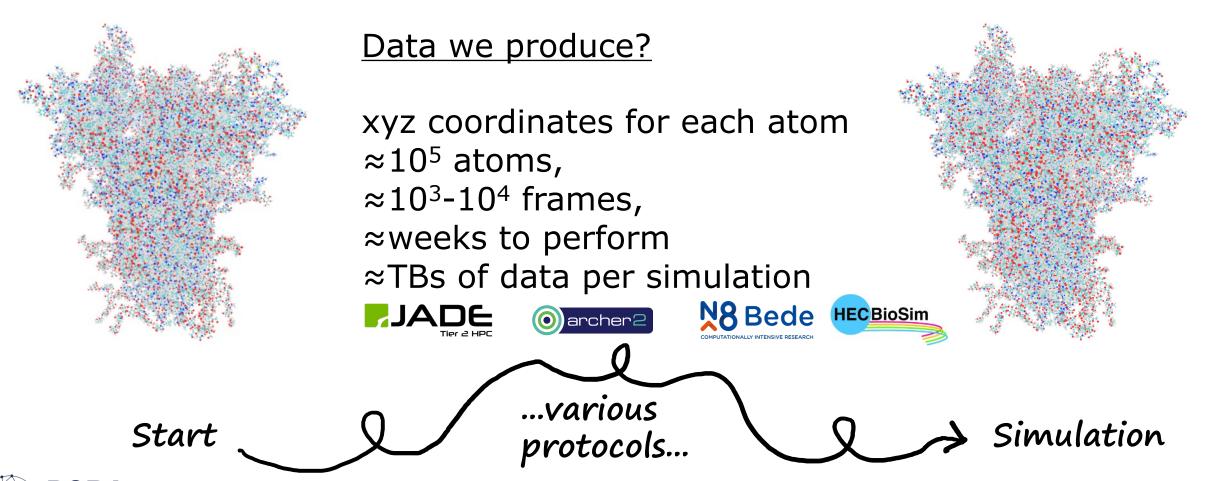

PSDI Webinar: FAIR Data for the Biomolecular Simulation Community

Acknowledgments to:

Kin Chao, Joel Greer, Tom Burnley, Martyn Winn Imperial College London

18.10.2023

*DESRES COVID19 spike protein



The Biomolecular Simulation Community

*DESRES COVID19 spike protein simulation

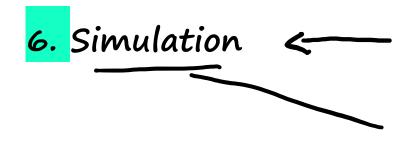
Various Protocols in MD Simulation

2. System Preparation

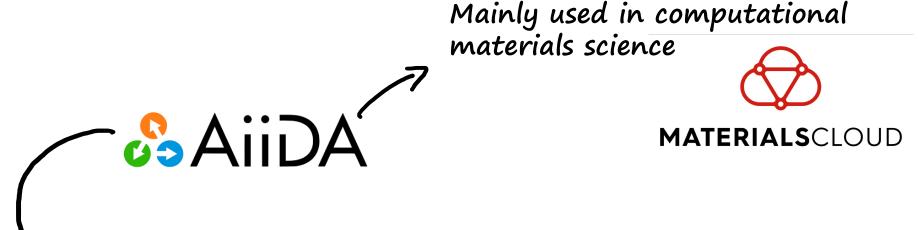
python

3. Parameterisation

nitial configurations for Molecular Dynamics Simulations by


CHARMM-GUI

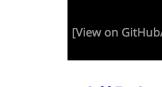
Software for biomolecular electrostatics and solvation



5. Equilibration — 4. Minimisation

Using the same MD engine

Biomolecular Simulation Data Provenance using AiiDA


AiiDA is a Python infrastructure that helps track complex workflows used in computational science. https://github.com/aiidateam/aiida-core

AiiDA-GROMACS: A plugin for Data Provenance with GROMACS Simulations

ACIIA

GROMACS is used by 70% L of HECBioSim users, But more plugins to come!

