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Abstract 
 

Autism is a heterogeneous neurodevelopmental condition, and fMRI-based studies have 

helped advance our understanding of its effects on brain network activity. We review how 

predictive modelling, employing measures of functional connectivity and symptoms, has helped 

reveal key insights into this condition. We discuss how different prediction frameworks can 

further our understanding of the brain-based features that underlie complex autism 

symptomatology and consider how predictive models may be employed in clinical settings. 

Throughout, we highlight aspects of study interpretation, such as data decay and sampling biases, 

that require consideration within the context of this condition. We close by suggesting exciting 

future directions for predictive modelling in autism. 
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Introduction 

 Autism spectrum disorder (hereafter ‘autism’) is a neurodevelopmental condition 

characterized by difficulties with social communication and interaction as well as restricted and 

repetitive behaviors (1) and atypical responses to sensory information. There are limited 

empirically validated treatments for autistic features, especially with respect to medical 

interventions. Methods that improve our understanding of the brain-based characteristics 

underlying this condition could ultimately guide clinical research and practice by identifying 

targets for individualized interventions.  

Functional magnetic resonance imaging (fMRI) connectivity analyses (2) have yielded 

tools that localize brain circuits supporting specific behaviors. These approaches can be used to 

infer brain-behavior relationships at the individual level that are validated through predictive 

models. Prediction-based approaches offer a statistically rigorous framework (by using separate 

data for model training and testing) to study individual differences (3-5), particularly in 

neurodevelopmental conditions (6). Here, we assert models have two broad areas of utility in 

autism: 1) to deepen our understanding of how functional connections coalesce to give rise to the 

complex autism symptomatology (hereafter ‘biological insight’), and 2) to potentially assist in 

diagnosis, prognostication, intervention planning, and monitoring of intervention response 

(hereafter ‘clinical utility’) (7) (Figure 1A).  

With these two areas in mind, we review the autism predictive modelling literature, 

focusing on studies using MRI functional connectivity data. Consistent with the lifelong nature 

of autism, we consider studies across a wide range of participant ages (6 months - 65 years). 

After detailing autism-specific study design considerations, we discuss three predictive 

modelling frameworks: case-control classification, dimensional prediction, and subtyping 
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applications (Figure 1B). In each section, we emphasize brain-based insights and identify areas 

in which we expect predictive models to yield clinical utility. Because brain-based insights 

underlie clinically useful models (and vice-versa), we weave their discussion together throughout 

the text to stress their interdependence. The goal of this review is to highlight key papers of 

interest and discuss conceptual considerations that can make autism predictive models more 

useful (8). Our goal is not to perform an exhaustive, systematic review of machine learning 

approaches/algorithms in autism prediction studies; the reader is referred to (9-11) for 

comprehensive reviews summarizing recent progress. 

 

Autism-specific considerations for predictive modelling 

Predictive models offer biological insight and potential clinical utility 

For the purposes of this review, predictive modelling encompasses approaches using 

statistics to relate MRI functional connectivity measures to phenotypic measures (diagnostic 

status/symptoms) (4). (See Supplemental Materials for background about predictive 

modelling/machine learning.) These methods separate a dataset into training and testing samples, 

then apply cross-validation, or use external data, to test the model. Here, we place emphasis on 

the functional features (connections and networks) selected through predictive modelling and the 

potential biological insights/clinical relevance they offer. For example, consider a model 

implicating connections in frontoparietal areas as important for social attention. Such a model 

yields biological insight into a complex phenotype by localizing circuits. The model may show 

clinical utility in the future by predicting which individuals are most likely to respond to 

behavioral interventions.  
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Balancing large sample sizes, concerns about data decay, and site effects 

Predictive modelling studies in autism (12) and neurotypical participants (13) have 

demonstrated that large samples are needed to obtain reproducible results. In the autism field, 

using large datasets generally means using data from the Autism Brain Imaging Data Exchange 

(ABIDE) (14, 15) and/or the European Autism Interventions Multicenter Study for Developing 

New Medications (EU-AIMS) (16). A concern with these samples is data decay (17) and is 

related to sensitivity and specificity (concepts of relevance for case-control classification studies; 

sensitivity = an algorithm’s ability to correctly classify individuals with autism who actually 

have the condition; specificity = an algorithm’s ability to correctly classify neurotypical 

individuals who do not have the condition). Data decay means that over time, the capacity of a 

sample to reveal new, statistically significant relationships (such as sensitivity/specificity) 

decreases as the number of statistical tests performed in the sample increases (17). Concerns 

about data decay are not unique to autism research; a similar issue has been noted for those using 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (18).  

In addition, ABIDE and EU-AIMS comprise data from multiple sites. Care must be taken 

to ensure site effects are not confounding results (4); ComBat is one method investigators have 

used to minimize site effects (19, 20). To help further mitigate concerns about data decay and 

site effects, other samples could be used to further validate predictive models (21), as has been 

done with other phenotypes (22). Using multiple datasets to ensure results hold across samples is 

one way to increase generalizability of results (23). We describe these issues to increase 

awareness—we strongly advocate for openly sharing datasets. 
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Confounds, tolerability of the scanning environment, and the consequences for predictive 

modelling 

Confounds, or variables that relate to both the independent and dependent variables in a 

model, can drive spurious statistical relationships and lead to false conclusions. In-scanner head 

motion is a notorious confound in measures of functional connectivity (24) and is a concern in 

the autism field (25). Performing global signal regression (GSR) decreases motion artifact (26) 

and strengthens brain-behavior relationships in those with autism (27) and in neurotypical 

individuals (28). Implementing GSR is not without controversy (29); see (30) for a full 

discussion, including how GSR can alter functional correlation structure and affect between-

group comparisons. 

Barring a consensus approach to remove the effects of head-motion, individuals with 

high-motion data are often excluded in model building (27, 31). This practice influences the 

participants included in predictive modelling studies. Relatedly, individuals with autism who 

tolerate fMRI scans and produce low-motion data tend to have fewer language/cognitive 

difficulties and higher IQs. These facts must be kept in mind when considering the feasibility of 

using predictive modelling in clinical settings. To diversify individuals with autism that meet 

data quality criteria, the length of the imaging protocol is often minimized by shortening 

functional scans (<5 minutes) and eliminating task scans. The trade-off is the limited scope of the 

data obtained. Fewer, shorter scans result in less reliable functional connectomes (32) and 

resting-state data tends to generate poorer prediction performance (in neurotypical individuals) 

(31). Exact solutions to confounds depend on analysis goals, but we point the reader to (33) for 

an examination of confounds in the UK Biobank (and ways to address them). To increase 

reliability of functional connectomes, we recommend collecting more scanning data (both task 
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and rest data) and/or using methods to increase the quality of scanning data (Framewise 

Integrated Real-time MRI Monitoring (FIRMM) (34), mock scan protocols (35), Inscapes) (36). 

