

BD40PEM

Big Data for OPen innovation Energy Marketplace

Deliverable 7.5.2 Pilot 5 – Danish pilot description and results

Document information

Deliverable nr	7.5.2
Deliverable Name	Grid monitoring and supervision
Version	1.2
Release date	07/12/2023
Dissemination level	Confidential
Status	Submitted
Author	NUVVE, ODT

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under **Grant Agreement No 872525**.

Document history:

Version	Date of issue	Content and changes	Edited by
0.0	27/04/2023	General structure and table of contents	Tanguy Choné (ODT)
0.1	23/11/2023	Completed drafted version of deliverable	Massimiliano Garella (Nuvve)
1.0	04/12/2023	Reviewed version	Massimiliano Garella
1.1	05/12/2023	Final Version draft	Massimiliano Garella
1.2	06/12/2023	Final Version	Massimiliano Garella

Peer reviewed by:

Partner	Reviewer
VUB	Rémy Cleenwerck
ODT	Luc Richaud

Deliverable beneficiaries:

WP / task
WP7
WP9

Table of contents

Ab	breviatio	ns and Acronyms	10
1.	Executiv	/e summary	11
2.	Introdu	ction	12
	2.1	Purpose and intended audience	12
	2.2	Relationship with other BD4OPEM tasks	12
	2.3	Structure	13
3.	Final de	scription of the Danish demonstration site	14
	3.1	Global perimeter (update from D7.1)	14
	3.2	Specifics of the pilots (update from D7.1)	16
	3.3	Danish Pilot motivations (update from D7.1 OPEN DEI)	20
	3.4	Recap table of services to be implemented	21
4.	Services	s results for the Danish demonstration site	22
	4.1	S3.1 – Grid disturbance simulations results	22
		4.1.1 UPC approach: Congestions forecast for day ahead	22
	4.2	S3.2 – Impact study PV, EV & new loads results	26
	4.3	S5.1 – Flexibility Forecast results	36
	4.4	S5.4 – EV to Grid results	40
	4.5	S8.1 – Asset and investment planning results	52
5.	Project	KPIs to be monitored in this deliverable	56
	5.1	KPI 2.1: Data coming from renewable technologies	56
	5.2	KPI 2.5: New services with existing	57
6.	Lessons	learned & Conclusions	59
	6.1	Lessons learned – Pilot's perspective	59
	6.2	Lessons learned – Service developer's perspective	59
	6.3	General conclusions	60
Re	ferences		61
7.	Annex A	A: Storylines	62
	7.1	S3.1 – Grid disturbance simulations	62

		7.1.1 UPC approach: Congestions forecast for day ahead	62
	7.2	S3.2 Impact study PV, EV & new loads	65
	7.3	S5.1 – Flexibility Forecast	69
		7.3.1 UPC approach: Flexibility forecast	69
	7.4	S5.4 – EV to Grid	72
	7.5	S8.1 – Asset and investment planning	77
8.	Appendi	x B. Service testing & Service KPIs	81
8.	Appendi 8.1	x B. Service testing & Service KPIs S3.1 – Grid disturbance simulations	 81 81
8.	Appendi 8.1 8.2	 X B. Service testing & Service KPIs S3.1 – Grid disturbance simulations S3.2 – Impact study PV, EV & new loads 	81 81 85
8.	Appendi 8.1 8.2 8.3	 X B. Service testing & Service KPIs S3.1 – Grid disturbance simulations S3.2 – Impact study PV, EV & new loads S5.1 – Flexibility Forecast 	81 81 85 90
8.	Appendi 8.1 8.2 8.3	 X B. Service testing & Service KPIs S3.1 – Grid disturbance simulations S3.2 – Impact study PV, EV & new loads S5.1 – Flexibility Forecast 8.3.1 UPC approach: Flexibility forecast 	81 81 85 90 90
8.	Appendi 8.1 8.2 8.3 8.4	 Sand Service testing & Service KPIs S3.1 - Grid disturbance simulations S3.2 - Impact study PV, EV & new loads S5.1 - Flexibility Forecast 8.3.1 UPC approach: Flexibility forecast S5.4 - EV to Grid 	81 81 85 90 90 90

List of figures

Figure 1: Fleet location14
Figure 2: Nuvve demonstration site, assets and map15
Figure 3: Algorithm scheme interaperability from UPC16
Figure 4: Nuvve data sources17
Figure 5: Data sources and simplified topology in the Danish demonstration site 19
Figure 6 - 2021 OPEN DEI manifesto21
Figure 7: Aggregated demand23
Figure 8: Forecast Demand for Load Client 1823
Figure 9: Table of demand forecast in excel format24
Figure 10: Line 0 forecast24
Figure 11: Report tab25
Figure 12: Impact study workflow28
Figure 13: Installed capacity in Bellmansvej 5429
Figure 14: Residual capacity in Bellmansvej 54
Figure 15: Access to modal window to launch the simulation in Bellmansvej 5430
Figure 16: Modal window for phase selection and kWp configuration in Bellmansvej
Figure 17: Simulated capacity in Bellmansvej 54
Figure 18: Workflow for EV and new loads impact assessment
Figure 19: EV/New load tab for Bellmansvej 54
Figure 20: EV addition modal window in Bellmansvej 54
Figure 21: Forecast 24h ahead of Flexibility Availability ("Forecast" section of the UI)
Figure 22. Dist downloaded from the UI
Figure 22: Plot downloaded from the 01
prediction)
Figure 24: "Model info" section of the UI
Figure 25: Congestion events
Figure 26: Distribution System Operators list
Figure 27: Grid data44
Figure 28: Grids
Figure 29: Locations45
Figure 30: Nuvve grid service list45
Figure 31: Operational V2G fleet data46
Figure 32: Grace Nuvve internal forecasting tool46

Figure 33:	Forecasted capacity visualized on Nuvve FlexTool UI47
Figure 34:	FlexTool Congestion Event list in main page47
Figure 35:	Create event for grid services48
Figure 36:	New DSO congestion event in main page48
Figure 37:	Pre-Provision UI in FlexTool49
Figure 38:	Availability real compared with DSO request in Post-Provision49
Figure 39:	Utilization real compared with DSO syntetic grid data in Post-Provision 50
Figure 40:	KPIs and revenue etsimates in Post-Provision50
Figure 41:	Stress test scenario
Figure 42:	Power flow results of assets53
Figure 43:	Transformer loading in blue color53
Figure 44:	Execution of no planning actions54
Figure 45:	Asset decongestions results54
Figure 46:	Demand Forecast selection in S3.162
Figure 47:	Demand Forecast visualization in S3.162
Figure 48:	Demand Forecast visualization for loads in S3.163
Figure 49:	Demand Forecast visualization for selected load in S3.163
Figure 50:	Congestion plot view of Line 1 in S3.163
Figure 51:	Congestion plot view of Line 2 in S3.1
Figure 52:	Report View in S3.164
Figure 53:	Congestion plot Line 1 in S3.165
Figure 54	- Service S3.2 login portal65
Figure 55	- Service S3.2 Substation overview map66
Figure 56	- Service S3.2 Example of smart meters connected to a substation66
Figure 57	- Service S3.2 'Impact assessment'67
Figure 58	- Service S3.2 Simulation example67
Figure 59	- Service S3.2 Workflow
Figure 60	- Service S3.2 Impact prediction tool
Figure 61	- Service S5.1 models69
Figure 62	- Service S5.1 Add forecast models70
Figure 63	- Service S5.1 models - configured70
Figure 64	- Service S5.1 list with added model71
Figure 65	- Service S5.1 model run71
Figure 66	- Service S5.1 model enabled71
Figure 67	- Service S5.1 model info71
Figure 68	- Service S5.1 forecast view72

Figure 69 - Service S5.4 Login page	74
Figure 70 - Service S5.4 List of congestion events	74
Figure 71 - Service S5.4 Pre-provision view	75
Figure 72 - Service S5.4 Post-provision view on power capacity	75
Figure 73 - Service S5.4 Post-provision view of energy deliver to grid	76
Figure 74 - Service S5.4 Post-provision view of KPIs	76
Figure 75 - Service S5.4 Pre-provision view on revenue estimates	76
Figure 76 - Example of the UI on technical parameters for Service 8.1	77
Figure 77 - Example of the User interface Contracted parameters	78
Figure 78 - Stress Test UI visualization	78
Figure 79 - Example of the results in the Stress Test	79
Figure 80 - Example of the results in the Planning Actions	79
Figure 81 - Example of the results in the KPIs, Total Decongestion TAB	80
Figure 82 - Example of the results in the KPIs, Total Cost TAB	80

List of tables

Table 1 - Abbreviations and Acronyms 1	0
Table 2: Services implemented in Danish pilot1	1
Table 3: Data channels of Danish Pilot1	.7
Table 4 - Data identification S5.41	.8
Table 5: Table of services implemented in Nuvve pilot site2	1
Table 6: Use cases for the S3.1 service	2
Table 7: Data assessment for the S3.1 service	25
Table 8: Use cases for the S3.2 service	6
Table 9: Data assessment table for service S3.23	4
Table 10 Use cases for the S5.1 service3	6
Table 11: Data assessment for the S5.1 service3	9
Table 12: Use cases for the S5.4 service	1
Table 13: Data assessment table for S5.45	51
Table 14: Use cases for the S8.1 service	2
Table 15: Data assessment for the S8.1 service 5	4
Table 16: KPI 2.15	6
Table 17: KPI 2.55	7
Table 18: Testing Summary Table8	;1
Table 19: UI non-critical errors8	81
Table 20: UI recommendations 8	2
Table 21: DENMARK_S3.1_UPC_FT.1 Functional Test Task 18	2
Table 22: DENMARK_S3.1_UPC_FT.2 Functional Test Task 28	2
Table 23: DENMARK_S3.1_UPC_FT.3 Functional Test Task 38	3
Table 24: DENMARK_S3.1_UPC_FT.4 Functional Test Task 48	3
Table 25: DENMARK_S3.1_UPC_KPI.5Functional Test Task 5	3
Table 26: PILOT_SP.3.1_UPC_EX.1 Functional Test Task 68	4
Table 27: UI non-critical errors8	4
Table 28: UI Recommendations 8	4
Table 29: S3.2 Testing Summary Table	5
Table 30: S3.2 Testing Summary Table	5
Table 31: UI critical errors 8	6
Table 32: UI non-critical errors	
	6
Table 33: UI Recommendations 8	86 86

Table 35: 3	3.2_ODT_FT.1 Active service contracts collection
Table 36: 3	3.2_ODT_FT.2 Data collection87
Table 37: 3	3.2_ODT_FT.3 LV networks modelling87
Table 38: 3	3.2_ODT_FT.4 Results export87
Table 39: 3	3.2_ODT_FT.5 User access87
Table 40:	3.2_ODT_KPI KPIs validation88
Table 41: S	S3.2 KPI list table88
Table 42: I	UI critical errors
Table 43: I	UI non-critical errors
Table 44: I	UI Recommendations89
Table 45: S	S5.1 Testing Summary Table90
Table 46: S	S5.1 UI critical errors90
Table 47: S	S5.1 UI Recommendations91
Table 48: I	DENMARK_5.1_UPC_FT.1 History91
Table 49: I	DENMARK_5.1_UPC_FT.2 Data selection91
Table 50: I	DENMARK_5.1_UPC_FT.3 Training model results91
Table 51: I	DENMARK_5.1_UPC_FT.4 Forecast results92
Table 52: I	DENMARK_5.1_UPC_KPI.1 KPIs92
Table 53: S	S5.4 Execution table table92
Table 54: S	S5.1 UI non-critical errors93
Table 55: S	S5.1 UI Recommendations93
Table 56: I	DENMARK_5.4_UPC_FT.1 History94
Table 57: I	DENMARK_5.4_UPC_FT.2 New event95
Table 58: I	DENMARK_5.4_UPC_FT.3 Results95
Table 59: I	DENMARK_5.4_UPC_KPI.1 Functional Test Task 395
Table 60: I	DENMARK_5.4_UPC_EXEC.X Functional Test Task 495
Table 61: S	S5.4 UI non-critical errors96
Table 62: S	S5.4 UI Recommendations96
Table 63: 9	S8.1 Testing Summary Table97
Table 64: 9	S.8.1 UI Non-critical errors97
Table 65: 9	S8.1 UI Recommendations97
Table 66: I	DENMARK_8.1_UPC_FT.1 Stress test Tab display options
Table 67: I	DENMARK_8.1_UPC_FT.2 Planning Actions Tab Display Options99
Table 68: I	DENMARK_8.1_UPC_FT.3 KPIs results in the marketplace
Table 69: I	DENMARK_8.1_UPC_FT.4 Download results
Table 70: I	DENMARK_8.1_UPC_FT.5 Execution time100

Abbreviations and Acronyms

Acronym	Description
AI	Artificial Intelligence
BRP	Balancing Responsible Party
Dx	Deliverable x
DSO	Distribution System Operator
DTU	Danmarks Tekniske Universitet
EV	Electric Vehicle
EVSE	Electric Vehicle Supply Equipment
GDPR	General Data Protection Regulation
КРІ	Key Performance Indicator
LV	Low Voltage
MV	Medium Voltage
PV	Photovoltaic
Тх	Task x
ΤοU	Time-of-Use
TSO	Transmission System Operator
UI	User Interface
V2G	Vehicle-to-Grid
WPx	Work Package x

Table 1 - Abbreviations and Acronyms

1. Executive summary

This deliverable documents all the work performed within Task 7.5.2 (T7.5.2), related to the Danish demonstration site (Pilot 4.2). It follows the methodology of implementation described in Deliverable D7.1 "Large Scale pilots' methodology" [1].