AiiDA plugin package "aiida-gromacs"

< back to the registry index

General information

Current state: status alpha

Short description: A plugin for using GROMACS with AiiDA for molecular dymanics simulations.

How to install: pip install git+https://github.com/jimboid/aiida-gromacs

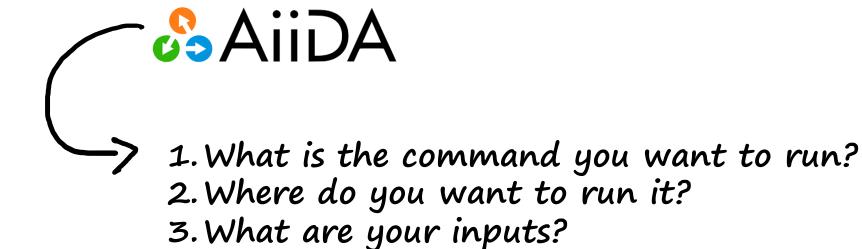
Source code: Go to the source code repository **Documentation**: Go to plugin documentation

Detailed information

Author(s): James Gebbie-Rayet Contact: james.gebbie@stfc.ac.uk

How to use from python: import aiida_gromacs

Most recent version:


Compatibility: R AiiDA >=2.0,<3

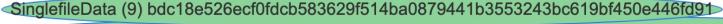
Plugins provided by the package

Calculations 7 Parsers 7 Data 6 Workflows 1

Basics of using AiiDA for Data Provenance

4. What are your outputs?

Example of Data Provenance with aiida-gromacs


```
RemoteData (5) @localhost
gmx_pdb2gmx -f 1AKI_clean.pdb -ff oplsaa
                                                                                FolderData (6)
      -water spce -o 1AKI_forcefield.gro
      -p 1AKI_topology.top
                                            SinglefileData (10) 1AKI_restraints.itp
      -i 1AKI_restraints.itp
                                                                                  SinglefileData (7) pdb2gmx.out
                                                       Pdb2gmxCalculation (4) State: finished Exit Code: 0
      Note the underscore!
                                                     Data (2)
                                                                                 SinglefileData (9) 1AKI_topology.top
                                                SinglefileData (8) 1AKI_forcefield.gro Code (1) gmx@localhost
                                                             SinglefileData (3) 1AKI clean.pdb
```


https://aiida-gromacs.readthedocs.io

Example of Data Provenance with aiida-gromacs

```
$ genericMD --command
                                                      RemoteData (7) @localhost
    "pdb2gmx -f 1AKI_clean.pdb
                                                             SinglefileData (10) 1AKI restraints.itp
                                        SinglefileData (12) 1AKI_forcefield.gro
    -ff oplsaa -water spce
    -o 1AKI_forcefield.gro
                                                                          Code (1) gmx@localhost
    -p 1AKI topology.top
                                      SinglefileData (4) 1AKI clean.pdb
    -i 1AKI restraints.itp"
--inputs 1AKI clean.pdb
                                                GeneralCalculation (6) State: finished Exit Code: 0
--outputs 1AKI_restraints.itp
--outputs 1AKI topology.top
                                                                       SinglefileData (11) 1AKI_topology.top
--outputs 1AKI_forcefield.gro
                                            FolderData (8)
--code gmx@localhost
                                                                            List (5)
```


Str (3) pdb2gmx -i 1AKI_restraints.itp -o 1AKI_torcefield.gro -p 1AKI_topology.top -ff oplsaa -water spce -f 1AKI_clean.pdb