 

Comorbidities and phenotypic overlap 

 Individuals with autism have high rates of co-occurring conditions, including attention-

deficit/hyperactivity disorder (ADHD) (37), anxiety disorders (38), and intellectual disabilities 

(39). The comorbidities can pose challenges for researchers, including how to covary for 

different diagnoses. Linking analytic approaches (i.e. dimensional and subtyping approaches) is 

one solution. For example, individuals with and without anxiety symptoms could be grouped into 

a priori subtypes (as in (40)), and separate dimensional models could be generated to predict 

autism symptoms in each group. Approaches allowing participants to express subtype 

characteristics to varying degrees (multidimensional subtyping) (41) have also shown success in 

parsing heterogeneity.  

 

Sex imbalance in autism and sex-specific effects in predictive modelling 

Sex effects play a role in predictive modelling in autism. There is an estimated 3:1 

male:female imbalance in diagnoses (42), and there are sex differences in the neurobiology of 

autism (43). Females and males tend to exhibit different symptoms, often leading to missed 

diagnoses in females (44). Further, models predicting fluid intelligence in neurotypical 

individuals show higher accuracies when generated separately for each sex, and the functional 

features underlying the models are sex-specific (31). The sex specificity aligns with the high 

degree of accuracy with which sex can be predicted using connectivity data in neurotypical 
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individuals (45). Therefore, investigators should include equal numbers of males and females in 

analyses (when feasible) and/or build sex-specific models. 

 We next highlight how all of these factors can impact the biological and clinical utility of 

predictive modelling in autism as we review three different approaches: case-control 

classification, dimensional phenotype prediction, and subtype-specific prediction. 

 

Case-control classification: the case for focusing on diagnosis 

 Case-control classification studies (12, 46-68) constitute most of the prediction literature 

in autism (Table 1). A strength of these studies is their unambiguous nature: participants are 

either correctly classified or not. Another strength is the large number compared to dimensional 

and subtyping prediction studies, allowing for broad trends to be observed. Below, we highlight 

the biological and clinical utility of a few of these studies through a developmental lens (69), 

spanning infancy into older adulthood (65+). 

 

Brain-based features implicated in autism classification differ across the lifespan 

Autism is a lifelong condition, with symptoms changing across an individual’s lifetime 

(70). The developmental changes are reflected in the neurobiological correlates differentiating 

individuals with autism from neurotypical participants. For instance, using a gaussian kernel 

support vector machine (SVM) and resting-state data from ABIDE, Kazeminejad and Sotero (58) 

have shown that the functional features most discriminative of autism status in 5 – 15-year-olds 

(connections involving parietal and ventrolateral prefrontal cortex) differ from those most 

discriminative in 15 – 30-year-olds (with more connections involving dorsolateral prefrontal 

cortex and temporal cortex). Across studies, the general theme of developmental effects holds: 
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the functional network organization discriminating autism cases from neurotypical participants 

seems to be different at different stages of the lifespan (58, 71, 72). Differences across the 

lifespan also hold in case-control studies using T1-weighted structural MRI data (73) and align 

with the dynamic nature of brain maturation (74, 75).  

From this evidence, we draw two conclusions. First, predictive models that do not 

generalize across different age groups should not be viewed as model “failures” (4). Age-specific 

models for autism case-control classification might be necessary to maximize model utility. This 

observation is in line with longitudinal work conducted in children (11-18 years old) suggesting 

that functional networks change at different rates among those with autism and those without 

(76). Second, given the growing evidence, we can make some overarching observations and 

devise new hypotheses for testing. For instance, maturational trajectories of cortical areas tend to 

follow a hierarchical sensory-association axis (74). Unimodal sensory areas mature during 

childhood, and heteromodal association areas mature later in adolescence and young adulthood. 

Interestingly, disruptions have been observed in this hierarchy in autism (77, 78), making it 

intriguing to consider this axis in the context of classification. Perhaps developmental deviations 

along this functional axis could be used to more accurately delineate between individuals with 

and without autism? In the future, researchers could investigate this hypothesis in large datasets, 

while keeping in mind autism-specific predictive modelling issues (particularly data decay—

most recent case-control studies have been conducted in ABIDE; Table 1). 

 

Clinical utility: toward early diagnosis 

A major push of clinically relevant research is to identify individuals with autism using 

objective, biological markers at early stages of development (Figure 2), when support services 
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can be most effective (79) (see (80) for a review of imaging markers of autism in infants). 

Encouragingly, accurate prediction of case-control status using functional connectivity data has 

been demonstrated in individuals under 5 years of age (81). In a study of even younger ages, 

Emerson et al. (48) used functional connectivity data from 6-month-old infants imaged while 

sleeping and showed that SVM could be used to predict autism status at 24-months of age 

(Figure 3A). The network models driving correct classification were complex (Figure 3B), 

comprising short- and long-range connections distributed across the brain, with many of these 

clustered in parietal cortex. The neuroanatomical complexity of successful models is a theme we 

will note throughout this review.  

Evidence that autism diagnoses can be predicted at young ages is promising and sets the 

stage for imaging even earlier in life. Findings from genetic studies suggest changes in 

transcriptional pathways specific to autism may be evident during gestation (82). Given the 

advent of fetal imaging (83), future predictive models may be generated to gauge autism 

likelihood prenatally, thus enabling support services to be made available at birth (see 

Supplemental Materials for a discussion of the ethics of such a scenario and the ethics of 

predictive modelling in general). 

 

Dimensional prediction: accounting for complex symptomatology 

Symptoms in a number of psychiatric conditions (84), including autism, exist on a 

continuum, and the line between what constitutes adaptive versus divergent behavior is often 

unclear. From a biological perspective, dimensional approaches can be used to characterize 

function in specific behavioral domains and identify underlying patterns of brain connectivity. 

The implicated functional circuits can then be monitored clinically following interventions (85). 
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Despite the advantages, there are only a handful of dimensional prediction studies (27, 54, 78, 

86-89) (Table 2). Below, we highlight work of interest in two areas: prediction of symptoms and 

prediction of cognitive phenotypes important for adaptive function. 

 

Predicting autism symptoms 

One of the first works demonstrating dimensional symptom prediction was conducted by 

Plitt et al. (87). In a sample of adolescents and young adults, the authors used resting-state 

connectivity data from a priori networks (default mode [DMN], salience, and frontoparietal) to 

predict (using ridge regression) changes in social behavior three years later. This early report was 

cause for excitement, in that a prediction approach could be used to interrogate the functional 

connections associated with a complex symptom. 

 Work since has used larger samples from ABIDE to search for brain-wide correlates of 

symptoms. For example, using resting-state data and connectome-based predictive modelling 

(CPM), Lake et al. (27) generated network models predictive of social responsiveness scores 

(SRS), as well as separate models predictive of Autism Diagnostic Observation Schedule 

(ADOS) scores (Figure 4A-B). While the two models shared some common regions (cerebellum 

and subcortical areas, regions increasingly recognized as important in cognitive and social 

processes) (90), they were largely distinct. The fact that different functional circuits were 

detected is encouraging: despite both instruments measuring social ability, SRS and ADOS 

scores are only somewhat correlated (27), arguing that potentially subtle relationships between 

brain and phenotype are detectable using predictive methods. 