The services implemented in this pilot are the following:

Table	2:	Services	imp	lemented	in	Danish	pilot
TUDIC		Scivices	- The second sec	Cincincu		Pullish	phot

Service ID	Name of service (name of approach when relevant)	Service developer
S3.1	Grid disturbance simulations (Congestions forecast for day ahead)	UPC, WEP
S3.2	Impact study PV, EV & new loads	ODT
S5.1	Flexibility forecast (UPC approach)	UPC, ICOM
S5.4	EV to Grid	NUVVE
S8.1	Asset and investment planning	UPC, WEP

First, each service is presented succinctly and the use cases are reminded, based on WP4 inputs. The results of each service implemented in this pilot are then shown, but those results may vary in terms of quality, depending on the quality of data collected on the pilot site. This is why a data quality assessment has also been performed in order to bring insight and explanation on why those results were found.

2. Introduction

2.1 Purpose and intended audience

The BD4OPEM project aims to design, develop, and deploy a marketplace in order to provide innovative energy services for the reliable operation of the smart grid. These energy services will be provided through a marketplace, acting as an open, modular data analysis toolbox and facilitating data exchange and advanced usage. In this way, the data coming from the diverse energy domain sources will be put at the disposal of advanced energy service developers through a marketplace.

The main objective of WP7 is to oversee the implementation and demonstration of the services developed in the previous WPs. Through this implementation, the aim is to prove two points:

- That the tools developed are compliant with the given objectives and, if not, analyse and identify the reason for the difference and provide recommendations about the tool optimization to reach better results.
- That the Marketplace platform and the Analytics toolbox permits flexibility, replicability, and scalability of the services between data providers and service users with adapted features.

Overall, this work package consists in providing the input for the analysis of the impact of the whole system developed during BD4OPEM project and giving recommendation to optimise its use and management. It is as well the opportunity to gather feedbacks from different demonstration sites and their respective leaders upon the platform, the services, and the customer experience.

This document describes the results of the implementation of the services for the Danish demonstration site.

The main audience of this document is:

- WP7 partners themselves, to know the results of the project for the Danish demonstration site
- WP9 partners for the description of the processes and methodology which can be used in the latter exploitation of the platform.
- Future data providers or service users that want to interface with the BD4OPEM platform.
- Future algorithm developers or service providers that want to propose their own services to NUVVE.

2.2 Relationship with other BD40PEM tasks

This deliverable is related to different tasks within the BD4OPEM project:

- T7.1, Pilot Methodology and preparation of large-scale pilots, as this implementation is a first demonstration of the methodology described in this task.
- T7.2, T7.3, T7.4, as they are similar tasks.

- T7.6, in which the results of each demonstration site are tested and validated
- WP9, which will be able to use the results of each demonstration site for exploitation and replication purposes.

2.3 Structure

This document is divided into three main sections:

- The final description of the demonstration site, with the global perimeter, the specifics of the pilot and a recap table of the services implemented in this demonstration
- The services results for this demonstration site, with a reminder of the use cases, a data assessment and the services implementation conclusions
- A monitoring of project KPIs

Then a final part will conclude with lessons learned from the pilot and from the service developers perspectives.

Finally two annexes will detail the storylines of each service as well as the results of services testing in the Marketplace.

3. Final description of the Danish demonstration site

3.1 Global perimeter (update from D7.1)

Pilot company: Nuvve

DSO of the local grid: BEOF Bornholms Energi & Forsyning. Lately this Distribution System Operator (DSO) has changed ownership, now it is TRAFOR.

Description of assets:

- km of lines: N.A.
- Number of substations: 1, 10/0,4kV station Bellmansvej 54
- Asset pilot: Electric Vehicles (EVs) owned by national entity and plugged to Nuvve owned vehicle-to-grid (V2G) charging stations with a power rate of kW. V2G technology allows not only to charge the EVs, but also gives the possibility to discharge the batteries to create flexibility.
- Total power of the pilot: around peak charge or discharge with units kW.
- Total battery capacity of EVs depends on multiple factors. All cars have battery capacity of around kWh. The driving patterns show a limited usage on certain units, while others have very irregular driving patterns.

Geographical overview: Rønne, Bornholm Island, Denmark.

Figure 1: Fleet location

For the Danish pilot site Nuvve has chosen the island of Bornholm, where a V2G infrastructure is already deployed. The island of Bornholm is located in the Baltic Sea, and its power system is connected with Swedish grid through a submarine cable of 60 MW. The 0.4 kV low voltage grid length is more than 1900 km and the number substations amount to 1039, while the 60 kV and the 10 kV grid are respectively 131 and 927 km long and 16 substations 60/10 kV are installed. The power system is characterized by a significant shares of renewable energy sources, continuously increasing.

to be considered and used for the data analysis. allocated for congestion management services for the LV grid where those are installed. This is achieved through the assessment of the available flexibility, its future forecast and optimization for its distribution. The forecasting algorithm designed can be compared with the pilot tools in development and, if possible, merged. The Danish pilot includes multiple charging stations operated by Nuvve, located on two different feeders of Bornholm island and subjected to different loading and customers' characteristics. Nuvve has offered a Electric Vehicle Supply Equipment (EVSE) infrastructure which is a relevant asset that can optimally provide flexibility to the local grid through V2G technology. V2G technology patented by Nuvve, allows charging and discharging vehicles with high-granular control.

the fleet has been aggregated to offer Frequency-Containment-Reserve for Normal Disturbance (FCR-N) to the Transmission System Operator (TSO), named Energinet, by using V2G chargers with second resolution control. The fleet is operated with two different models with slightly different battery capacities

Figure 2: Nuvve demonstration site, assets and map

In parallel, Nuvve has provided data to assist other pilots requesting it. This pilot aims to test new services which are centred on bringing value to another type of actors. Through a collaboration between Nuvve and the local DSO Bornholms Energi & Forsyning (BEOF), the Danish pilot will assist in performing services for analysis and comparison of grid topologies. Here, customer loadings including EV penetration, driving and charging patterns, and temporal load flows will be investigated to estimate the flexibility potential for the power system and its market. This can maximise the benefits of the system, the aggregator and the users. Grid services can be performed by controlling uni- and bi-directional charging stations. The remote charging control is handled by the Electric Vehicle Supply Equipment (EVSE) operator who activates the EV flexibility following signals measured directly on the grid and/or upon request.

🕥 BD40PEM

points. Further, the data for that specific radial network were also accessible, which enhanced the decision. Moreover, while the grid on the island is strong and does not experience congestion very often, the chosen reference radial network would expect a certain level of cable overloading. However, the congestion should be confirmed by further analysis.

In the case that no congestion would occur or that the effects are limited, the network congestion have been modelled by including synthetic data or modelling the data for the pilot case.

The majority of EVs are located on local radial feeders behind transformers at lowvoltage side. Flexibility from EV charging and discharging is a powerful tool for grid owners to defer and reduce the need of grid reinforcements and support the stability of local grids. The local EVs can help operators, such as DSOs and TSOs, to mitigate network congestion, for instance by levelling loads, providing ancillary services and much more.

Figure 3, extracted from the "T4.3 - S5.4_EV_to_Grid" document [2] depicts the required steps to reach these objectives. Starting with the raw data received from the smart meters in each charging station, to the final step that includes external signals and considers optimising the aggregated available and predicted flexibility at the moment of use. Step 1 of Figure 3, consists of receiving the data from the EV chargers. The latter contains the state of charge and power requested by the vehicle, power provided by the vehicle, the plug-in status, voltage and current at the EV side. The flexibility will depend indeed on the current state of charge, allowing a positive and negative power flexibility to be calculated for each data point.

Figure 3: Algorithm scheme interaperability from UPC

3.2 Specifics of the pilots (update from D7.1)

Data Sources

Figure 4: Nuvve data sources

The data channels for the Danish pilot have been listed in the abovementioned D3.1 [3] and depicted in Table 3 below.

lable	3:	Data	channels	ot	Danish	Pilot

Data Object	Offered by	System	Comm. Protocol	Data Format
EV Charging Data EV Charging Metadata	Nuvve	EV Charging Management System	HTTPS(S)	JSON/CSV, Proprietary Data Model
Historic Smart Meter Measurements	DSO	SM Data Sharing Platform	HTTPS(S)	CSV/xlsx
Primary Substation Measurements		SCADA	HTTPS(S)	CSV/xlsx
Substation Alarm	DSO	SCADA	HTTPS(S)	CSV/xlsx
Power Quality Measurements		GIS	HTTPS(S)	CSV/xlsx
Grid Asset Characteristics	External Data Sources	Calendar Service	HTTP	JSON

) BD40PEM

Data source	Data identificati on	Additional description	BD4OPE M ontology	Reference to standards
EV Charging Manageme nt System	EV Charging Data	EV charging datasets of V2G units	EV_Chargi ng_Station	SAREF:makesMeasurem ent
EV Charging Manageme nt System	EV Charging Metadata	EV charging datasets of V2G units	EV_Chargi ng_Station	SAREF:measuresProper ty
SM DSO Data Sharing Platform	Historic Smart Meter Measurement S	DSO smart meter data with production and consumption every 15 minutes per 110 customers	Smart_Met er	bd4op:SmartMeter has not direct references to any standard but it is a subclass of bd4op:FieldDevice that is based on saref:Device, fiware:Device, fiware:Device, fiware:DeviceModel and cim:EndDevice
DSO SCADA legacy system	Secondary Substation Measurement S	PowerLab transformer technical datasets	Secondary _Substatio n	IEC CIM: meterMeasurements
DSO SCADA legacy system	Secondary Substation Power Quality Measurement s	PowerLab transformer technical datasets	Secondary _Substatio n	IEC CIM: meterMeasurements
GIS Internal database	Grid Asset Characteristic s	Topology of DSO local grid on Bornholm	Grid_Asset s	IEC CIM
TSO DataHub	Market Data	Electricity prices DataHub [4]	Electricity_ Prices	IEC CIM

Table 4 - Data identification S5.4

The data from the Nuvve pilot are not only from the fleet's operation, but data from the local grid were purchased by Nuvve to support the project.

a. **Fleet data**: Nuvve has resampled, modelled, anonymized and share the operational data from the V2G fleet, including power, energy, voltage, current, status. This data has be shared on a daily basis via cronjob from

the Nuvve servers. The approach of sharing data would still need to be discussed with the parties involved. A possible API will be created to pull patches of data to the data-lake.

- b. **DSO data**: the customer's historical data, around 110 customers for three years, have been shared by the DSO on power consumed and produced.
- c. **Transformer data**: the proposed idea was to connect the data-lake with the station data to support the development of the pilot.

However, historically transformer technical data were shared with Nuvve and to the BD40PEM partenrs in related services.

Grid data are available for the Danish pilot from two different resources:

- A list and a visual illustration of the components and cables of the grid topology of low voltage side of the 10/0,4kV station Bellmansvej 54, where the connection point 6 of Nuvve is, were shared by the local DSO. Moreover, three years of historical smart meter data for the customers under that station were shared by the same operator. These datasets, list the power consumed and produce by each of the smart meters.
- The second set of grid data was received from the PowerLab Danmarks Tekniske Universitet (DTU), a research entity. These data are the Bellmansvej 54 transformer data including power, current, voltage, frequency, and others for around 3 years. The proposed idea with PowerLab was to connect with their database and possibly fetch data on more regular basis.

Figure 5: Data sources and simplified topology in the Danish demonstration site

IT environment

Legal requirements (GDPR, specific national laws...)

- Grant Agreement signed permits to share data under specific ruled and with defined partners in a protected way.
- Danish Data Protection Act.
- NDA document was signed between the local DSO and Nuvve for sharing topology and grid anonymized datasets.

Specific needs in equipment (servers, sensors, gateways...)

• Fleet data: metering system with high resolution are installed internall of each charging station, connected with Nuvve server with stable internet connection.

Specific needs in technical support (Data collection or interface..)

• ATOS and ICOM have supported the data ingestion process by harmonizing with the object models and creating adaptors for the correct storing of the data. Data have been harmonized from the Nuvve SFTP server to the BD4OPEM marketplace.

Constraints identified from the demonstration site

• Inadequate data compared to service requirements

3.3 Danish Pilot motivations (update from D7.1 OPEN DEI)

The 2021 OPEN DEI manifesto, attached for reference, outlines the motivations and decisions behind the pilot project in Denmark. The manifesto's contents remain unchanged over the past years, reflecting consistency with the company's business model and the commitments and rationale behind the pilot.

BD40PEM

BD40PEM - DENMARK

- Why The Pilot's mativations Optimise energy asset operation through data-driven use cases Help define data services for utilities, energy suppliers, and grid operators Integrate transportation and energy by providing storage for renewable energy, services to grid operators, and the optimisation of EV charging on the grid by supporting a green transition Manage local assets more efficiently and dynamically by making

- transition Manage local assets more efficiently and dynamically by making use of distributed vehicle-to-grid (V2G) services Provide a solution for link and balance among stakeholders in flexibility markets .

BD40PEM – DENMARK

Drawing on electric vehicle data

A renewable integrated power system operating in grid-connected and island modes

We make electric vehicles greener.

- Distinctive Features Bidirectional EV charging A high-level of control Versatile integration Management on the go

 - What

 The Pilot's expectations

 Technical: Improve energy distribution in a sector undergoing change by creating smart grids where EV can optimally support the current grids and integrate renevable energy.

 Business:

 Support the development of new flexibility energy markets that facilitate the work of the DSO

 Improve existing and create new flexibility energy services to support markets and obtain new market value

 Emvironmental: With the incorporation of renevable energies, BD4OPEM engages in decarbonisation out of respect for the environment.

 Social: Understand mechanisms and stimuli that may induce users to change their behaviours in order to fulfil specific requests from grid actors.
- na come concela 😥 😥 Kaling and a server 📑 👔 Validation Validation 👘 the electrice edito 💭 such comes NCATION + INTRO
 Business Model
 Payment for a) availability and b) providing energy: In this pilot, potential coexistence or competitiveness with other services will be investigated.