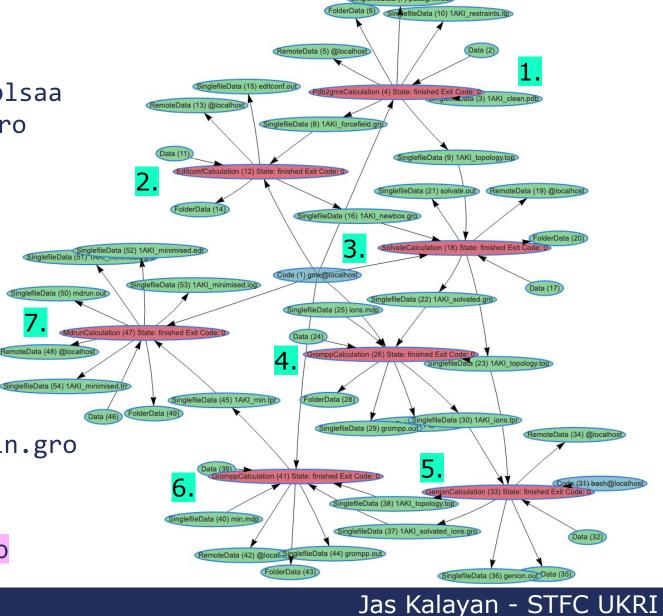
Example of Data Provenance with

aiida-gromacs

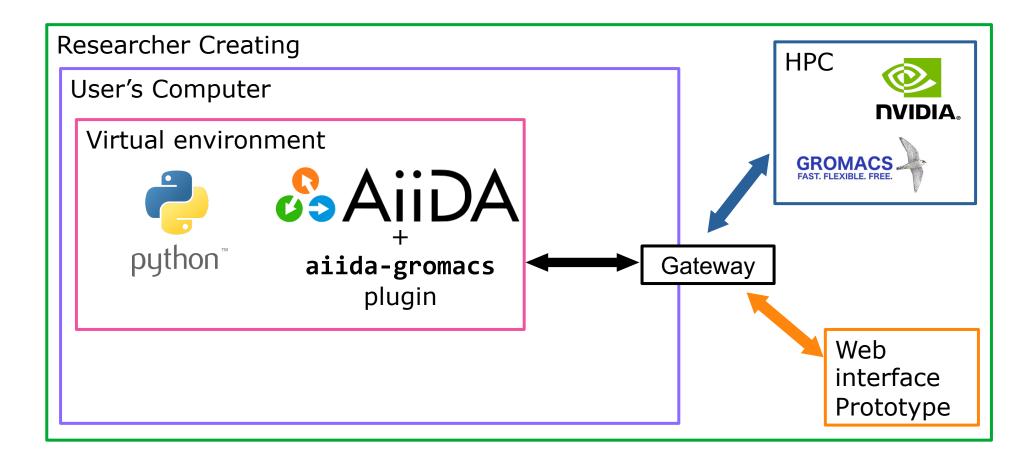
1. gmx_pdb2gmx -f 1AKI_clean.pdb -ff oplsaa
 -water spce -o 1AKI_forcefield.gro