Once built, models can be applied to different datasets to test generalizability, and to 

determine if different populations or phenotypes share neurobiological correlates. For example, 
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Lake et al. (27) applied a CPM model built to predict SRS scores in individuals with autism 

(generated in ABIDE) to an independent sample of children with ADHD (ADHD-200) and 

found the model predicted symptoms of inattention (Figure 4C). This is of note because of the 

high co-occurrence of autism and ADHD (91) and because of the brain regions (cerebellum, 

subcortical areas, and the DMN) present within the model, which have been implicated as 

important for mediating aspects of internal and external attention (92). The DMN has also been 

found to play a significant role in theory of mind and making social inferences—processes 

commonly atypical in autism (reviewed in (93, 94)). Interestingly, through a combination of two 

network models (89)—one for predicting communication, the other for predicting social 

interaction ability— the DMN also emerged as key for predicting social affect in autism. These 

results suggest that despite the complexity of symptoms in autism, it is possible to hone in on 

neurobiological commonalities across studies. 

 

Predicting phenotypes relevant for adaptive functioning  

 An avenue of clinical interest is generating dimensional predictive models for adaptive 

functioning. To this end, Rohr et al. (88), using resting-state data from ABIDE and CPM, 

generated network models predictive of a component of adaptive functioning—the ability to 

resist inappropriate behavioral impulses. Their behavioral inhibition model consisted of 

distributed, whole-brain functional features, mostly within and between default mode, 

somatomotor, visual, and cerebellar areas, consistent with other work (92). These findings point 

to the feasibility of identifying relevant markers that can be tracked to measure improvement 

after behavioral interventions. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 13 

 The notion of monitoring adaptive function in response to interventions goes hand-in-

hand with predicting individual outcomes in the future (6, 95). The work of Plitt et al. (87) 

suggests this is possible for individuals with autism, in that changes in overall adaptive function 

could (remarkably) be predicted three years after imaging. Normative modelling approaches (96) 

have proven useful in disentangling heterogeneity in autism brain-behavior relationships using 

structural (97, 98) and functional (99) MRI data; future work could apply these models to 

generate longitudinal phenotypic predictions. Future studies could also take a multidimensional 

approach to predict combinations of different phenotypes (86), as well as incorporating measures 

of functional connectivity dynamics (100).  

 

Subtyping: simplifying complexity by finding commonalities 

 There has been interest in identifying autism subtypes (reviewed in (101)). This work 

aims to identify homogeneous clusters to interrogate the biological basis of each subgroup, 

offering more specific information for potential interventions. The existence of distinct clusters 

in autism is supported by results in multiple modalities, including structural MRI (102, 103), 

electroencephalography (EEG) (104), eye-tracking (105, 106), and symptom-level measures (70, 

107).  

 

Initial efforts at subtyping connectomes 

Subtyping methods based on clustering functional connectomes suggest at least 2-3 

autism subtypes (41, 108-112) (Table 3). Consistent with the distributed brain features identified 

by dimensional models, subtyping methods indicate there is no focal brain area differentiating 

subtypes—brain-based features distinguishing subgroups are complex and spatially distributed. 
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Interestingly, though, the DMN and frontoparietal networks (implicated in dimensional models) 

(27, 78, 89) seem to be most consistently involved in discriminating subtypes (101). To date, the 

majority of studies have been conducted in ABIDE and tend to be male-focused. Future work 

should assess the reliability/generalizability of subtypes in different datasets, include more 

female participants, and use a combination of rest and task data (31, 113). While most studies 

have focused on identifying nonoverlapping subtypes, sophisticated analytical approaches 

allowing participants to express different subtypes to varying degrees—dimensional subtyping—

are beginning to be reported (41) and are reason for enthusiasm.  

After connectome-based subtypes have been identified, they are typically validated by 

determining if some other measure, usually symptom information, differs between subgroups 

(114). For example, Easson et al. (109) applied k-means clustering to resting-state functional 

connectivity matrices from ABIDE and observed two distinct subtypes (Figure 5). The subtypes 

were composed of a mixture of individuals with autism and those without. Both subtypes showed 

wide-scale differences in connectivity. The hallmark feature of the first subtype was stronger 

connectivity between the DMN and cingulo-opercular, somatomotor, and visual networks. The 

second subtype exhibited stronger within-network connectivity. Further, each subtype showed 

differences in brain-behavior relationships. That is, unique connectivity signatures in each 

subtype differentially predicted SRS and ADOS scores. 

 

Toward subtyping of brain-behavior predictive models 

That the subtypes identified by Easson et al. exhibited distinct brain-behavior 

relationships hints at the possibility of subtyping brain-behavioral predictive models. Crucially, 

these are subtypes based not on brain or phenotype alone, but on the relationship between them 
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(112), setting them apart from work assuming a single brain-phenotype predictive model is 

adequate across a sample (115). The groupings revealed by model-based subtyping may help to 

uncover clusters of individuals crossing diagnostic and demographic boundaries. (In addition to 

data-driven approaches, hypothesis-driven model-based subtypes might also prove useful, 

whether based on symptom profiles (116, 117) or other variables less expensive to measure, such 

as biological sex.) Overall, the brain-based features derived through model-based subtyping will 

help yield insight into the biological underpinnings of autism (112, 116). The phenotypic and 

demographic features differing across subtypes may help triage individuals for better care 

management. 

 

Limitations  

Concern has been expressed about the reliability of functional connections (118). There is 

work suggesting that with enough data per participant (>15 minutes/scan, allowing more reliable 

estimates of connections) (32) connectomes between individuals with autism and neurotypical 

individuals become quite similar (119). Most of the studies reported here include only a 5-minute 

scan. More work could be conducted to determine how increasing the amount of data affects 

predictive models, both in terms of accuracy and reliability (120). Aside from reliability, the 

precise biological nature of a functional connection remains elusive, a concern that must be 

acknowledged in predictive modelling studies. 

An issue with case-control studies is the grouping of individuals into a single category. 

Individuals with autism have unique symptom profiles and complex neurobiological correlates of 

symptoms. Categorical diagnoses render it difficult to determine how specific aspects of a 
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phenotype are supported by underlying brain circuits (84). Further, predicting a diagnosis is 

insufficient clinically—more individual-level information is needed to optimize care.  

Concerns have been raised about dimensional studies in psychiatry (121, 122). For 

example, severe communication difficulties in a person with autism might be the result of a 

different neurobiological process than the process supporting communication capacities in a 

neurotypical individual—it might be incorrect to assume all individuals can be situated on a 

single dimension for a given phenotype (121). Certain dimensional indices (SRS) rely on 

parent/self-report measures; such measures may be weakly related to the symptom or behavioral 

constructs of interest (123). It is possible a dimensional approach cannot be used to model all 

brain-phenotype relationships (124), and computational constraints might limit the practicality of 

dimensional methods due to the curse of dimensionality (122).  