 • The 'time of use' service is behind the meter service, as a way to reduce costs.
 (NOV~ ONE OR TWO-WAY
 POWER CONNECTION IP COMMUNICATION WITH NUVYE SERVER SERVICE REQUEST KPIs Definition
 The timely provision of energy based on forecasting to prevent grid failures or power drop-out
 The ability to follow tariff price signals with the satisfaction of customers' primary objectives User Features Grid Features • The use of high-volume data • Data services • Grid insights • Energy efficiency • Flexibility • Grid management Ser reatures Manageable data Protected data Valuable data Quality data Ease of management

3.4 Recap table of services to be implemented

Table 5: Table of services implemented in Nuvve pilot site

Service ID	Name of service	Service developer
S3.1	Grid disturbance simulations (Congestions forecast for day ahead)	UPC, WEP
S3.2	Impact study PV, EV & new loads	ODT
S5.1	Flexibility forecast (UPC approach)	UPC, ICOM
S5.4	EV to Grid	NUVVE
S8.1	Asset and investment planning	UPC, WEP

4. Services results for the Danish demonstration site

4.1 S3.1 – Grid disturbance simulations results

4.1.1 UPC approach: Congestions forecast for day ahead

4.1.1.1 Introduction of the service

Name: Grid Disturbance Simulations. Category: Operation and maintenance. Task: T4.1 Location on the grid: MV grid, LV Grid

This service predicts possible congestion scenarios for the day-ahead operation planning on a low-voltage and/or medium-voltage grid by applying machine learning techniques (e.g., Linear Regression, Neural Networks). The output contains information such as the location and time of possible congestions in the grid and suggests improvements by means of swapping between phases at connections or consumers where problems occur.

Table 6: Use cases for the S3.1 service

Use case	Description
UC1	As a grid analyst, you wish to know in advance the forecast of the demand you are facing in your loads for the next day
UC2	As a grid analyst, you want to know if you are going to have congestions in your lines, following the forecasted loads. This is necessary to plan the flexibility dispatch (if available) for the next day

4.1.1.2 <u>Use Case 1</u>

Danish pilot was a special case as they are not a distribution system operator, hence, some data used for these results had to be linearly interpolated. This service is of particular interest for the pilot as they have a deployment of EVs in the grid. Therefore, knowing the forecasted demand and possible congestions in the grid is highly useful.

Reviewing the historical demand, the service offers the deterministic forecasted demand for aggregated sources and the total amount of power in the grid for each hour, as shown in Figure 7. This is an interesting result as the analyst can know what the peak hour will be at a first glance, by using the service UI. In this example, it is obvious that the peak will occur at 10:15h. It is also possible to check and analyse the forecasted demand for each of the loads in the grid, using the dropdown on the right. The analyst can select a specific load, which can be of specific interest for the pilot, for any particular reason.

Figure 7: Aggregated demand

In Figure 8, we can observe the day-ahead profile of the load for Client 18. This can be done with any other load. Additionally, the tool allows the analyst to download the table in an spreadsheet format (i.e. excel), as demonstrated in Figure 9. This for all the results of any load in case they wish to generate more detailed reports.

Figure 8: Forecast Demand for Load Client 18

									Dema	ind Forecast	Results (2)	dsx - Excel								困		
Archiv	•	Inicio	Insertar	Diseño de página																	sesión 🞗	Compartir
ĥ	<mark>%</mark> ⊂	ortar	Calit	ori * 11	• A A = =	= »· =	Ajustar texto	Ger	neral				Normal	В	Jeno		- 🖹		Σ Autosum	a Ar	0)
Pegar	1 C	opiar	N	K S - -	ô · A · = =		Combinar v cer	ntrar - 😨	× 96 000	20 .00	Formato	Dar formato	Incorrect	o N	eutral	Ins	ertar Elimina	r Formato	Rellenar	Ordena	ry Buscar	y
	🔶 CI	opiar f	ormato			- 1.2 .2 10				co	ndicional * o	omo tabla *							C Borrar *	filtrar	 seleccior 	har *
	ortapa	apeles	G	Fuente	G	Alineaci	on	9	Número	G			Estilos				Celdas			Modificar		^
E18		¥	1 × 1	√ <i>f</i> x 0.0	477997881406334																	~
	А		В	С	D	E	F	G	н	1	J	К	L	м	N	0	Р	Q	R	s	т	U 🔺
1		Cli	ent 23	Client 113	Client 21	Client 57	Client 24	Client 25	Client 19	Client 20	Client 17	Client 18	Client 13	Client 14	Client 15	Client 16	Client 11	Client 12	Client 9	Client 10	Client 58	Client 1
2	0		0.033972277	0.01658399	3 0.068347703	0.082817166	0.045292678	0.036037	0.033498	0.01461	0	0.012409	0.002088	0.000118	0.00712	6.62E-05	0.653318	0.020104	0.044696	0.049508	0.005822	0.02035
3	1		0.002703966	5 0.01100033	0.049833968	0.262478098	0.014652736	0.074503	0.029084	0.00867	0	0.00605	0	0.008597	0.152386	0	0.059602	0.019092	0.062603	0.012848	0.038915	0.03335
4	2		0.018768985	5 0.000721934	4 0.064404618	0.077354832	0.02635187	0.041005	0.077386	0.023921	0	0.013757	0.009356	0.008821	0.0085	0	0.50748	0.00703	0.016427	0.017104	0.039546	0.02534
5	3		0.014687223	0.02890954	4 0.055335361	0.00785579	0.361653333	0.097754	0.029084	0.058339	0	0.03405	0	0.002291	0.020344	0.000843	0.537423	0.00523	0.014023	0.005034	0.063951	0.00113
6	4		0.012242136	5 0.03749602	0.10754023	0.155627107	0.187305603	0.056819	0.009831	0.009508	8 0	0.01997	0	0.001366	0.03387	0.01415	0.110078	0.058795	0.033151	0.020994	0.047369	0.02775
7	5		0.017230953	0.03427128	3 0.055125509	0.066851857	0.106801831	0.000628	0.015608	0.015454	0	0.011268	0	0.031717	0.131656	0.007454	0.695093	0.03714	0.094407	0.002955	0.025585	0.02266
8	6		0.003479402	0.00958566	5 0.022653484	0.214541775	0.086763057	0.029757	0.01953	0.034462	0.004869	0.00252	0.003169	0.044445	0.016001	0.015446	0.005326	0.028033	0.057911	0.035434	0.028097	0.04417
9	7		0.021362906	0.03251674	4 0.02362389	0.003332238	0.061087015	0.028869	0.00403	0.012467	0	0.012571	0.002855	0.001296	0.020019	0.01814	0.318547	0.005031	0.063679	0.006334	0.016624	0.03350
10	8		0.037163872	0.01680535	8 0.022299557	0.034925483	0.05793284	0.124252	0.022497	0.026528	8 0	0.002225	0.012696	0.003065	0.07492	0.011127	0.144406	0.02323	0.011297	0.012507	0.004755	0.02846
11	9		0.015939329	0.02860596	0.107076638	0.053759257	0.002638521	0.014714	0.01013	0.035007	0	0	0.010411	0.014661	0.007982	0	0.507503	0.002291	0.040335	0.017347	0.048196	0.03268
12	10		0.015944466	0.07524674	9 0.074535776	0.168837099	0.022026644	0.011553	0.001258	0.056228	8 0	0.00673	0.006497	0.018028	0.049794	0.006522	0.70415	0.014803	0.018402	0.024715	0.004091	0.00711
13	11	_	0.009895797	0.02184771	8 0.058444026	0.176466647	0.013847072	0.010338	0.004569	0.001836	6 0	0	0.003212	0.000991	0.038748	0	0.446788	0.009007	0.033224	0.004008	0.005393	0.05592
14	12		0.006970122	0.04786236	0.033328649	0.100590987	0.015211035	0.040676	0.014601	0.021403	0	0	0	0.007525	0.014248	0	0.616701	0.028146	0.029833	0.038953	0.053793	0.03977
15	13	_	0.008509641	0.03359880	0.054330665	0.010848501	0.010173793	0.020483	0.003645	0.018536	0.000888	0.007394	0	0.014148	0.009976	0.008688	0.684896	0.013046	0.02865	0.039138	0.013724	0.00418
16	14	_	0.008727505	0.0581221	0.038439766	0.136514872	0.011917927	0.043039	0.008474	0.032575	0	0	0.000374	0.009813	0.063225	0	0.465066	0.033562	0.045556	0.00181	0.021328	0.03948
17	15	_	0.020951229	0.00055529	6 0.005625536	0.003616211	0.045020999	0.012421	0.015375	0.033027	0	0.002886	0	0.007401	0.00973	0.006635	0.787971	0.017088	0.031275	0.008873	0.045984	0.03303
18	16		0.005479252	0.02160457	5 0.069614817	0.047799788	0.005402494	0.01262	0.028644	0.030099	0	0.010078	0	0.009962	0.012814	0.008663	0.688262	0.000658	0.085606	0.049659	0.011027	0.02873
19	17	_	0.007214577	0.01737827	8 0.012287333	0.158583426	0.005615347	0.005092	0.018517	0.033028	8 0	0.010298	0.016847	0.008521	0.028101	0.005439	0.190587	0.003438	0.042373	0.031219	0.024101	0.02072
20	18	_	0.014132338	0.02465656	8 0.05880051	0.104896301	0.01995203	0.085304	0.006046	0.059031	0	0.011451	0.009913	0.006963	0.012295	0.00142	0.038436	0.016617	0.023984	0.026241	0.017575	0.0434
21	19		0.011743856	5 0.014953	5 0.023998691	0.063895283	0.019220186	0.080647	0.009302	0.014151	0	0.019517	0.010252	0.008192	0.016422	0.004338	0.606962	0.024057	0.038605	0.001354	0.013111	0.04219
22	20	_	0.001941985	0.02340576	5 0.077470567	0.086555158	0.01647262	0.081626	0.003448	0.017646	0.000806	0.008944	0.003808	0.009395	0.077794	0.007862	0.057285	0.013547	0.011605	0.021118	0.023928	0.02450
23	21	_	0.01085599	0.04928520	7 0.019082459	0.005050199	0.008652089	0.010973	0.003557	0.016449	0	0.019404	0.005624	0.014013	0.030608	0.006207	0.092635	0.003832	0.000936	0.013552	0.03006	0.03478
24	22	_	0.01007254	0.00773902	2 0.060669711	0.120665812	0.012926289	0.018525	0.008944	0.044095	0	0.014534	0.004346	0.003212	0.007294	0	0.121744	0.025585	0.007421	0.023725	0.002858	0.00332
25	23	_	0.013306184	0.03793693	8 0.086668118	0.024204728	0.008531595	0.017776	0.017655	0.037143	0	0.003814	0	0.001596	0.078363	0.009919	0.564356	0.01771	0.003513	0.002731	0.038459	0.02907
26	24	-	0.00716082	0.0281932	2 0.049321367	0.063945155	0.020891169	0.068726	0.004157	0.011577	0	0.001275	0	0.005099	0.014479	0	0.802046	0.01983	0.0145	0.00493	0.002113	0.03233
21	25	-	0.004736042	0.03947081	s 0.0/3448777	0.235668624	0.011170479	0.079313	0.006926	0.000551	0	0.006761	0.006812	0.00753	0.025982	0.006093	0.76287	0.026474	0.00874	0.022023	0.009738	0.03954
28	26	-	0.019139658	0.02793278	0.0/1365636	0.072203316	0.009731599	0.083102	0.004662	0.023168		0.01684	0	0.006043	0.054444	0	0.435987	0.003219	0.005899	0.028216	0.03373	0.03511
29	21	-	0.00051207	0.00788937	0.10/84/425	0.131156/14	0.024312/11	0.019166	0.002893	0.001252	. 0	0.01497	0.013552	0.029794	0.001061	0.008992	0.39029	0.028472	0.013307	0.026979	0.02516	0.0349 +
-		Sh	eet1 (2)	+									1							_		Þ
Listo																		_		─		+ 100 %

Figure 9: Table of demand forecast in excel format

4.1.1.3 <u>Use Case 2</u>

For the analysis of the congestions, this tool offers a congestion monitoring where the analyst can see the forecasted current (in kiloAmpers – kA), for each of the lines in the distribution grid. As seen in Figure 10, the figure shows the behaviour for the first line of the grid. The limit of the line, calculated with the required data to contract the service, is also displayed, in order to know if a congestion will occur.

Figure 10: Line 0 forecast

Additionally, in the report tab, the analyst can observe line by line the probability of congestions, and this value is translated to kA. Finally, the report provides the total number of congestions in the grid, which for this particular case is 0.

) BD40PEM

S3.1 Grid disturbance	=			Test_WEP_S3.1_NUVVE -		Alejandro Hernandez Matheus (UPC) 🝷
2 Dashboard	Time period	20/09/2023 - h24				
 Demand forecast Congestions 				Choose a line: Line 0 •	N° of Congestion detected	
G Reports	Hour	: Probal	ility [%]	Overload [kA]	0	
	00:00		0	0.005096084654694783		
	01:00		0	0.005130916600375012	Download Table 🛓	
	02:00		0	0.003533082325972643		
	03:00		0	0.004771391743104834		
	04:00		0	0.003697869953443035		
	05:00		0	0.00446316735021731		
	06:00		0	0.004293148340434139		
	07:00		0	0.004240466346139152		
	08:00		0	0.003374927203523088		
	09:00		0	0.005097383172051468		
	10:00		0	0.003990810099917894		
	11:00		0	0.004349905531445025		
	12:00		0	0.003332322643624804		

Figure 11: Report tab

4.1.1.4 Data assessment

The data required to establish the service mainly comprehends topology and parameters of the grid, as well historical measurements from either transformers or loads within the grid. The specific data files for this service can be observed in Table 7.