-p 1AKI_topology.top

-i 1AKI_restraints.itp

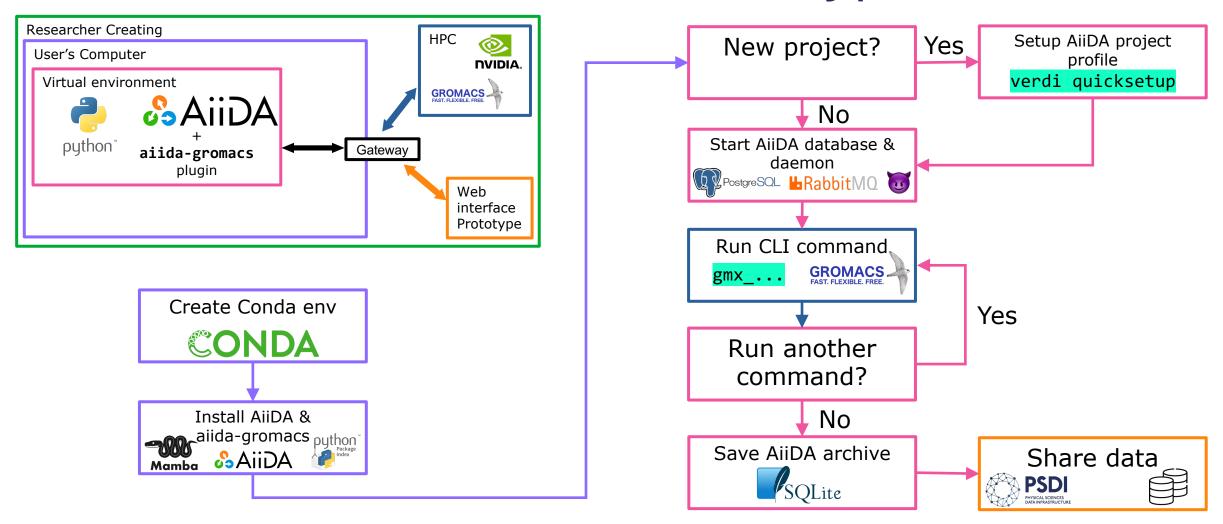

gmx_editconf,
gmx_solvate,
gmx_grompp,
gmx_genion,
gmx_grompp,

7. gmx_mdrun -s 1AKI_min.tpr -c 1AKI_min.gro

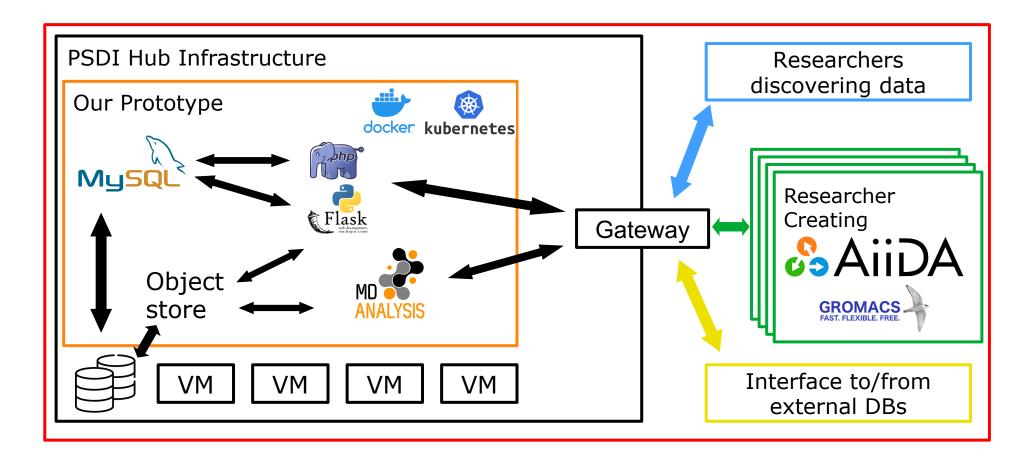

-e 1AKI_min.edr -g 1AKI_min.log

-o 1AKI_min.trr

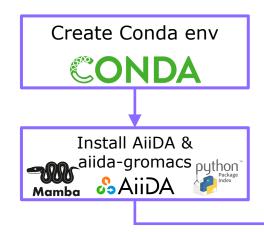
https://aiida-gromacs.readthedocs.io

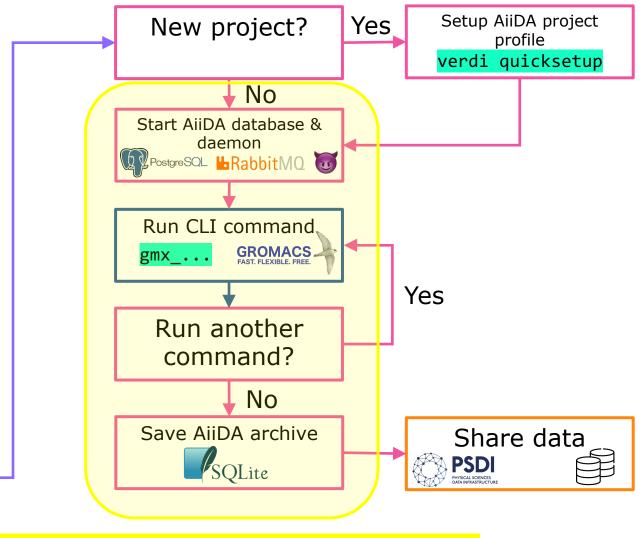


Our User Environment Prototype



Our User Environment Prototype


Our Infrastructure Prototype



Demo: Lysozyme Minimisation with

aiida-gromacs

https://www.ccpbiosim.ac.uk/notebooks/hub/spawn?profile=aiida-demo