Subtypes in some psychiatric conditions have proved difficult to replicate across datasets 

(125, 126), and a recent study reported an inability to define reliable subgroups in autism (127). 

It will be crucial to continue to test reproducibility and generalizability of autism subtypes. 

Additionally, interpretation of subtypes may be complicated by unmeasured, sample-dependent 

covariates. Collecting precise and inclusive demographic/clinical data can be used to correct for 

confounds (128), though hidden confounds may persist (129).  

 

Future Directions and Conclusion 

We have reviewed how predictive modelling frameworks can offer insight into 

neurobiological correlates of autism, as well as potential clinical utility. Presently, case-control 

classification studies comprise most of the literature, allowing developmental trends to be 

observed. Due to the heterogeneity of individuals with autism, more dimensional and subtyping 
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prediction studies are needed. All three prediction frameworks can be impacted by the autism-

specific modelling considerations discussed here. Encouragingly, classification approaches may 

one day enable early diagnoses (perhaps even in utero) using objective, biological data. 

Meanwhile, dimensional and subtyping studies may both deepen our understanding of the brain-

based features behind autism and discover means of improving management through imaging-

based prognostication and monitoring of intervention response. 

Consistent with the complexity of autism symptoms, brain-based predictive models are 

complex and reveal large-scale networks supporting specific behaviors. To aid interpretation and 

translation, continuing to collect large datasets is essential (21). Ideally, the datasets will be 

“broad” (large numbers of diverse individuals with and without autism) (71) and “deep” 

(comprising many data modalities) (130). An example of a biological insight gained by a broad 

and deep approach is determining if specific genetic signatures underlie different connectivity 

phenotypes (131), and elegant work linking genes to complex brain activity patterns to 

behavioral phenotypes in autism is beginning to appear (40). A deep, multimodal focus might 

offer a marker common to fMRI and functional near-infrared spectroscopy (fNIRS) (132) or 

EEG (133), offering complementary information that can be used clinically (and is less 

expensive and better tolerated by some than fMRI). 

Dense scanning approaches—imaging the same participants many times—have proven 

useful in neurotypical adults (134). Combined with innovative task paradigms, such as movie-

watching (135), dense scanning could provide large amounts of individual-level data during 

naturalistic social settings. Such an approach could help autism researchers better parse 

participant-specific trajectories (95). Ideally, dense scanning initiatives would comprise many 
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individuals to maximize the detection of individual differences (see Supplemental Materials for 

more about dense scanning in autism). 

 We do not suggest the path forward will be easy. While expectations have been high, 

fMRI has largely failed to benefit individuals with autism to date. Aside from the difficulty in 

producing reliable fMRI results (136), there are numerous points at which findings can fail to 

translate (137). Research and clinical priorities do not always align (138), so it will be essential 

to maintain open channels between researchers, clinicians, individuals with autism, and their 

caregivers. Going forward, we envision predictive modelling approaches continuing to aid the 

quest to understand the complex neurobiology of autism. 
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Figure Legends 
 
 
Figure 1. Predictive modelling applications in autism. A) Prediction-based approaches can serve 
two needs in autism research: they can help to disentangle the complex brain-based features 
giving rise to autism symptomatology (‘biological insight’) or be used to potentially inform 
decisions related to providing care for individuals with autism (‘clinical utility’). Because brain-
based insights and clinically useful models are interdependent, their discussion is interwoven 
throughout the manuscript. B) Three frameworks for prediction-based modelling using 
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functional connectivity data that we discuss in this review: case-control classification, 
dimensional prediction, and subtyping. 
 
 
Figure 2. Windows of intervention in autism. The schematic illustrates the clinical utility of 
correctly identifying a hypothetical individual with autism and then acting on that information to 
provide appropriate support services. The dark line indicates the individual with autism and the 
impact of their symptoms (broadly conceived, on the y-axis) over time if no support services are 
accessed. If autism is diagnosed early (in childhood and adolescence), resources can be allocated 
to the individual and their caregivers (pink and blue dotted lines, respectively). If correct 
diagnosis and interventions are delayed, resources can still be leveraged later in life, though they 
might be less efficacious. The green shading indicates the utility of correct diagnosis and 
allocation of resources; the darker the green color, the more responsive individuals might be to 
support services. We stress this is a hypothetical example—symptoms might not increase from 
childhood to adolescence and individuals with late diagnoses might not necessarily have more 
significant symptoms overall. Indeed, trajectories of symptoms vary across individuals and can 
vary at different points in the lifespan. 
 
 
Figure 3. Case-control prediction is possible using measures of infant brain functional 
connectivity. A) Classifying 24-month-olds using 6-month-old imaging data. Classification 
accuracy was 96.6% B) Post-hoc visualization of functional connections and their relationship to 
different phenotypic scales. A red line indicates a connection that shows more negative 
connectivity in the autism group, whereas a blue line indicates more positive connectivity. ASD, 
autism spectrum disorder; CSBS, Communication and Symbolic Behavior Scales; MSEL, 
Mullen Scales of Early Learning; RBS-R, Repetitive Behaviors Scale-Revised. Adapted with 
permission from (48). 
 
 
Figure 4. Dimensional prediction of autism symptoms. A) Models predictive of autism 
symptoms are built on training data and then validated on left-out, testing data within the same 
dataset. Predicted symptom scores from this process are shown on the y-axis; observed symptom 
scores are shown on the x-axis. B) Post-hoc visualization of predictive functional features (data 
are summarized at the node level and are shaded according to degree). C) Application of the 
predictive model derived from autism symptoms to an external dataset to predict ADHD 
symptoms in young children. ADHD, attention-deficit/hyperactivity disorder; ADOS, Autism 
Diagnostic Observation Schedule; BA, Brodmann area; ROI, region of interest (as defined in) 
(33); SRS, Social Responsiveness Scale. Adapted with permission from (27). 
 
 
Figure 5. Subtyping connectomes in autism. A) Easson et al. (109) identified two subtypes. Each 
is composed of individuals with and without autism. These subtypes exhibit differences in 
functional connectivity patterns; an average matrix for each subtype is shown. B) A multivariate 
brain-behavior analysis (partial least squares regression) reveals that subtypes exhibit unique 
brain-behavior relationships among a set of key behavioral measures in autism. ADOS, Autism 
Diagnostic Observation Schedule; CN, cerebellar network; CON, cingulo-opercular network; 
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DMN, default mode network; IQ, intelligence quotient; FPN, fronto-parietal network; ON, 
occipital network; RRB, restricted, repetitive behaviors; SA, social affect; SMN, sensorimotor 
network; SRS, Social Responsiveness Scale. Adapted with permission from (109). 
 
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Ref. 
Data 
source N Age range, yearsa 

Percent male 
individuals Algorithm Features Validation 

Accuracy (sensitivity, 
specificity) Notes 

(68) 
Lab-
specific 

40 
autism, 
40 NT 8-42 100 - 

FC from 
7266x7266 
ROIs 

Internal 
(leave-one-
out CV); 
external 
validation in 
independent 
sample 79% (83%,75%) 

External validation results: 71% accuracy, 
75% sensitivity, and 69% specificity. 