Table 7: I	Data	assessment	for	the	S3.1	service
------------	------	------------	-----	-----	------	---------

Data source needed	Mapping into CIM	Data quality assessment	Impact of the quality on the service
Grid Topology	Service_parameters	Good quality	Medium
Historical measurements	Smart_Meter	Missing values and Low energy consumptions	High

4.1.1.5 Service conclusions

The results of the service are highly useful for DSOs. This type of information is especially useful in highly congested grids. However, it is very sensitive to the input data. Also, the fact that the machine learning models are trained with a fixed topology is an important drawback to the applicability of the service towards grids that change their topologies often. In the case of the Danish pilot, there are not many congestions historically. This demonstration site not involving a DSO but Nuvve, V2G technology provider, measuring congestions in lines and comparing results was not possible. Nonetheless, Nuvve has shared information, topology and data, from the DSO of Bornholm. Such collaboration and validation would be interesting in future works. The approach could be different by exploring voltage congestions. Additionally, the service is very data intensive, so adding features and prediction variables adds more complexity to its execution.

) BD40PEM

The results of this service could be highly useful for a company such as NUVVE, knowing in advance demand in certain points of the grid, could help to deploy energy management strategies for their EVs charger, increasing the benefit as well as the value the technology could provide to its users.

Additionally, some feedback raised during the testing of the service is as follows:

- The forecast figures could benefit from actual measurements of the loads, to help the analyst with past days investigations.
- Lines results should be given in Amperes (A), instead of kiloAmperes (kA)
- Information about the conductor should be given, as this helps the analyst with the decision making. This also applies to transformers with different cooling systems.
- In the Report Tables, the maximum thermal limit should be given, to provide reference.

4.2 S3.2 – Impact study PV, EV & new loads results

4.2.1.1 Introduction of the service

Name: Impact Study PV, EV and new loads Category: Planning Task: T4.1 Location on the grid: LV

This service allows to estimate the capacity of a network to accommodate new solar photovoltaic (PV) panels, EVs, or consumers, regarding the limitations of the network (voltage excursions or overload). The second functionality of this service is to evaluate the impact of a new installation (PV, EV, or new load) by estimating the residual capacity after this installation.

Table 8: Use cases for the S3.2 service

Use case	Description
	As a: Planning operator of the DSO
	I want to : Know the already installed production at each smart meter
UC1	So that I can: Plan better the reinforcements in the medium voltage grid and have a simpler communication inside and outside of my structure
	Acceptance criteria: When I query a smart meter, I get the installed production instantly in kWp

Use case	Description
	As a: Planning operator of the DSO
	I want to: Know the production / additional load capacity of all my smart meters
UC2	So that I can: Accept a production / additional load insertion request with a given nominal value that does not exceed the maximal available capacity
	Acceptance criteria: When I query a smart meter, I get the maximal value of PV installable instantly in kWp
	As a: Planning operator of the DSO
	I want to : Visualise the production / additional load capacity of a smart meter with respect to the phase
UC3	So that I can: Provide the optimal phase for production / additional load insertion on each smart meter
	Acceptance criteria: When I run a new production / charge simulation with my requirements, the optimal phase is given as a result
	As a: Planning operator of the DSO
	I want to : Simulate the installation of a new production / additional load
UC4	So that I can: See how the new installation influences the rest of the grid
	Acceptance criteria: I can add a new production / additional load in simulation and see the residual capacity per meter. I can also add a smart meter to the waiting list, it will be considered in all subsequent simulations.

Table 8 summarizes the user story as designed and developed in the framework of WP4 and reported in D4.2 [5].

Figure 12 links all use cases together in order to better explain the workflow to the user, in the case of a PV installation.

Figure 12: Impact study workflow

According to the demonstration site specificities, PV, EV and new load use cases have been adapted and deployed with the following results.

4.2.1.2 <u>Demonstration site specificity and service deployment perimeter</u>

In the case of NUVVE demonstration site, the perimeter of deployment of the service S3.2 has been the secondary substation Bellmansvej 54 described in 3.2. For this secondary substation the following data was used:

- load curve from smart meters
- load curve of the secondary substation
- load curve from EV charging stations
- the topology with secondary substation/feeder/smartmeter connection information

. In its design, the optimization model behind the service S3.2 computes the simulation taking into account two different constraints:

- The addition of an installation which power is equivalent to the residual capacity must not trigger additional voltage excursions.
- The addition of an installation which power is equivalent to the residual capacity must not make the transformer go beyond its nominal capacity.

4.2.1.3 <u>Use Case 1</u>

Based on the smart meter load curves, the PV detection algorithm detected a PV installation on the meter 62. The equivalent kWp of the installation detected is 24.1 kWp.

Figure 13: Installed capacity in Bellmansvej 54

The "Installed" column (red rectangle 1) and the "Capacities" column (red rectangle 2) display the capacity accordingly, in dark green in Figure 13.

Thanks to this information, the operator is aware of the current production level of a part of the grid, while other databases regarding PV installations might reflect an outdated picture (installation decommissioned without noticing the DSO), not yet valid (installation validated by the DSO but not yet commissioned) or not behaving as expected (underperforming assets compared to kWp installed due to low maintenance, shadows...). This detection, based on production data provides an accurate kWp equivalent of the installations.

4.2.1.4 <u>Use Case 2</u>

Upon customer's request, the operator can navigate to the associated transformer (only one in this case) and get access to the residual production capacity of the customer's smart meter. Such capacity is available in the "Residual Capacity" column (red rectangle 3) and can be visualized together with the installed capacity in column (red rectangle 2) in light blue, see Figure 14.

) BD40PEM

Figure 14: Residual capacity in Bellmansvej 54

It is worth mentioning that here, without taking into account the voltage excursions as a constraint as they were absent from the demonstration site dataset, residual capacity is constant across the transformer and equal to the residual capacity sized by the transformer nominal load.

4.2.1.5 Use Cases 3 and 4

By clicking on one of the smart meters in the table (red rectangle 4 in Figure 15), a modal window opens (see Figure 16).

	Sagemeon	n		H:	ipping Netw Anali	vork Rebalar Iysis Rebalar	ncing Impac	t assessment PV	Impact assessmen EV/NewLoc	t English 🎇 🗸	nuvve 🗸	
Mapping	Equipment list substations	C SGU_RONNE	*									
+	Q Search equipment or locality Search	@ SGU_RON	NE								×7	
•		Smartmeter 0	Feeder 0	Phase o	Installed (kWp)	Plenned (kWp)	Gimulated (kWp)	Residual Capacity 0 (kWp)	Delta Initial o capacity	Cepecities	0	
2	LAA . ALAN	₩ Filter 04	Y Filter_ PSBOBT 1	mee-prese				107.9				
		65	Feeder 1	Three-phase				167.9				
		56	Feeder 1	Three-phase				157.9		— i		
			1 March 1997	inite prose						i		
	and the second sec	58	Feeder 1	Three-phase				157.9				4
		50	Feader 1	Three observ				157.0				
		6	Feeder 1	Three-phase				157.9				
+		61	Feeder 1	Three-phase	-	~	1.5	157.9		I		
-		62	Feeder 2	Three-phase	24.1			157.9				
٢		63	Feeder 3	Three-phase	-	~	12	157.9	-		1	
⊾ ⁷¹	APA DE CONTRACTOR	64	Feeder 3	Three-phase	-		12	157,9	2	I		
	The Second States	65	Feeder 3	Three-phase				157.9			1	
		66	Feeder 3	Three-phase	-5		2	157.9	~			
		67	Feeder 3	Three-phose				157.9		<u> </u>		
	Installed	68	Feeder 3	Three-phase				157.9				
	Simulated Residual	69	Feeder 3	Three-phase				167.9				
	- Leafer	7	Feeder 1	Three-phase				157.9				

Figure 15: Access to modal window to launch the simulation in Bellmansvej 54

) BD40PEM

Edit PV 26				
Initial meter phase:	Three-phase			
Installed PVs: 0 Residual capacity b	y phase before si	Planned PVs: 0 mulation (in kWp	»):	
Phase 1: 55.2	Phase 2: 53.2	Phase 3: 52.6	Three phased: 157.9	
New meter phase:	Three phased -	initial phase 🗸		
Capacities: 🕚	Phase 1 Phase 2 Phase 3	2		
Simulated PVs:	Three phased -	initial phase		
20		3	≎ kWp	
Apply and simulate Cancel				

Figure 16: Modal window for phase selection and kWp configuration in Bellmansvej

This modal embeds all the different configurations possible to simulate a new installation. The service analyses the LV network under a 3-phase paradigm and not following the classical single-phase approximation for LV studies. This enables to unlock additional capacity by considering not only the available capacity of the phase on which the smart meter is connected to but also the one of other phases at the same point in the network or the one considering a three-phase installation.

From a user perspective, all capacities are displayed in the cells in red rectangle 1 (Figure 16), by default the current smart meter configuration is selected but if the user would like to perform a change, a drop-down menu (red rectangle 2) enables to change the phase or type of installation.

Once this is done, the user can enter the requested capacity (as long as it is below the computed residual capacity) and click on "Apply and simulate".

When the computation is done the "Simulated" column is updated with the new installation configured by the user. In case a change in the phase has been performed, the user interface (UI) indicates so by displaying an exclamation mark next to it (•). In the "Capacities" column, the installation can be visualized together with the installed capacity and the residual capacity in yellow (see Figure 17).

	Sagemcon	n		Mo	pping Netw Analy	ork Rebalar	icing Impac	t assessment PV	Impact assessmen EV/NewLor	t English 🔛 🗸	nuvve 🗸
Mapping Equipment list substations		© SGU_RONNE									
+ Q. Search equipment or locality	Search	© SGU_RON	NE				Ad	d to waitlist	Reset sin	nulation	¥2
	C.S.	Gmartmeter 0	Peeder 0	Phase 0	Installed (KWp)	Planned (KWp)	Gimulated (kWp)	Realdual Capacity 0 (kWp)	Delta Initial o cepecity	Capacities	0
		▼ Filtet	₹ Filter								
15-1		1	Feeder 1	Three-phase		100		157.9			
		10	Feeder 1	Three-phase				157.9			
		100	Feeder 5	Three-phase			80	157.9	-	<u> </u>	
		101	Feeder 5	Three-phase				157.9	-		
		102	Feeder 5	Three-phase				157.9		——————————————————————————————————————	
	m Leafet	103	Feeder 5	Three-phase				157.9			
		104	Feeder 6	Three-phase				157.9		——————————————————————————————————————	
+		105	Feeder 5	Three-phase				157.9		——————————————————————————————————————	
	12 10 1	106	Feeder 5	Three-phase				157.9	с.	——————————————————————————————————————	
	and the second	107	Feeder 5	Three-phase				157.9	~		
		108	Feeder 5	Three-phase				157.9	8	I	
		109	Feeder 5	Three-phase				157.9	~	——————————————————————————————————————	
		11	Feeder 1	Three-phase				157.9	~		
		110	Feeder 5	Three-phase				157.9	~		
	Planned	111	Feeder 1	Three-phase				157.9		——————————————————————————————————————	2
	Residual	12	Feeder 1	Three-phase				157.9	<u></u>		

Figure 17: Simulated capacity in Bellmansvej 54

The residual capacity of all other smart meters and the delta compared to the previous situation are updated in the relevant columns.

If the user is satisfied with the simulation results, the button "Add to waitlist" enables saving the information. The simulated installation changes status to "Planned", updating the columns and switching the capacity from yellow to medium blue. This planned installation will be taken into account for future simulation and transferred to "Installed" status when installed on the field and once the algorithm identify it.

Regarding EV and new load, a dedicated tab, see red rectangle 1 in Figure 19, following the same approach has been developed and deployed. However, the workflow is slightly changed because "EV and new loads" are not predictable electrical loads, compared to PV and therefore the "Installation assessment" in UC1 is not relevant, see updated Figure 18.

Figure 18: Workflow for EV and new loads impact assessment

The residual capacity is considered in the worst-case scenario: upon simulating a given additional load at a delivery point, the model runs the simulation with this point having a constant additional power equal to such load. The same constraints as for PV remains in the absence of voltage data: to do not make the transformer go beyond its nominal capacity.

	Sagemcorr	1	Mapping Network Analysis	Rebalancing Impact PV	Impact assessment EV/NewLoad	English 🗮 🗸 nuvve 🗸
			B			
Meter	Feeder A	Phase A	Installed (kWmax)	Addition (kWmax)	Max (kWmax)	
1	Feeder 1	3-phase	0	0	196	
10	Feeder 1	3-phase	0	0	196	2
100	Feeder 5	3-phase	0	0	196	
101	Feeder 5	3-phase	0	0	196	

Figure 19: EV/New load tab for Bellmansvej 54

A similar table, see red rectangle 2 in Figure 19, provides the different capacities across the workflow. Upon clicking on a smart meter line, a modal window opens and enables to simulate the addition of an EV charging infrastructure (see Figure 20).

	Sagemo	moc	Mapping	Network Rebo Analysis Rebo	alancing assess PV	ment Impact assessme	ent EV/NewLoad	English 🐹 🗸	nuvve 🗸
			Ba			}			
		Edit meter 10				×			
		EV installed (kWmax)			0	¢			Leaflet
filter column	Feeder	EV planned to be added (kWma	(хс		80		*		
1	Feeder 1	Max EV capacity (kWmax)			196	0			
10	Feeder 1					Cancel Edit	I		_
100	Feeder 5	3-phase	0	0		116	1		
101	Feeder 5	3-phase				116	1		
102	Feeder 5	3-phase				116	1		
103	Feeder 5	3-phase	0	0		116			

Figure 20: EV addition modal window in Bellmansvej 54

Such addition can be computed in the model and then saved for later user sessions.