(50) 
Lab-
specific 

13 
autism, 
14 NT 

 
Autism: 21.4 +/- 3.9, 
NT: 22.6 +/-4.2 100 LRC 

FC from 
102x102 
ROIs (AAL 
atlas) (139); 
seed-based 
connectivity 

Internal 
(leave-one-
out CV) 

 
77.8% (76.9%, 
78.6%) 

Whole-brain classification results reported; 
seed based accuracies ranged from 70-96%. 

(53) 
Lab-
specific 

29 
autism, 
29 NT - 83 LRC 

FC from 
106x106 
ROIs (AAL 
atlas) (139) 

Internal 
(leave-one-
out CV) (82.8%, 82.8%) - 

(52) 
Lab-
specific 

20 
autism, 
20 NT 

Autism: 9.96 +/- 1.59, 
NT: 9.95 +/-1.60 80 LRC 

Network FC 
maps (10 
components) 

Internal 
(leave-one-
out CV); 
external 
validation in 
independent 
sample 78% (75%, 80%)  

Best performing network (salience network) 
is shown. 
 
External validation results: 83% accuracy, 
67% sensitivity, 100% specificity. 

(46) ABIDE 

126 
autism, 
126 NT 6-36 85 RF 

FC from 
220x220 
ROIs 
(Power 
atlas) (140) 

Bootstrapping 
CV (1/3 left 
out); external 
validation set 91% (89%, 93%) 

Various SVM pipelines also tested, with the 
highest accuracy obtained = 66%. 

(51) 
Lab-
specific 

59 
autism, 
59 NT 

 
Autism: 17.66 +/- 2.72,  
NT: 18.3 + /- 3.05 100 

Various 
tested 

Various 
tested 

Internal 
(leave-one-
out, stratified 
3-fold, 
stratified 10-
fold CV) 76.7% (70%, 83.3%) 

Pipeline with the highest accuracy and 
positive predictive values is shown.  
 
Classifier: SVM; features: FC from 162x162 
ROIs (Destrieux atlas); validation: leave-
one-out CV. 

(49) ABIDE 

 
 
312 
autism, 
328 NT 6-19 84 NN 

FC from 
90x90 ROIs 
(AAL atlas) 
(139) 

Internal 
(leave-one-
out, various 
k-fold CV 
strategies 
tested) 89.4% (92%, 87%) Showing results for leave-one-out. 

(47) ABIDE 

112 
autism, 
128 NT 12-18 85 SVM 

FC from 
142x142 
ROIs 
(Dosenbach 
atlas) (141); 
multiple 

Internal 
(leave-one-
out, 10-fold 
CV); leave-
one-site-out 
CV 

79.2% (77.8%, 
80.5%) Showing results for leave-one-out. 

Table 1 Click here to access/download;Table;table1.docx
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frequency 
bands used 

(54) 

Lab-
specific, 
ABIDE 

Lab-
specific: 
74 
autism, 
107 NT 
 
ABIDE: 
44 
autism, 
44 NT  

Lab-specific: ~30 +/- 8 per 
site 
ABIDE: site-specific 82 LRC 

FC from 
140x140 
ROIs 
(extended 
Brainvisa 
Sulci atlas) 
(142) 

Internal 
(leave-one-
out CV); 
external 
validation 85% (80%, 89%) 

Results are reported for leave-one-out; 
accuracy on external data = 75%. 

(48) IBIS 

11 
autism, 
48 HR 2 69 SVM 

FC from 
230x230 
ROIs 
(including 
nodes from 
Power atlas) 
(140) 

Internal 
(leave-one-
out CV) 96.6% (81.8%, 100%)  - 

(55) ABIDE 

55 
autism, 
55 NT 8-19 76 NN 

FC from 
116x116 
ROIs (AAL 
atlas) (139) 

Internal (5-
fold nested 
CV) 86.36% - 

(57) ABIDE 

126 
autism, 
126 NT 7-36 81 RF, CRF 

FC from 
220x220 
ROIs 
(Power 
atlas) (140) 

External 
validation 
sample 66.7% 

Highest accuracy using CRF in validation 
dataset shown here; highest accuracy using 
RF in validation data = 71%. 

(12) ABIDE 

403 
autism, 
468 NT site-specific site-specific  SVM 

Various 
tested 

Internal (10-
fold CV); 
leave-one-
site-out CV 66.8 % 

Highest accuracy obtained in leave-one-site-
out analyses using a dictionary learning-
based atlas (143). 

(56) ABIDE 

505 
autism, 
530 NT site-specific site-specific NN 

FC from 
200x200 
ROIs 
(Craddock 
atlas) (144) 

Internal (5-
fold, 10-fold 
CV); leave-
one-site out 
CV 70 (74%, 63%) Showing results for 10-fold. 

(58) ABIDE 

816 
autism + 
NT 5-65 – SVM 

GT 
properties 
(AAL atlas) 
(139) 

Internal (10-
fold CV) 95% (97%, 91%) 

Highest accuracy obtained across various 
pipelines, age groups (obtained in 30+ year-
olds) using sparse inverse covariance to 
estimate connectivity. 
 
GT properties included various measures of 
integration, segregation, and centrality. 



(59) ABIDE 

505 
autism, 
530 NT site-specific site-specific NN 

FC from 
200x200 
ROIs 
(Craddock 
atlas) (144) 

Internal (5 
fold, 10-fold 
CV) 

70.3% (68.3%, 
72.2%) Showing results for 10-fold. 

(60) ABIDE 

408 
autism, 
401 NT 

Autism: 16.5 +/- 6.7, 
NT: 16.8 +/- 7.8 84 NN 

Various 
tested 

Internal 
(various k-
fold CV 
strategies 
tested); leave-
one-site-out 
CV 

73.2% (74.5%, 
71.7%) 

Showing results for 10-fold CV using a 
combination of features from 
AAL + HO + Craddock atlases, along 
with demographic data. 

(61) ABIDE 

506 
autism, 
548 NT 16.86 +/- 7.55 85 SVM 

FC from 
200x200 
ROIs 
(Craddock 
atlas) (144) 

Internal (10-
fold nested 
CV) 

72.2% (68.6%, 
75.4%) - 

(62) ABIDE 

505 
Autism, 
530 NT site-specific site-specific NN 

FC from 
392x392 
ROIs 
(Craddock 
atlas) (144) 

Internal (10-
fold CV); 
leave-one-
site-out CV 

70.2% (77.5%, 
61.8%) Showing results for 10-fold. 

(63) ABIDE 

505 
autism, 
530 NT - - NN 

FC from 
116x116 
ROIs (AAL 
atlas) (139); 
voxel-wise x 
ROI FC  

Internal (test 
set 
validation) 74% - 

(64) ABIDE 

45 
autism, 
47 NT 7-15 78 SVM 

FC from 
116x116 
ROIs (AAL 
atlas) (139); 
various dFC 
measures 

Internal (6-
fold nested 
CV) 83% (82%, 84%) 

Showing results from a combination of FC 
and dFC measures, which resulted in best 
performance. 