4.2.1.6 Data assessment

Table 9:	Data	assessment	table	for	service	S3.2
----------	------	------------	-------	-----	---------	-------------

Data source needed	BD4OPEM Ontology	Data quality assessment	Impact of the quality on the service
For each SM: Voltage profiles per phase	Smart_Meter	Not available	High impact Topology could be provided on this demonstration site which reduced the impact on the service
For each SM: Active power profiles per phase	Smart_Meter	Good quality EVSE were considered as smart meters here, the high frequency of the data as been resampled to be synchronized with other data points	High impact
Reactive power profile per phase (optional)	Smart_Meter	Not available	Low impact
Geographical coordinates of meters (optional)	Location	Not available	Low impact on algorithm performance

Data source needed	BD4OPEM Ontology	Data quality assessment	Impact of the quality on the service
			Reduced quality of the user experience
Substation power and voltage profiles (optional)	Secondary_Substati on	Load curves: Good quality Voltage profile: not available	Low impact
Weather irradiance time series (optional)	Weather data	Not available	NA

4.2.1.7 Service conclusions

The deployment and testing of S3.2 Impact Study PV, EV and new loads in the NUVVE demonstration site offers a proof of concept of its adaptability to partial dataset. Even in the absence of the voltage data, the complete workflow can be executed to provide the service to the user. Instead of managing simultaneously voltage level and transformer load, this version in partial operation only addresses the later.

It appears though that the integration of geographical coordinates would have helped to benefit from all features and to provide a more intuitive and navigable user interface, enhancing the accessibility and clarity of the results. This appears as a key aspect in the designed service and is necessary for future deployments.

The project enabled to thoroughly test the service across different demonstration site. Future work should focus on three key aspects highlighted by the project's experience: validation, computation time and additional features.

First, a cross validation of results with on-site installation and before-after evaluation of capacities would be interesting to bring additional trust to the results. Second, the current model has long computation time which jeopardize the user experience, improving it is necessary to provide a more efficient and responsive service, with higher scalability. Finally, EVs and new load tab is not as advanced as the PV tab. This is because EVs do not benefit of the same predictability and regulatory maturity as PV does, especially when it comes to flexible behavior which are still under design in most markets. This service is a significant milestone into Odit-e's journey to address EV's related planning issues but further market research and need assessment are required. As the industry evolves, aligning the service with the growing demands and complexity of integrating new technologies such as EVs will be essential for its exploitation.

4.3 S5.1 – Flexibility Forecast results

4.3.1.1 Introduction of the service

Name: Flexibility forecast Category: Flexibility and demand response Task: T4.3 Location on the grid: LV grid and/or MV grid

This service aims to forecast the available flexibility within an aggregator's portfolio in order to know how much flexibility can be activated in a specific time horizon. The objective is to provide the aggregator with a tool to estimate flexibility and provide this service to different stakeholders, such as the Distribution System Operator (DSO) or the Balance Responsible Party (BRP) in later stages and services.

Use case	Description
	As a: aggregator, you want to know in advance the flexibility available on the grid.
	I want to: know in advance the flexibility available on the grid.
001	So that I can: so I can optimise my portfolio
	Acceptance Criteria: When I run the Flexibility forecast service I obtain the hourly flexibility forecast for the next day.

4.3.1.2 <u>Use Case 1</u>

The aggregator selects the assets it wants to take into account and run the model. They can then access the prediction of the available flexibility for the next day hour by hour with the "forecast" section.

Figure 21 shows the graph on the UI representing the forecast, with the KPIs used to interpret the curve on the right. It is obvious that there is flexibility available mainly when people are at work (10h - 19h) or asleep, during the night.

The analyst can download the graph (it will be downloaded as in Figure 22) and the data as an excel file (as in Figure 23).

Figure 21: Forecast 24h ahead of Flexibility Availability ("Forecast" section of the UI)

Figure 22: Plot downloaded from the UI

💿 😑 📀 Enregis	strement auto	omatique		8 🖗 🏅	~ C	•		I	forecas	t_results (6)
Accueil Insertio	n Dessi	n Mise	en page	Formule	s Donn	ées Révi	sion Af	fichage	♀ Dites-	-le-nous
	alibri (Corps	s) ~	12 🗸	A^ A	Ξ = -	» *	ab √	Standar	ď	~
	T S S		_ <u></u>	A 🗸	= = =	=			69	€00, 00
S <	<u> </u>									,00 - ,00
A1 🛔 🗙 🗸	$\checkmark f_x$ ti	mestamp								
A	В	с	D	E	F	G	н	I	L	к
1 timestamp	flex_flex_loa	d_kW(h)								
2 2023-01-03 00:00:00	10,862805									
3 2023-01-03 01:00:00	10,368887									
4 2023-01-03 02:00:00	7,296577									
5 2023-01-03 03:00:00	5,1308303									
6 2023-01-03 04:00:00	3,6724572									
7 2023-01-03 05:00:00	2,3691545									
8 2023-01-03 06:00:00	0,4356615									
9 2023-01-03 07:00:00	0,21307941									
10 2023-01-03 08:00:00	0,21307941									
11 2023-01-03 09:00:00	0,19350402									
12 2023-01-03 10:00:00	0,8645165									
13 2023-01-03 11:00:00	5,362006									
14 2023-01-03 12:00:00	7,6984663									
15 2023-01-03 13:00:00	6,3096848									
16 2023-01-03 14:00:00	5,6891766									
17 2023-01-03 15:00:00	3,2564654									
18 2023-01-03 16:00:00	3,5114274									
19 2023-01-03 17:00:00	1,9882405									
20 2023-01-03 18:00:00	3,838397									
21 2023-01-03 19:00:00	1,2336935									
22 2023-01-03 20:00:00	0,647297									
23 2023-01-03 21:00:00	1,5801576									
24 2023-01-03 22:00:00	1,9305824									
25 2023-01-03 23:00:00	13,588818									
26										

Figure 23 - Excel view of the data downloaded from the UI (actual values y and prediction)

The "model info" section can also provide insights for the aggregator to better understand the data and compare possible future models (metrics available) as it is presented on Figure 24.

) BD40PEM

4.3.1.3 Data assessment

Table 11 shows the data needs for the service S8.2 in the Belgian pilot and adopts the impact of potential bad data quality. The first row (Flexibility calculation on EV charging station) refers to the requisite to run the simulations, while the second row (EV charging station) is necessary data to assess the flexibility.

Data source needed	Data source needed Mapping into CIM		Impact of the quality on the service		
Flexibility calculation on EV charging station	Point of connection (conn_point1, conn_point2)	Good	High		
EV charging station	activeEnergyImport	Good	High		

Table 11: Data assessment for the S5.1 service

4.3.1.4 Service conclusions

The results are useful for DSOs and BRPs as an additional tool to be able to monitor which flexibility they should buy or not. The grid has enough EVs available to allow a real flexibility along the day. Indeed, there are only few hours by day where flexibility is available, this misleads the model in the prediction.

Further improvement thanks to the feedbacks from the testing of the service can be an automatization of the service allowing the user to have the KPIs without running the model manually every day, also the possibility to zoom in the plot of the UI to better understand and interpret the forecast and training predictions.

4.4 S5.4 – EV to Grid results

4.4.1.1 Introduction of the service

Name: EV to Grid Category: Task: T7.5.2 Location on the grid: MV and LV grid

The transportation sector significantly contributes to greenhouse gas emissions. To address this, many countries are advancing the electrification of this sector to meet ambitious sustainability targets. This shift necessitates the appropriate deployment of charging infrastructure and the optimization of charging management. Consequently, the increased penetration of EVs can convert the added stress on the electrical grid into an opportunity to leverage flexibility services. EVs, capable of remaining connected to the grid for extended periods, can be utilized as distributed energy resources within specific electricity market zones.

The potential of V2G systems, combined with intelligent charging solutions, can alleviate the need for extensive grid expansion investments and enhance the stability of the distribution grid. The collective flexibility of charging stations can be aggregated and offered to the DSO as ancillary services, such as network congestion management, activated upon request or in response to congestion forecasts.

The aggregator plays a pivotal role in assessing available flexibility and engaging in a market that responds to grid operator requests, providing a variety of grid services from Medium Voltage (MV) to Low Voltage (LV). Specifically, at the low voltage level, the EV fleet can either absorb or inject electrical energy to aid in power system operations through congestion management services for the DSO.

The objectives of the EV to grid service include:

- Developing an algorithm to provide a comprehensive view of the flexibility available from EVs in pilot location.
- Defining a set of control signals for customers to activate flexibility.
- Enhancing the algorithm toolbox to encompass forecasting and automation.
- Delivering optimal flexibility services for congestion management.
- Delivering flexibility benefits and stacking them with energy arbitrage and carbon savings control, demonstrating the value of discharging to the DSO when electricity prices are typically high (a strategy known as "stacking") – This was added based on the KPI 2.5 of Nuvve. This KPI is aligned with Denmark Electricity Supply Act 2021 made by DanskEnergi and IntelligentEnergi [6]. The electricity grid companies must develop methods for market-based procurement of flexibility services. Activating flexibility in the electricity grid through both tariffs and flexibility services will be a cornerstone in an effective green transition for local grids and nationals power systems.

This service is designed to address congestion issues at the distribution grid level. The power provision of the fleet will be activated based on DSO requests and/or congestion forecasts, primarily focusing on exporting electricity to prevent cable overloading – or absorbing electricity to avoid under-voltage situtations - and ensure smooth grid operation.

Optimal service provision requires understanding both the current and forecasted flexibility capacities that the EV fleet can offer. Moreover, it is essential to have

information about the flexibility provided upon request or trigger to assess the effective execution of the flexibility service.

Table 12: Use cases for the S5.4 service

Use case	Description						
	Use Case 1: Flex Upwards - Discharge						
	User: Distribution System Operator (DSO or similar) an Service Provider (Nuvve)						
	Scenario: During times of peak demand, the DSO needs access to additional resources to prevent grid overloading.						
	Acceptance Criteria:						
	• Nuvve would need to received a contract request.						
	• The Service Provider, Nuvve, must ensure:						
	 Availability Nuvve commits to having the EV fleet ready for discharging power, specifying availability in defined hours over a period ranging from 1 day to 1 week. 						
UC1	 Utilization: Upon receiving a dispatch signal from the DSO during predefined days of congestion, Nuvve executes the discharge from the EVSE to the grid. 						
	 Nuvve will accept contract request from DSO based on flexibility forecast tools, coming from internal AI tools or similar. 						
	• The system must record and report the service provision and the KPIs.						
	 In addition to providing grid services, Nuvve's discharge strategy should aim to generate savings for customers, effectively stacking the discharge with energy arbitrage and customer savings during high tariff periods. This acceptance criterion ensures that while Nuvve provides essential grid services, it also considers the financial benefits to the EV owners, creating a more attractive proposition for customer participation. 						

Use case	Description						
	Use Case 2: Flex Downwards Day - Charge						
	User : Distribution System Operator (DSO or similar) and Service Provider (Nuvve)						
	Scenario : During periods of low demand during the day, the DSO requires the ability to increase grid load through EV charging to maintain grid stability and efficiency.						
	Acceptance Criteria:						
	 Nuvve must respond to the DSO's contract request for charging services. 						
	• Availability : Nuvve commits to having the EV fleet ready for charging, specifying availability in defined hours over a period ranging from 1 day to 1 week.						
UC2	• Utilization : Upon receiving a dispatch signal from the DSO on selected days, typically when there is excess renewable energy generation or low demand, Nuvve executes the charging of EVs from the grid.						
	 Nuvve will agree to a contract request from the DSO based on flexibility forecast tools provided by internal AI tools or similar. 						
	• The system must record and report the service provision and the KPIs.						
	 In addition to grid services, Nuvve's charging strategy during the day should maximize customer savings and take advantage of lower energy prices or other financial incentives offered by the DSO. 						

Use case	Description						
	Use Case 3: Flex Downwards Night - Charge						
	User : Distribution System Operator (DSO or similar), Service Provider (Nuvve), and EV Owner						
	Scenario : To balance the grid during night-time hours when demand is typically lower, the DSO seeks to encourage EV charging, which is facilitated by Nuvve with the involvement of the EV owner.						
	Acceptance Criteria:						
	 Nuvve is required to act upon a contract request from the DSO for night-time charging. 						
	• Availability : Nuvve ensures the readiness of the EV fleet for charging, with availability specified for defined hours across a period ranging from 1 day to 1 week.						
UC3	• Utilization : Nuvve initiates charging of the EV fleet upon the DSO's dispatch signal on predetermined nights with lower demand.						
	 Contract acceptance will be based on predictions from Nuvve's flexibility forecast tools, utilizing internal AI or equivalent systems. 						
	 The service provision and relevant KPIs must be accurately recorded and reported. 						
	 Nuvve's strategy for night-time charging should also provide financial benefits to customers, taking advantage of lower tariffs and potentially offering additional incentives for participation in the grid services program. 						
	These use cases are crafted to ensure that they reflect the same level of detail and structure as the first use case, focusing on the availability of service and the actual utilization in response to the DSO's needs, while also considering the financial implications for the customers involved.						

4.4.1.2 Demonstration site specificity and service information

Nuvve's backend system integrates a variety of data and operational components, vital for the execution of grid services and for use with the FlexTool in the outlined use cases. The system includes:

• **Congestion Events**: These are records of past FlexTool data on grid congestion, utilized to collect KPIs, operational results, and data audits for DSOs and other stakeholders.

N UVCE										
Home - Floxtool - Congestion Events										
Total Finance Reports	+ Add									
FLEXTOOL		Select Congestion Event	Select Congestion Event to change KNOWESTION EVENT & EXPORT TO C							
Congestion Events	+ Add	Action:	✓ Go 0 of 12 selected							
Distribution System Operators	+ Add	NAME	GRID	SERVICE	CONGESTION HORIZON FROM	CONGESTION HORIZON TO	REQUEST DATE			
Grid Data	+ Add	S5.4 FlexTool	Grid B5 - Bornholm Municipality	FlexUp	Oct. 25, 2023	Oct. 31, 2023	2023-10-25 09:25:03:856364			
		Event 2023-10-11	Grid B1 – Bornholm Municipality	FlexUp	Oct. 11, 2023	Oct. 11, 2023	2023-10-11 12:27:02:233526			
Grids	+ Add	Event 2023-09-14	Grid B7 - Bornholm Municipality	FlexUp	Sept. 14, 2023	Sept. 22, 2023	2023-09-14 11:00:10:028221			
Locations	+ Add	Event 2023-09-04	Grid F1 – Frederiksberg	FlexDownNight	Sept. 11, 2023	Sept. 15, 2023	2023-09-04 11:27:31:527797			
Services	+ Add	General Assembly Test	Grid F1 – Frederiksberg	FlexDownDay	Sept. 4, 2023	Sept. 8, 2023	2023-08-30 11:13:55:329143			
Tariffs	+ Add	Event 2023-08-30	Grid C1 – Copenhagen	FlexUp	Sept. 4, 2023	Sept. 8, 2023	2023-08-30 11:12:02:668944			

Figure 25: Congestion events

• **Distribution System Operators**: This encompasses information about the various DSOs involved, detailing their specific requirements and interaction protocols with the service provider.