(65) ABIDE 

505 
autism, 
530 NT - - NN 

FC from 
200x200 
ROIs 
(Craddock 
atlas) (144) 

Internal (10-
fold nested 
CV); leave-
one-site-out 
CV 76.4% (77.8%, 75%) Showing results from 10-fold CV. 

(66) ABIDE 

403 
autism, 
468 NT - - NN 

FC from 
264x264 
ROIs 
(Power 
atlas) (140) 

Internal (10-
fold CV) 79.2% - 

(67) ABIDE 

306 
autism, 
350 NT 6-18 

Varied by 
analysis RF 

FC from 
237x237 
ROIs 
(Gordon 
(145) + HO 
subcortical 

 
Bootstrapping 
CV (1/3 left 
out) 62.5% (60%, 65%) 

Main sample size is shown here; different 
subsamples were tested consisting of n = 200 
with autism and n = 200 neurotypical 
participants. 
 



(146) + 
cerebellar 
(147) 
atlases) 

Results from subsample including males and 
females with no ADOS score cutoffs. 

Table 1. Representative autism case-control classification studies. Table adapted with permission from (9). Note that studies are 
arranged in chronological order such that more recent studies are at the bottom of the table. 
 
aMean age and standard deviation are used when age range was not reported. 
 
ABIDE, Autism Brain Imaging Data Exchange; AAL, automated anatomical labelling; CRF, conditional random forest; CV, cross 
validation; dFC, dynamic functional connectivity; FC, functional connectivity; GT, graph theory; HO, Harvard-Oxford atlas; HR, high 
risk; IBIS, Infant Brain Imaging Study; LRC, logistic regression classifier; NN, neural network; NT, neurotypical; RF, random forest; 
SVM, support vector machine; ROIs, regions of interest. 
 



Ref. 
Data 
source N 

Age 
range, 
yearsa 

Percent 
male 
individuals 

Algorithm 
/ approach Features Validation 

Symptoms/phenotypes 
predicted Highlights 

(27) 

ABIDE, 
ADHD-
200 

ABIDE: 
122 
autism, 
230 NTb  
 
ADHD-
200: 77 
ADHD, 
35 NT 6-24 71c  

CPM 
(Linear 
regression) 

FC from 
268x268 
ROIs (Shen 
atlas) (149) 

Internal (split 
half, leave-one-
out CV); leave-
one-site-out CV; 
external 
validation in 
independent 
sample 

SRS, ADOS, ADHD-
RS 

SRS, ADOS predictive network models were largely distinct; SRS 
model generalized to predict inattention in a separate ADHD 
sample. 

(54) 
Lab-
specific 

58 
autismd 

Not 
specified 
for dim. 
analyses 

Not 
specified 
for dim. 
analyses 

Linear 
regression 16 FC 

Internal (leave-
one-out CV) ADOS, ADI-R 

Functional connections identified as correctly classifying autism vs. 
neurotypical status generalized to predict the communication 
domain of ADOS. 

(78) ABIDE 
103 
autism 

20.8 +/- 
 8.1 100 SVR  

 
 
First score of 
principal 
connectivity 
gradient, 
stepwise 
connectivity 
maps 

Internal (5-fold 
CV); leave-one-
site-out CV ADOS 

Prediction of ADOS total and social cognition; DMN and primary 
visual areas highly represented in predictive models. 

(86) 
ABIDE, 
LEAP 

232 
autisme 

14.8 +/- 
6.5 74 CCA 

FC from 
415x415 
ROIs 
(Schaefer 
atlas (148) + 
subcortical 
atlas) 

Leave-one-site-
out CV 

Various autism, social 
abilities scales 

Multiple canonical variates predictive of left-out-site; connections 
within- and between somatomotor, DMN, attention, visual 
networks implicated in models. 

(87) 
Lab-
specific 

31 
autism 

17.9 +/-
3.4 100 

Ridge 
regression 

FC from 
DMN, SN, 
FPN 
networks 
(Power atlas) 
(140) 

Internal (leave-
one-out CV) SRS, ABAS 

Prediction of change in SRS and ABAS scores and prediction of 
time 2 SRS scores ~ 3 years after scanning. 

(88) ABIDE 

85 
autism, 
191 NT 8-13 66 

CPM 
(Linear 
regression) 

FC from 
268x268 
ROIs (Shen 
atlas) (149) 

Internal (leave-
one-out, split-
half CV); site 1 
to site 2 
prediction BRIEF 

Complex, brain-wide model with many edges in somatomotor, 
visual, and cerebellar areas; also edges in DMN and temporal lobe. 

(89) ABIDE 
82 
autism 7-12 100 

Lasso 
regression 

FC from 
227x227 
ROIs (Power 
atlas) (140) 

Internal (leave-
one-out CV) ADOS 

 
 
Separate predictive brain networks predicting communication and 
social interaction phenotypes can be merged to predict social affect 
scores. 

Table 2. Dimensional studies using functional connectivity data. 

Table 2 Click here to access/download;Table;table2.docx

https://www.sciencedirect.com/science/article/pii/S0006322320314979#tbl1fnb
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aMean age and standard deviation are used when age range was not reported. 
bHere we report sample size used for most of the SRS analyses (SRS total scores as well as the following subscales: communication, 
motivation, and mannerisms). The sample size was n = 180 neurotypical and 80 autism for predicting SRS cognition and awareness 
subscales and n = 79 autism and n = 58 autism for predicting ADOS modules 3 and 4, respectively. 
cAcross the SRS analyses, ~70% of the sample was male; in the ADOS analyses, ~85% of the sample was male. Sex was not reported 
in the ADHD-200 sample. 
dWe report the sample size used in the ADOS dimensional prediction analyses. Twenty-seven participants with autism were used in 
the ADI-R dimensional prediction analyses. 
e125 individuals with autism and 78 controls from the LEAP cohort were used in Short Sensory Profile subscales analyses; 
demographics roughly similar to the rest of the sample. 
 
ABAS, Adaptive Behavior Assessment System; ABIDE = Autism Brain ABIDE, Autism Brain Imaging Data Exchange; ADHD, 
attention-deficit/hyperactivity disorder; ADHD-RS, attention-deficit/hyperactivity disorder Rating Scale; ADI-R, Autism Diagnostic 
Interview–Revised; ADOS, Autism Diagnostic Observation Schedule; BRIEF, Behavior Rating Inventory of Executive Function; 
CCA, canonical correlation analysis; CPM, connectome-based predictive modelling; CV, cross-validation; dFC, dynamic functional 
connectivity; DMN, default mode network; FPN, frontoparietal network; FC, functional connections; HO, Harvard-Oxford subcortical 
atlas; IQ, intelligence quotient; LEAP, EU-AIMS Longitudinal European Autism Project; NT, neurotypical; ROIs, regions of interest; 
SN, salience network; SRS, Social Responsiveness Scale; SVR, support vector regression. 



Ref. Data source N 

Age range, 
yearsa 

Percent 
male 
individuals 

Subtyping 
approach Features Validationb 

No. of 
subtypes Highlights 

(41) 
ABIDE, 
GENDAAR 

306 
autismc 15 +/- 8 77 LFAd 

FC from 
418x418 ROIs 
(Schaefer atlas 
(148) + 
subcortical 
atlas)  

Multiple clinical 
and 
demographic 
measures 3 

Subtypes had dissociable whole-brain hypo/hyper FC and shared 
atypical FC in DMN. Individuals expressed multiple subtypes to 
different degrees. Subtype 1 = decreased FC (DAN, SM, SN, VN) and 
increased FC (including in DMN) in autism and with symptom 
severity. Subtype 2 = opposite patterns of FC (compared with subtype 
1) and with comorbid symptoms. Subtype 3 = complex mixture of 
increased and decreased FC; preferentially expressed in older male 
individuals. 

 
(108) POND 

175 
autism, 
93 
ADHD, 
55 
OCD, 
84 NT 

12 +/- ~4 
diagnostic 
group 73 

k-means 
clustering 

FC from 
76x76 ROIs 
(Desikan-
Killiany-
Tourville 
atlas) (150) 

Diagnostic and 
behavioral 
measures 2 

Neurotypical and autism participants split across two subtypes; ~80% 
of ADHD individuals in subtype 1, ~80% of OCD individuals in 
subtype 2; participants’ distance ratio between two subtypes was 
significantly correlated with general adaptive functioning, social 
deficits, and inattention symptoms. 

(109) ABIDE 

145 
autism, 
121 NT 7–39 100 

k-means 
clustering 

FC from 
160x160 ROIs 
(Dosenbach 
atlas) (141) SRS, IQ, ADOS 2 

Subtype 1 (59% autism, 45% NT), Subtype 2 (41% autism, 55% NT). 
Subtype 2 had decreased FC between networks and increased FC 
within networks relative to subtype 1. Subtypes did not differ in 
behavior, demographics, or IQ. PLS brain-behavior analyses showed 
FC correlations with a combination of symptom scores unique to each 
subtype. 

 
(110) Lab-specific 

57 
autism 9–18 82 

k-means 
clustering 

FC from 
occipital 
cortex to 
frontal pole 
cortex 

IQ, ADI-R, 
ADOS, 
comorbidities, 
medication use, 
age, sex 2 

Post-hoc clustering of FC in ROIs identified by group mean. Subtypes 
had opposite FC patterns and did not differ in clinical and 
demographic metrics. 

 
(111) 

ABIDE, 
ADHD-200 

369 
autism, 
284 
ADHD, 
652 
NTe 7–21 100 LFAd 

 
FC from 
21x21 ROIs 
(in DMN, SN, 
DAN) 

Diagnostic 
labels, 
symptom 
questionnaires 
(unspecified) 3 

Subtype 1 = increased DMN–DAN, medium DMN–SN, decreased 
intra-DMN and intra-DAN FC, and positive association with ADHD. 
Subtype 2 = decreased DMN–DAN and DMN–SN, positive 
association with autism diagnosis and total IQ; Subtype 3 = decreased 
DMN-DAN with no behavioral associations. 

Table 3 Click here to access/download;Table;table3.docx
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(112) ABIDE 

210 
autism 

Most sites 
~12 +/- 2 85 

Hierarchical 
clustering 

Relationship 
between FC 
from 200x200 
ROIs 
(Craddock 
atlas) (144) 
with clinical 
symptoms 

Multiclass SVM 
of brain-clinical 
symptom 
relationships 3 

 
 
Subtype 1 = increased within-network connectivity, high IQ and RRB 
scores; subtype 2 = decreased connectivity including in DMN and 
cerebellar regions, increased ADI-R and SRS scores; subtype 3 = 
hypoconnectivity between subcortical and DMN nodes, 
hyperconnectivity involving the DMN, low IQ; greater social 
motivation difficulties and verbal difficulties (relative to subtype 1). 

Table 3. Subtyping studies using functional connectivity data. Table adapted with permission from (133). 
 
aMean age and standard deviation are used when age range was not reported. 
bReporting validation based on domains distinct from the features originally used to identify subtypes. 
cNT sample (n = 348) from ABIDE II 1 GENDAAR was used to generate FC z-scores in individuals with autism. 
dLFA used a Bayesian model based on latent Dirichlet allocation. 
e303 NT from ADHD-200, 349 NT from ABIDE I. 
 
ABIDE, Autism Brain Imaging Data Exchange; ADHD, attention-deficit/hyperactivity disorder; ADI-R, Autism Diagnostic 
Interview–Revised; ADOS, Autism Diagnostic Observation Schedule; DAN, dorsal attention network; DMN, default mode network; 
FC, functional connectivity; GENDAAR, Gender Exploration of Neurogenetics and Development to Advance Autism Research; IQ, 
intelligence quotient; LFA, latent factor analysis; NT, neurotypical; OCD, Obsessive-Compulsive Disorder; POND, Province of 
Ontario Neurodevelopment Disorders dataset; PLS, partial least squares; ROIs, regions of interest; RRB, restricted repetitive behavior; 
SM, somatomotor SN, salience network; SRS, Social Responsiveness Scale; SVM, support vector machine; VN, visual network. 
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Functional Connectome-Based Predictive Modeling in Autism 
 

Supplemental Information 
 

 
Predictive modelling and machine learning in psychiatry 
 

Machine learning (ML) is a growing field, commonly referenced in biological psychiatry, 
where there is an increasing focus on generalizability (1). ML is defined by the use of algorithms 
to learn patterns in training data, which can be leveraged for automated decision-making on 
unseen data (2). There are several important decision points in choosing which algorithm suits 
your needs. Some of these decisions may include whether to use a supervised or unsupervised 
algorithm, using a regression or classification framework, and how complex a model to use.  

These decisions can be influenced by whether you wish to use the algorithm for 
explanation or prediction. Unsupervised methods (in which patterns are learned from unlabeled 
data—performing a clustering analysis to determine the number of subtypes in a dataset, for 
instance) can help to uncover previously unknown relationships in your dataset. However, if one 
then uses the relationship to automate a decision or predict an outcome, the approach falls within 
predictive modelling. Broadly speaking, one can be thought of having a predictive approach if 
you are building a model that can estimate a variable of interest from unseen data, whereas 
explanatory analyses often focus on deriving causal links, focusing more on interpretation than 
model performance (3). Many neuroimaging ML applications involve both predictive and 
explanatory aspects and they can be complementary (4).  

This paper has focused on predictive approaches in autism, which rely on supervised 
algorithms. Supervised approaches (in which data labels are known) can be used to leverage 
existing data for prediction of categorical variables using a classification approach (autism 
diagnosis in case-control studies) or prediction of continuous variables using regression (autism-
related phenotypes in dimensional studies). One of the benefits of supervised is using priors pre-
generated from previous studies. These priors can help ensure that models are less likely to 
overfit your dataset, due to added (favorable) bias and reduced variance (i.e., bias-variance 
tradeoff) (5). The downside is that these priors might not fit the dataset well, and you may miss 
some unique and useful information in the dataset leading to an underfit model which does not 
perform well enough. 