NŰVVE			WELCOME, MASSI. VIEW SITE / CHANGE PASSWORD / LOG OUT				
FLEXTOOL		Select Distribution System Operator to change	ADD DISTRIBUTION SYSTEM OPERATOR + EXPORT TO CSV AGGREGATE FIELDS				
Congestion Events	+ Add	Action: Go 0 of 3 selected					
Distribution System Operators	+ Add	DISTRIBUTION SYSTEM OPERATOR					
Grid Data	+ Ad:	Dinel					
Grids	+ Add	El-net Øst					
Locations	+ Ad	Radius					
Services	+ Ad	3 Distribution System Operators					
Tariffs	+ Ad						

Figure 26: Distribution System Operators list

• **Grid Data**: This refers to historical data on grid operations, which are critical for monitoring and managing energy flow and for making informed decisions. These real data, originating from the DSO of the pilot site, have been reused to create synthetic grid data that is consistent across all grids for the given project.

NUVVE		WELCOME, MASSI, VIEW SITE / CHANGE PASSWORD / LOG OUT				
Home > Flextool > Grid Data						
FLEXTOOL		Select Grid Data to change	ADD GRID DATA EXPORT TO CSV AGGREGATE FIELDS			
Congestion Events	+ Add	Artion: Qo Dof 94 selected				
Distribution System Operators	+ Add		DSO POWER			
Grid Data	+ Add	2020-01-04 11:00:00	106.99			
Grids	+ Add	2020-01-04 10:00:00	93.85			
Locations	+ Add	2020-01-04 09:00:00	78.6			
Services	+ Add	2020-01-04 08:00:00	62.63			
Tariffs	+ Add	2020-01-04 07:00:00	54.15			
		2020-01-04 06:00:00	42.18			

Figure 27: Grid data

• **Grids**: This includes grids and locations where the EVSEs can operate, aligned with the corresponding DSO and tariff names (connected with other databses inside the Nuvve server).

70

Figure 28: Grids

• **Locations**: Geographic and physical site data are provided, indicating where the grid services are implemented.

NUVVE	WELCOME, MASSI. VIEW SITE / CHANGE PASSWORD / LOG OUT		
FLEXTOOL		Select Location to change	ADD LOCATION + EXPORT TO CSV AGGREGATE FIELDS
Congestion Events	+ Add		
Distribution System Operators	+ Add	Action: Go 0 of 4 selected	
Grid Data	+ Add		
Grids	+ Add	Frederiksberg	
Locations	+ Add	Copenhagen	
Services	+ Add	Bornholm Municipality	
Tariffs	+ Add	4 Locations	

Figure 29: Locations

- **Services**: A catalog of grid services is available, featuring their specifications, conditions of use, and activation processes.
 - Flex up: discharging request, usually between 15 and 20
 - Flex down day: charging request in the daily hours, usually between 10 and 14
 - Flex down night: charging request in the night hours, usually between 0 and 4.
 - To be noted that additional services can be manually included by configuring names and hours of provision under "ADD SERVICE", depending on necessity of DSOs and utilities.

NUVVE					WELCOME, MASSI. VIEW SITE / CHANGE PASSWORD / LOG OUT				
Home - Flextool - Services									
FLEXTOOL		Select Service to chang	e		ADD SERVICE + EXPORT TO CSV AGGREGATE FIELDS				
Congestion Events	+ Add	Action: V Go 0 of 3 selected							
Distribution System Operators	+ Add	□ NAME	DEFAULT START HOUR	DEFAULT END HOUR	SERVICE TYPE				
Grid Data	+ Add	FlexDownDay	10	14	Charge				
Grids	+ Add	FlexDownNight	0	4	Charge				
Locations	+ Add	FlexUp	15	19	Discharge				
Services	+ Add	3 Services							
Tariffs	+ Add								

Figure 30: Nuvve grid service list

) BD40PEM

The backend system's architecture is thus crucial in offering a solid base for handling the intricacies of grid services, presenting a comprehensive strategy for energy management and DSO collaboration.

Note: All this information is updated with real data or maintained for use in FlexTool testing. Additional real data can be sourced via API or other mechanisms, enhancing the realism and performance of these use cases. Forecasting tools are actively used on a daily basis.

NUVVE										WELCOME, MASSI.	VIEW SITE / CHANGE	PASSWORD / LOG OUT
Home - Operational and Market Data - Agg1 BD40	PEM Operation	al Data										
OPERATIONAL AND MARKET DATA	Select Agg	g1 BD40	PEM Operationa	l Data to view							EXPORT TO CSV	AGGREGATE FIELDS
Agg1 BD40PEM Operational Data				- Count							FILTER	
	Q [Search							By Fleet	
	TIMESTAMP	EVSE ID	MEAN PLUG IN STATUS	MEAN PLUG IN MODE	SOC MEAN	POWER PROVIDED DOWN	POWER PROVIDED UP	ENERGY DOWN SUM	ENERGY UP SUM	VOLTAGE MEA	All Rembelm Mun	ici nalitu
	2023-08- 17 15:15:00		Not connected	Not connected	-						By Unit	copany
	2023-08- 17 15:00:00		Not connected	Not connected	•						All	
	2023-08- 17 14:45:00		Not connected	Not connected								
	2023-08- 17 14:30:00		Charge	Power saving mode	0.95							
	2023-08- 17 14:15:00		Charge	Power saving mode	0.95							
	2023-08- 17 14:00:00		Charge	Power saving mode	0.95							
	2023-08- 17 13:45:00		Charge	Power saving mode	0.95							
	2023-08- 17 13:30:00		Charge	Power saving mode	0.95						Timestamp	
	2023-08- 17 13:15:00		Charge	Power saving mode	0.95						Time: From	date 🥑
	2023-08-		Charne	Power savino	0.95						Date: To dat	•

Figure 31: Operational V2G fleet data

In the backend, also the EVSE operational data are stored and used for forecasting tools with AI and utilized in FlexTool.

Internal forecasting on Grace platform tool have been implemented and used in parallel to basic values (for testing purposed) in Pre-provision FlexTool.

Figure 32: Grace Nuvve internal forecasting tool

BD40PEM

Figure 33: Forecasted capacity visualized on Nuvve FlexTool UI

4.4.1.3 <u>FlexTool – main page on Congestion events</u>

List of congest	tion events.	Currently,	they	are	manually	listed,
-----------------	--------------	------------	------	-----	----------	---------

NOVE RENTON							Massi Garelli Lagast
Congestion events	Series	Power request		Gagesteiningen dálmmíyyy		Bernsper page	Create Event
Bast it	Aust 2	Service int	Power respect 17	Congestion horizon 11	Targethous 21	Report date 17	
Event 2022-03-13 Event 2023-01-03	Gráf BE Bonnaiste Haracipathy Gráf BE Bonnaiste Haracipathy	Pies downwards Day Orange Fies downwards Day Orange	40KM	11.01.2023 5 mm 9.01.2023 5 mm	0.00-400 41mm 10.00-14.00 41mm	25/05/2025 017 05/07/2025 0150	
Event 2023-01-05 Event 2023-01-17	Grid El bornan reuscipality Grid El bornan reuscipality	Piec sprands Distance Piec sprands Distance	30 kW 20 kW	9.07.2023 - 19.07.2023 5.005 29.07.2029 - 27.07.2023 5.005	15:00 - 19:00 + huars 15:00 - 19:00 + huars	05/072623 15/41	
Event 2023-04-02 Event 2023-07-24	Geid ES Southan officially Geid FI Hastanistang	Plet caprands Distance Plets caprands Distance	20 kW 10 kW	5.06.2023 - 9.06.2023 5.mm 24.07.2023 - 91.07.2023 5.mm	15.00 - 19.00 4 haars 15.00 - 19.00 4 haars	02/06/2025 14/3 24/07/2025 15/3	
Event 2023-08-30 Event 2023-09-04	Geld Cl Caperingen Geld Fl Prederinierg	Fine spinnels Dectorys Fine doorwords Night Corps	5 km	4.04.2023 - 8.04.2023 5 mm 11.04.2025 - 15.04.2023 5 mm	16.00 - 19.00 4 hann 0.00 - 4.00 4 hann	30/06/2023 11/2 04/09/2023 11/2	
Event 2023-09-14 Event 2023-10-11	Gerid B7 Bornham-Huncipathy Gerid B1 Bornham-Huncipathy	Piec speareds Discharge Piec speared Discharge	10 kW	14.04.3023 - 22.04.3023 * Anys 1130.2023 - 1131.2023 ! Any:	10:00 - 14:00 + Name 15:00 - 19:00 + Name	14/04/2025 11:00 11:27	
							< 1 2 ->
Experience in a constraining test for Experience and the constraining period general (FUG)							Provided by 🚺 BOLGPER

Figure 34: FlexTool Congestion Event list in main page

4.4.1.4 <u>Use Case 1</u>

The DSO can send a request (currently entered manually) to Nuvve after contracting on the BD4OPEM platform or similar. Under "Create Event," key details for the Flex Upwards - discharge are specified, including the requested hours and days, grid area, and location. The new event will appear as "new" in the list and be tracked in the backend. This service is dedicated to discharging and resolving issues of overloading in the local low-voltage grid.

) BD40PEM

NUVVE FLEXTOO	L					Massi Garella Logout
Congestion event	s					+ Create Event
Assets	Service	Power request	Con	gestion horizon		ltems per page
All	All	~ All	~ d	id/mm/yyyy 🛱 to dd/mm/yy	yy 🗖	10 ~
Event ↓↑	Asset ↓↑	Service 41	Power request $\ \downarrow\uparrow$	Congestion horizon $\ \downarrow\uparrow$	Target hours $\downarrow\uparrow$	Request date ↓↑
New Use Case 1	Grid B5 Bornholm Municipality	Flex upwards Discharge	30 kW	27.11.2023 – 1.12.2023 5 days	15:00 – 19:00 4 hours	24/11/2023 13:04

Figure 36: New DSO congestion event in main page

The service provider Nuvve will make a decision to provide the service based on the Pre-Provision tool. Essential details such as the map, location, grid details, fleet units, power capacity of each unit, maximum runtime of N hours, max energy capacity per unit, and total power capacity at the service location are considered. For the availability days requested by the DSO, the figure displays the forecasted capacity per hour for the requested days. The DSO's power request is represented by a blue line, while the green bars indicate the power forecasted. In flexibility provision, the key information that would facilitate the decision-making process includes

Figure 37: Pre-Provision UI in FlexTool

Once the contract is accepted and the DSO verifies Nuvve's availability in performing the service, the service is provided based on the DSO's discharge request. After the event concludes (**Constitution**, both the service provider and, to some extent, the DSO are permitted to review the results of the provisions. The first figure illustrates the actual capacity in relation to the DSO's request. In a practical scenario, if the service provider realizes there is insufficient capacity for a certain hour, they would notify the DSO with an unavailability notice.

Figure 38: Availability real compared with DSO request in Post-Provision

The "Flexibility Provision – Dispatch Overview" (Figure 39) displays,

Figure 39: Utilization real compared with DSO syntetic grid data in Post-Provision

The final tables feature the KPIs agreed upon in the BD4OPEM, designed for the DSO to evaluate the metrics of the service provision and the estimated revenues from performing the service. These may affect payment, as the DSO's requirements stipulate a service may affect payment. An additional figure, not shown in the FlexTool, represents the cost savings that the service might have achieved.

Flexibility provision KPIs			
KPI	Power availabity	Energy utilization	Limits
Flex cap volumes	20 kW	22.4 kWh	
Grid operator signal	100	149.33	100%, 65%
Provision error	< 1%	< 1%	10%, 35%
Revenues			
Availability price	0.050 EUR/kW	Utilization price	0.600 EUR/kWh
Availability time	5 days – 4 h/day 20 hours	Utilization time	5 days – 0.75 h/day 3.75 hours
Availability revenue	20 EUR	Utilization revenue	9 EUR

Figure 40: KPIs and revenue etsimates in Post-Provision

4.4.1.5 <u>Use Case 2</u>

For the 'Flex Downwards Day – Charge', the DSO sends a request to Nuvve, typically contracted through platforms like BD4OPEM. In the "Create Event" section, details such as the desired hours for charging, specific days, grid areas, and locations are outlined. Once the event is created, it is labeled as "new" in the system and monitored through the backend. This service focuses on utilizing excess grid capacity during the day, encouraging EV charging to balance and efficiently manage the grid.

🕽 BD40PEM

4.4.1.6 <u>Use Case 3</u>

For the 'Flex Downwards Night – Charge', the DSO sends a request to Nuvve, typically contracted through platforms like BD4OPEM. In the "Create Event" section, details such as the desired hours for charging, specific days, grid areas, and locations are outlined. Once the event is created, it is labeled as "new" in the system and monitored through the backend. This service focuses on utilizing excess grid capacity during the day, encouraging EV charging to balance and efficiently manage the grid.

4.4.1.7 Data assessment

Table 13: Data assessment table for S5.4

Data source needed	BD4OPEM Ontology	Data quality assessment	Impact of the quality on the service
EVSE data: for each meter, location, grid, and tariffs, the		Available on server	High impact
Grid data from DSO		Data from DSO only historical and not valuable as the service should be provided in respect to real congestion.	High impact, resolved with syntetic grid data. This does not mae arealistic case
Capacity forecast		Available on server	High impact

4.4.1.8 Service conclusions

The service successfully demonstrated the capability to manage grid loads by responding dynamically to the needs of the distribution system operator. Through the 'Flex Upwards – Discharge' and 'Flex Downwards – Charge' use cases, Nuvve proved that it could mitigate grid congestion during peak times and utilize excess capacity during off-peak hours. This not only aids in maintaining grid stability but also offers potential cost savings for customers by leveraging energy arbitrage opportunities.