Returning to unsupervised approaches, these methods tend to be more well-suited to 
explanatory analyses. However, they can still be used as part of a predictive framework. Two 
prominent types of unsupervised algorithms are clustering and association. Clustering is 
analogous to classification in that it tends to produce a categorical output (subtyping of autism), 
while association is analogous to regression (new dimensions of brain variation), as it produces a 
dimensional output, along which the relationship is continually varying. Unsupervised models 
can benefit from a lack of bias, as they work with less stringent priors than supervised methods, 
and can uncover previously unknown relationships in the dataset. However, the lack of bias can 
also lead to increased variance in the estimated model parameters across different datasets, 
resulting in overfit models which capture more noise than signal. For a more in-depth discussion 
of issues associated with supervised and unsupervised learning in fMRI, see Khosla et al. (6). 

Supplement (Word doc) Click here to access/download;Supplement (Word

doc);Supplement_Horien et al.pdf
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Another important factor in model selection is model complexity. Simpler models may 
miss complex relationships in the data but can yield much more interpretable parameters. This 
may be important in the context of gaining biological insight. On the other hand, if the 
underlying biological relationships are of less concern, and one wishes to derive a model with the 
best possible performance (i.e. for accurate diagnosis of autism status), one could opt for a more 
complex algorithm. Complex algorithms tend to perform better on unseen data due to their 
capacity to capture complex patterns, but can hinder interpretability, (see Figure 1 of Bzdok et al. 
(7). The complexity of the model can also impact generalizability, as complex models are more 
likely to overfit a dataset due to the increased number of parameters that can be optimized. The 
balance of complexity and interpretability is a key consideration in selecting an algorithm for 
predictive modelling in functional neuroimaging.  
 
The ethics of predictive modelling in autism  
 
 The use and implementation of predictive models to diagnose autism requires careful 
ethical consideration (8). Recent research has revealed that brain-based changes in autism 
precede the development of behavioral symptoms (9), which has ushered in the creation of 
predictive models to forecast diagnosis before the emergence of symptoms. Moreover, it may 
become possible to identify the likelihood of autism in utero. These studies open the possibility 
for pre-symptomatic intervention, which could potentially alter developmental trajectories 
sufficiently to prevent the development of autism (9). However, in these scenarios, several 
ethical matters should be considered. 

Autism is an extremely heterogeneous condition with a complex phenotype. Individuals 
with autism can range from having profound difficulties and disabilities to being highly 
successful and independent. Autism can manifest with significant intellectual difficulties with no 
or minimal functional language capabilities or with extremely high intelligence and highly 
articulate language capacities. However, our current predictive models are not able to identify 
which infants will develop which phenotype later in life. Further, neurodevelopment in the 
perinatal period has tremendous plasticity, and it is likely that autism emerges as a sequala of 
numerous genetic and environmental effects acting in concert (10). Therefore, there is risk for 
inaccuracy and imprecision in models that could have devastating effects on families. 

Additionally, infants who are identified with a high likelihood of developing autism 
through MRI or other tools incorporated into predictive models will not yet have developed the 
core features of autism. Thus, existing interventions that focus on addressing autism-associated 
difficulties would not yet be suitable for this population and new interventions would need to be 
developed (9). This raises the question: is earlier diagnosis beneficial if it is not possible to 
provide support services? Current guidelines for newborn screening for other disorders, such as 
phenylketonuria and hypothyroidism, suggest that a diagnosis should only be made if there is a 
known and accepted treatment (11). When applying these principles to predictive models for 
early identification of autism, a key difference arises. While pre-symptomatic interventions do 
not currently exist for autism and it will initially be unlikely to begin intervention as soon as a 
diagnosis is made, during this initial period the infants’ development can be carefully tracked 
and existing early intervention services can be provided to optimize developmental outcomes, 
until new interventions can be developed. 

In addition, for many individuals with a diagnosis, autism is a core tenet of their identity 
and being “atypical” does not equate to impairment. The neurodiversity movement maintains 
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that autism should be conceptualized as a difference rather than a disability (12). Some have 
contended that efforts to predict and prevent development of autism are attempts to eliminate 
neurodiversity (13, 14). Further, rather than focusing on early childhood diagnostic tools, many 
adults with autism would prefer research funding to be directed towards programs and services 
for individuals living with autism (15). However, the goal of pre-symptomatic intervention is not 
to eliminate neurodiversity, but rather to provide opportunities to achieve developmental 
milestones that are critical for subsequent adaptive functioning and independence (9).  
 
Some issues for consideration with dense scanning and prediction in autism 
 

An approach that has proven useful in neurotypical young adults is dense scanning (16-
18), in which the same individuals are scanned many times. Such studies have led to exciting 
insights, including the fact that participants exhibit remarkable stability of individual-specific 
networks (16) and such individualized networks exhibit brain state-dependent organization (19). 
Using a dense scanning paradigm and prediction-based approaches could similarly inform our 
understanding of autism neurobiology and symptom expression. For example, do models 
generalize to predict fluctuations in individual patients over time, as has been shown in attention 
(20)?  The large amounts of data from dense-scanning studies have been used to obtain 
exquisitely detailed areal parcellations within individual participants (e.g., (16)). Would similar 
participant-specific parcellations help increase the utility of dimensional predictions in autism? 
Could these large amounts of scanning data be combined with other data types to better subtype 
individuals with autism and construct more specific clinical models?  

A major hurdle that has to be overcome if dense scanning studies are to be conducted is 
ensuring the data are of high quality, as participants with autism can be difficult to scan (21). 
Another barrier is determining whom to scan—given the heterogeneity of autism, what type of 
symptom profile will allow the research community to draw generalizable conclusions? Should 
we aim for a broad array of individuals (22), or should we instead focus on a single symptom 
dimension? Based on the work of Byrge and Kennedy (23), more data per participant reduced 
classification accuracy of autism status to around chance levels. Thus, large numbers of 
participants are possibly needed in dense scanning studies to achieve discriminative utility. What 
does this mean for predictive modelling studies--how many participants do we need to densely 
scan to help us build useful models, and is this feasible?  

Furthermore, what sort of scanning data should we collect—simply resting-state scans or 
a variety of task-based scans covering as many aspects of the Research Domain Criteria (RDoC) 
matrix as possible? How do we motivate participation? Would an individual with autism be open 
to weekly scans over the course of a year, if they stand to gain little beyond financial 
compensation?  
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Horien et al. review studies using MRI functional connectivity data to predict autism phenotypes. 
The authors discuss how autism-specific study/analysis design issues affect the biological and 
clinical utility of predictive modelling methods. Emphasis is placed on interpreting the 
neurobiological correlates of predictive models, as well as approaches (dimensional- and 
subtyping-based applications) that focus on individual patients. 
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