Looking ahead, there is substantial potential for expanding the service's capabilities. Future functionality could include

4.5 S8.1 – Asset and investment planning results

4.5.1.1 Introduction of the service

Name: Asset and Investment Planning Category: Planning Task: T4.5 Asset and Investment Planning Location on the grid: MV and LV grid

This service aims to develop optimal investment strategies that contribute to the long-term planning using traditional assets combined with flexible assets to drive into an optimal decision-making. The objective is to minimize the capital expenditure and operational expenditure costs for DSOs.

Table 14: Use cases for the S8.1 service

Use case	Description
UC1	As a grid analyst, I want to evaluate the impact of integrating new loads into the MV Network by specifying the incremental growth percentage of a transformer.
UC2	As a grid planner, I want to determine the best techno- economic reinforcement strategy that mitigates congestions in lines and transformers.

4.5.1.2 <u>Use Case 1</u>

In this use case, the DSOs assess the impact of integrating new loads into the grid by specifying the transformer's incremental growth percentage. Figure 41 provides an example of a stress test using real data from the NUVVE Network. Firstly, DSO needs to select a transformer expansion loading percentage, in this case the secondary substation Udføring 1 is increase by 500%. Then a type of power flow analysis must be selected, in this case time series power flow, from 04/02/2019 00:00 to 08/02/2019 23:00. This means that each hour a power flow is going to be calculated.

S8.1 Asset and investment planning	=	Antonio, Service, Test, L. NVVC * UPC CITELA (UPC)							
Dashboard Stress Test Planning Actions KPIs	Asset to stress Asset name Load increase	Transformers Udlering 1 500 % Reset		Display Acti Asset name Udforing 1	ions Leed Increase [%] 500				1.1 100 1.05 80 [nd] 60 80 80
	Type of powerflow Select Date NB, When selecting the da Transformers Line Show 5 entries	Single Dute Ti From: [9422/2019 - 900 [9422/2019 - 900] [94] For some some start these dates are com	ine	Date Time Range To: 08/02/2019 - 23:00 data used.	Burt Powe	e fine		0	0 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Asset ID 0	Transformer Name	Туре 🕴	HV Bus	LV Bus	HV Deviation (pu)*	LV Deviation [pu]*	Loading [%]	÷
	0	Udfering 1	0.4 MVA 10.0/0.4 kV	0	1	1.000	0.999	6.5177	
	Showing 1 to 1 of 1 entries	s means "per unit"			Previous 1	Next			

Figure 42 shows the results of the power flow in a table format considering the worstcase hour from the selected date time range.

now 10 Centrie	25							
Asset ID	Lines Name	туре ф	From Bus	To Bus	Length [Km]	Max Current [kA]	Current [kA]	Loading [%]
0	Line1	NAYY 4x50 SE	1	2	0.010	0.142	0.024	17.15
3	Line4	NAYY 4x50 SE	2	5	0.027	0.142	0.020	14.39
ŧ	Line5	NAYY 4x50 SE	5	6	0.033	0.142	0.019	13.68
5	Line6	NAYY 4x50 SE	6	7	0.048	0.142	0.017	11.9
5	Line7	NAYY 4x50 SE	7	8	0.042	0.142	0.016	11.31
)	Line10	NAYY 4x50 SE	8	17	0.026	0.142	0.013	9.26
11	Line12	NAYY 4x50 SE	17	19	0.073	0.142	0.011	7.73
12	Line13	NAYY 4x50 SE	19	20	0.075	0.142	0.009	6.63
3	Line14	NAYY 4x50 SE	20	21	0.079	0.142	0.007	4.67
2	Line44	NAYY 4x50 SE	1	26	0.020	0.142	0.006	4.41

Figure 42: Power flow results of assets

Figure 43 shows that the secondary substation Udføring 1 has 6.51% of loading, which is below the maximum rated capacity. The DSO can run different scenarios to find the maximum hosting capacity for each transformer or line.

Figure 43: Transformer loading in blue color

4.5.1.3<u>Use Case 2</u>

In this use case, the grid planner wants to determine the best techno-economic reinforcement strategy that mitigates congestions in lines and transformers. The main functionality of this planning service is the execution of the four planning strategies in parallel— two passive and two flexible planning alternatives, following by the obtention of the most cost-effective solution.

Figure 44 presents the planning solution results in an asset list box. In this case, no actions were needed for the test case selected, since the maximum levels that activate the planning reinforcements were not reached. Figure 45 presents the KPIs results of the decongestion rates of the assets, in this case any improvements were made since we have low energy values in the transformers. This is mainly because we have few smart meters data point and a high-capacity transformer in the NUVVE pilot network.

S8.1 Asset and investment planning	E Antonio, Service, Test, J. JUWIE * UPC OT					UPC CITCEA (UPC			
parning Dusboard Sires Test Planing Actions Kins	Show s entries Planning Actions Showing 0 to 0 of 0 entries	÷ ,	Asset List Resul	ts e e esected	PEX	OPEX Previous Net			1.1 100 1.05 (nd) a@ettp0/1mg 40 0.55 20
	Transformers Liver Show s e entries Asset ID 0 0 Showing 1 to 1 of 1 entries * The [pu] expression me	Bus voltage Rame Udforing 1	7394 0 0.4 MVA 35:00.4 MV	HV Bus 0	LV Bus (er Decision (pa)* (1 1.000 Previous 1 Mat	V Deviation [se]*	New Loading [%] 6.517744719990289	0.9 O

Figure 45: Asset decongestions results

4.5.1.4 Data assessment

Table 15 shows the data needs for the service S8.1 in the Danish pilot and adopts the impact of potential bad data quality.

Data source needed	Mapping into CIM	Data quality assessment	Impact of the quality on the service
Grid Topology	Service_parameters	Good quality	Medium
Historical measurements	Smart_Meter	Missing values and Low energy consumptions	High
Asset Costs	Service_parameters	Missing Costs from DSOs	High

Table 15: Data assessment for the S8.1 service

4.5.1.5 <u>Service conclusions</u>

The use of this service resulted interesting for the DSOs, especially in the simulation of the stress scenarios for future demand growth of the consumers. The time series power flow simulation permits to considers the peak values of a selected range of date-times. Also, the DSO can interact with the platform to provide more precise information regarding the expansion of the network based on new contract requests and projections. The quality of the historical data is important, and also a preprocessing module is recommended in this tool to ensure the harmonization of the data, and the good performance of this service.

Feedbacks from DSOs is:

- **GIS map:** Change the transformer icon to a square with the name displayed in the map. Display the name of the node in the GIS map.
- **User interface:** Date-time modification manually.
- **Algorithm:** Integration of EV charging stations in the Stress Test Scenario with real profiles. Integration of new feeder routes and substations to test the impact on the grid.
- **Network:** Integrate Distributed Generation. Integrate two or more fields to test the planning service.

5. Project KPIs to be monitored in this deliverable

5.1 KPI 2.1: Data coming from renewable technologies

Table 16: KPI 2.1

KPI Name:	Data coming from renewable technologies					
KPI ID	2.1					
Global objective	Technological choice and provision of tools contributing to the Digital Marketplace for Energy					
Owner	OEDAS – Ibrahim Tastan					
Definition	Considering the uptake of renewable energy and electric vehicles, it is important to have available data from different renewable technologies to shape adequate services. This KPI consist in the number of data sources available from different technologies. As some of the idential RE Sources are connected to the transmission level and services and pilot areasare tacling distribution level, The scope of KPI is therefore extended to renewable technologies and new technologies; like Energy Storage Systems, Heat Pumps, EV Chargers and V2G Chargers.					
Involved partners	The involved partners are demonstration sites					
Calculatio n process and Formula	$\left[\frac{\sum \text{RE Tech.Assets} + \sum \text{New Tech.assets}}{\text{No. services in pilot}}\right] + \frac{\text{No.of RE source types and new Tech types}}{\text{Services using RE tech.and new tech.assets data}} > 1$					
Unit	Ratio					
Target (Adapted)	Data available from 19 EVSE, V2G Charger, only on Bornholm pilot site location from Nuvve and 2 PV systems in the DSO grid of Bellesvej. Calculation result $\left[\frac{A}{B} + \frac{c}{D}\right] > 1$ should more than 1, A: No of <i>Renewable Energy Tech. Assets</i> + No of <i>New Tech. assets</i> B: No of Services in pilot C: <i>No of RE source types and New Tech types</i> D: <i>Services Using</i> "RE Tech. and New Tech. Assets" <i>datas</i> in pilot					

5.2 KPI 2.5: New services with existing

Identify two energy services (e.g.: "congestion management", "Time-of-Use", 'Day Ahead price optmiization") to be provided for new flexibility markets, stacking behind-the-meter services.

For the congestion management service example, the KPI can be monitored by assessing if the service was performed with the requested volumes of energy and in the periods of the year requested by the DSO. Integrating DSO flexibility services with energy arbitrage and cost savings, ensure charging and discharging according to DSO requests without impacting customer costs. Two such energy services for new flexibility markets include congestion management and Time-of-Use optimization. The performance of the congestion management service, for example, can be evaluated by whether it meets the DSO's energy volume requirements and is provided during the requested times of the year.

Table 17: KPI 2.5

KPI Name:	New services with existing tools
KPI ID	KPI 2.5: New services with existing tools (NUVVE)
Global objective	Technological choice and provision of tools contributing to the Digital Marketplace for Energy

BD40PEM

KPI Name:	New services with existing tools
Owner	Massimiliano Garella, Nuvve
Definition	This KPI assesses the performance of energy services such as congestion management and Time-of-Use optimization within new flexibility markets. The evaluation focuses on whether the services are performed in accordance with the requested energy volumes and specified time periods by the DSO, while integrating energy arbitrage and cost savings to avoid impacting customer costs.
Involved partners	Nuvve as the data provider and Nuvve as the service provider
Calculation process and Formula	The internal calculations within Nuvve's systems should ensure that we can simultaneously provide two services—performing DSO services while making certain that the operational costs of EVs are not adversely affected, base don 1) Time-of-Use and/or 2) Spot Market price, nor are the mobility needs of the users.
Unit	[-]
Target	The target is to achieve a high compliance rate with the DSO's requests, aiming for minimal deviation from requested energy volumes and periods, while not affecting the costo f EVSE operations.
Results at the end of the project	Results at the end of the project demonstrate the viability of delivering stacked services. DSO requests are generally prompted by congestion signals, which frequently coincide with periods where electricity prices are indicative of grid load levels – higher prices often reflect higher demand and vice versa. This synchronization allows for efficient service provision without impacting the operational costs of EVs or the mobility requirements of users.

6. Lessons learned & Conclusions

6.1 Lessons learned – Pilot's perspective

The pilot project has demonstrated considerable value in the capacity to create a service provision that benefits all local stakeholders. The FlexTool UI, developed for the Marketplace, delivered impressive results, showcasing the potential for advancements in flexibility services. These services provided both pre-provision and post-provision results during the pilot, showcasing a model that can be replicated in real-world scenarios.

A significant accomplishment was the execution of DSO flexibility services in the pilot with real test cases. In the pilot, flexibility up and down services were combined with Time-of-Use and Spot Market price optimization strategies, proving the 'stackability' based on KPI 2.5. These services typically correspond with periods of peak electricity prices, a factor crucial for maximizing energy arbitrage while not affecting customer costs, thus creating value for DSOs, operators, local grids, EV customers, and service providers.

Nevertheless, the pilot encountered several challenges.

The Marketplace demonstrated intrinsic value in the data and services provided, indicating potential benefits for all participants within the electricity markets. However, translating this value into a tangible, monetizable asset remains an ongoing challenge that requires strategic solutions.

6.2 Lessons learned – Service developer's perspective

The Nuvve pilot in Denmark, situated on Bornholm Island, provides valuable lessons from a service developer's viewpoint. With a focus on V2G technology, bidirectional charging stations offer not only EV charging capabilities but also the ability to discharge batteries, contributing to grid flexibility.

The service developers navigated the complexities of integrating data from various sources, such as EV charging stations, smart meters, and other grid-related data. The lessons learned include the importance of developing adaptable data interfaces and protocols to harmonize data from diverse sources effectively. Future service developers can benefit from understanding the challenges and solutions related to data integration in a multi-faceted energy ecosystem.

An integral achievement of the project was the effective execution of DSO-directed flexibility services, particularly when integrated with pricing mechanisms like Time-

of-Use and Spot Market. The alignment of service operations with periods of elevated electricity prices was key to optimizing energy arbitrage. This strategic operation did not impact the operating costs for EV users, thereby delivering multifaceted value. Solution developers crafted algorithms that not only responded to energy market signals but also maintained the delicate balance between service provision and cost containment, benefiting a broad range of stakeholders.

These lessons contribute to the continuous refinement and advancement of technologies and services, fostering a more resilient and efficient energy infrastructure.

6.3 General conclusions

The Danish pilot serves as a crucial testing ground for analyzing and implementing flexibility services, especially for the local distribution grid. The pilot's significance lies in its contribution to the development of DSO markets, mitigating local grid congestions, and exploring new services that bring value to various stakeholders.

showcased the transformative potential of controlled EV charging and discharging. This highlights V2G technology's practical capabilities in supporting grid congestion management while adding value for EV customers. The insights from this pilot are crucial for shaping future strategies aimed at improving grid flexibility, ensuring stability, and maximizing benefits across the energy system, particularly with V2G technology. The FlexTool, with its comprehensive suite of tools including power and energy flexibility information, AI-driven forecasting, bidding tools for flexibility, revenue estimations, and real value analysis in relation to DSO grid data (though based on synthetic data), will be reused and promoted to operators. This project demonstrated that technically DSOs can go digital and leverage outside resources and services to meet their needs, but the regulation is not there to incentivize them to trade on a marketplace instead of trying to meet their needs with their own internal resources. They concept of marketplace where digital services and data can be traded in a secure way is now proven, but to be attractive it needs to scale-up : a market place is only valuable as the number of market parties it encompasses, the variety and choice of data sets and services on offer as well as the number of buyers (eg DSOs).

References

- [1] BD4OPEM, "D7.1: Large Scale pilots' methodology," 2022.
- [2] BD4OPEM, "T4.3: S5.4 EV to Grid," 2021.
- [3] BD4OPEM, "D3.1: Data acquisition protocols technologies and information models," 2020.
- [4] Energinet, "DataHub," [Online]. Available: https://energinet.dk/dataom-energi/datahub/.
- [5] BD4OPEM, "Deliverable 4.2 Grid monitoring and supervision (v1.3)," 2022.
- [6] IntelligentEnergi. [Online]. Available: https://ienergi.dk/ .

7. Annex A: Storylines

7.1 S3.1 – Grid disturbance simulations

7.1.1 UPC approach: Congestions forecast for day ahead

Service	S3.1 Grid Disturbance Simulation – Congestions Forecast day-ahead
Algorithm provider	UPC
Solution provider	WEP

Service 3.1

- 1. Contract the service with the demanded parameters.
- 2. You will get your contracts on top. Select the desired to investigate

S3.1 Grid disturbance	=		Test_WEP_S3.1_Estabanell ▼	Alejandro Hernandez Matheus (UPC) 🔻
simulations			Test_WEP_S3.1_OEDAS	
Dashboard			Test_WEP_S3.1_ELCE	
	Time period	11/09/2023 - h24	Test_WEP_S3.1_NUVVE	
Demand forecast		11/05/2020 1121	Test_WEP_S3.1_Estabanell	
Congestions				

- 3. Go to *Demand Forecast* tab and browse to several loads from the breakdown list and check the demand forecasted for a few loads and evaluate the response for each plot.
 - a. Check first aggregated demand

Figure 47: Demand Forecast visualization in S3.1.

b. Scroll through the dropdown list and review the forecast of other loads.

Figure 49: Demand Forecast visualization for selected load in S3.1.

4. Move to *Congestions* and select different lines to analyze their congestions, if any. Select to show the forecasted behavior for *Line* 1 and *Line* 2. Following, select the *download button* to get the results in excel format for further analysis.

Figure 50: Congestion plot view of Line 1 in S3.1.

) BD40PEM

S3.1 Grid disturbance	=	Test_WEP_S3.1_Estabanell 👻	Alejandro Hernandez Matheus (UPC) 🔻
Dashboard	т	me period 11/09/2023 - h24	
Congestions		Line 2 - 24hrs forecast	
Reports	kA	199 Copied was 195 Copied was 195 Copied was 196 Copied was 197 Copied was 198 Copied was 198 Copied was 198 Copied was 198 Copied was 199 Co	Choose a line: Line 2 • Download Figure
		0 5 10 15 20 Hour of the day	5

Figure 51: Congestion plot view of Line 2 in S3.1.

5. Go to *Report* tab, scroll down to appreciate the probabilities of congestions for all the lines for the all times of the day. Finally, push the *download file* button to obtain the report in excel form.

S3.1 Grid disturbance simulations	=	Test_W	/EP_S3.1_Estabanell ▼	Alejandro Hernandez Matheus (UPC) 🔻
🚯 Dashboard	Time period	11/09/2023 - h24		
Demand forecastCongestions			Choose a line: Line 1 ¢	N° of Congestion detected
🔄 Reports	Hour t	Probability [%]	Overload [kA]	0
	00:00	0	0.01802203358028783	•
	01:00	0	0.01615798985327933	Download Table 📩
	02:00	0	0.0148973888088889	
	03:00	0	0.01374496497102659	
	04:00	0	0.013015822695225	
	05:00	0	0.01228425993300662	
	06:00	0	0.01221607474872278	
	07:00	0	0.01289464356834296	

Figure 52: Report View in S3.1.

S3.1 Grid disturbance simulations	=	Test_	WEP_S3.1_Estabanell 🔻	Alejandro Hernandez Matheus (UPC) 👻
Dashboard	Time period	11/09/2023 - h24		
Demand forecast			Choose a line:	
Congestions			Line 2 🗢	N° of Congestion detected
😪 Reports	Hour 🙏	Probability [%]	Overload [kA]	0
	00:00	0	0.01814781150562799	
	01:00	0	0.01627297915727581	Download Table 🛓
	02:00	0	0.01500045572845876	
	03:00	0	0.01384324124297217	
	04:00	0	0.01311067854313136	
	05:00	0	0.01237691410951199	
	06:00	0	0.01230935958945965	
	07:00	0	0.01299504754166028	

Figure 53: Congestion plot Line 1 in S3.1.

7.2 S3.2 Impact study PV, EV & new loads

Service	S3.2 – Impact study PV, EV & new loads
Algorithm provider	ODT
Solution provider	ODT

Contract service

- 1. Go to the Marketplace main page and go to the search bar and look the service "Impact study PV, EV and new loads".
- 2. Select the service desired
- 3. Contract the service, following the default and/or required contract parameters. Upload the data as required.
- 4. Execution of the service

Usability testing

After executing the service, follow the indicated steps to test several aspects.
 a. Go to <u>https://app.staging.bd4opem.odit-e.com</u> and try to login.

Figure 54 - Service S3.2 login portal

b. If login succeed, you should see a map with all your secondary substations.

Figure 55 - Service S3.2 Substation overview map

c. Click on a substation. A panel should open and display all smart meters linked to the substation. If GPS coordinates are given, smart meters should also appear on the map.

Figure 56 - Service S3.2 Example of smart meters connected to a substation

- d. You can then click on "*Impact assessment*" tab, or "*Assess impact*" button, to open the impact prediction tool. On the impact study page, you should be able to:
 - i. Select a substation by clicking on it.
 - ii. For a selected substation, smart meters will appear on the map (if GPS coordinates are available) and a table with all smart meters and their PV capacities.

	Sagemcon	ì		Mapp	ping Networ Analysi	k Rebalanci	ng Import o	assessment PV	impact assessment EV/NewLoad	English 👬 🗸	vub_user 🗸
Mapping Equipment list substations		@ SS_8101	×								
+ Q. Search equipment or locality	Search	@ SS_8101									×7
		Emartmeter 0	Feeder 0	Phese 0	Installed (kWp)	Planned (kWp)	Cimulated (KWp)	Residual Capacity 0 (kWp)	Delta Initial o capacity	Capacities	0
		T Fator.	▼ Filter_	-							
		Bunker 1 onco -2	Feeder_0	Three-phase				809.8			
		Ventilatio hunkers 1-2-4-5	Fooder_0	Three-phase				15.2			
		OS verwerming onco-2! HV	Feeder 0	Three-phase				435		<u> </u>	
		Koelaroep onco di10-TV +	Feeder 0	Three-phase				17.9		· ·	
	5	Bunker 5 onco -2	Feeder 0	Three-phase				75		4	
	- Learer	Bunker 4 onco-2	Feeder_0	Three-phase				805			-
+		Bunker 2 onco -2	Feeder_0	Three-phase				1318.5			· 1
E ₀											
	Installed Planned										
	Simulated										
	= Leafet										

Figure 57 – Service S3.2 'Impact assessment'

iii. You can then select a smart meter from the map or in the table to add PV and click on "*Apply and simulate*" button to simulate the residual capacities for all other smart meters.

Sagemcom	1			Mapping Reflects	Rebailance	ng Impact o	assessment PV	implact guseusment EV/NewLoad	English 🛗 🗸	vub_uner 🗸
Mapping Equipment list substations	@ SS_8101		*							
+ Q. Search equipment or locality Search	Edit PV klin	nabord DL12	2-TV +koeling	g INF+koelmach	in	A	dd to weitlist	Reset si	mulation	^{لام}
	Initial meter pha	se: Three-pha	68		nned o (q)	Glimulated (KWp)	Residual Capacity ((kWp)	Delta Initial o capacity	Depecities	0
	Installed PVs:		Planned PVs:							
o	0		0							
	Residual capacit	y by phase befor	e simulation (in kW	'p):						
	Phase 1:	Phase 2:	Phase 3:	Three phased:	12				a.	
	387.3	471.6	374.6	814.1	- 53		435			
	New meter phos				- 73		17.9		1	
- Leafet	New morer price	Three phase	ed - initial phase 💙		=		75		1	
THE REPORT OF A DESCRIPTION OF A DESCRIP	Capacities: 0				-		805			
+							1318.5			
	-									
	Simulated PVs:			(A) 1010						
23	19			No.						
	Apply and simu	late Cancel								
Installed										
Panned										
Residual Residual										

Figure 58 – Service S3.2 Simulation example

iv. You can add simulated PVs to the waiting list by clicking on the "Add to waitlist" button. The waiting list is persistent: you will find them again, when you will reconnect to assess the impact of a future connection. The workflow is the following:

) BD40PEM

Figure 59 - Service S3.2 Workflow

- e. You can finally click on *EV* & *New load* tab to open the impact prediction tool for EV and new loads. On this page, you should be able to:
 - i. Select a substation by clicking on it.
 - ii. For a selected substation, smart meters will appear on the map (if GPS coordinates are available) and a table with all smart meters and their EV or new load capacities.
 - iii. You can then select a smart meter from the map or in the table to add a constant new load and simulates by clicking on "Compute" button the residual capacities for all other smart meters.

Figure 60 - Service S3.2 Impact prediction tool

6. Fill the questionnaire provide following the results and experience perceived after following the previous steps.

7.3 S5.1 – Flexibility Forecast

7.3.1 UPC approach: Flexibility forecast

Service	S5.1 Flexibility forecast
Algorithm provider	UPC
Solution provider	ICOM

Service 5.1: Flexibility Forecast

- 1. Go to the Marketplace main page and go to the search bar and look for the service "*Flexibility Forecast".*
- 2. Select the service desired.
- 3. Contract the service, following the default and/or required contract parameters. Upload the data as required.
- 4. Execution of the service. On the initial menu: create new execution.
 - a. Click on "Add Forecast Model".

D BD40	PEM		My Flex	cibility Models		\bigcirc
MY	FLEXIBILITY MODELS					
					+ Add Forecast Model	
	MODEL Name	STATUS	DATA CONTRACT	TRAINING DATES	ACTIONS	
	Testing	SUCCESS	388227b8-9d3d-425d-93a0- 6532e024caed	2019-06-20 - 2019-12- 29	Model Info Forecasts	
	Test EyPESA	SUCCESS	388227b8-9d3d-425d-93a0- 6532e024caed	2019-06-20 - 2019-12- 24	Model Info Forecasts D	
	Figu	e 61	- Service S5.1	models		

b. Fill the following information to initiate the forecast.

Model Name:	Model Name	
Service Contract:	Select contracted service	
Data Contract:	No data contracts found.	
Pilot:	Select pilot	
Assets:		
Training Dates:	Start Date End Date	
Execution Type:	Select Execution Type	
	Select Horizon *	
Granularity:	60 minutes	,

Model Name:	Test StoryLine
Service Contract:	f97a7a17-3c5c-4470-a351-3149b2c3a122
Data Contract:	Arthur-flora-11july2(388227b8-9d3d-425d-93 ×
Pilot:	EyPESA 👻
Assets:	All items are selected. $~~\times~{}^{\checkmark}$
Training Dates:	Start Date End Date
Execution Type:	20/06/2019
Execution Type.	uneon .
	Select Horizon
Granularity:	60 minutes

- 5. Save it and the model appear in your forecast models.

EXIBILITY MODELS				
				+ Add Forecast Model
MODEL Name	STATUS	DATA CONTRACT	TRAINING DATES	ACTIONS
Testing	SUCCESS	388227b8-9d3d-425d-93a0- 6532e024caed	2019-06-20 - 2019-12- 29	🛈 Model Info 🛛 🖾 Forecasts 🕞
Test EyPESA	SUCCESS	388227b8-9d3d-425d-93a0- 6532e024caed	2019-06-20 - 2019-12- 24	🛈 Model Info 🛛 🖃 Forecasts 🕞
Test StoryLine	-	388227b8-9d3d-425d-93a0- 6532e024caed	2019-06-20 - 2019-12- 29	🛈 Model Info 🛛 🗐 Forecasts 🕞 🕇

Figure 64 - Service S5.1 list with added model

To make it run, click on the right arrow button, changing its status to "pending":

Test StoryLine	PENDING	388227b8-9d3d-425d-93a0- 6532e024caed	2019-06-20 - 2019-12- 29	(i) Model Info	Forecasts	Þ	1
Figure 65 - Service S5.1 model run							

and then to success, enabling the tabs "model info" and "forecasts" :

Test StoryLine	SUCCESS	388227b8-9d3d-425d-93a0- 6532e024caed	2019-06-20 - 2019-12- 29	(i) Model Info	J Forecasts	1

Figure 66 - Service S5.1 model enabled

- 6. Usability Testing: On the initial menu: check previous executions.
 - a. Click on the "Model Info" tab, scroll down to discover the following:

Figure 67 - Service S5.1 model info

It will deliver the information on the selection and the training results (real flexibility estimated and the forecasted) with the corresponding KPIs.

b. Select the forecast tab

Figure 68 - Service S5.1 forecast view

It will deliver the information on a graph with the results of the forecast for the next day. Also, the metrics of flexibility are presented: total and mean flexibility values. Click on "Download Data" to be able to export a CSV file with the forecasting results and on $\stackrel{\checkmark}{=}$ to download the chart.

7.4 S5.4 – EV to Grid

Service	S5.4 EV to Grid
Algorithm provider	NUV
Solution provider	NUV

Service 5.4: EV to grid

This user guide provides step-by-step instructions for the management of data and service contracts, ensuring a streamlined and efficient process for both data users and service providers.

MarketPlace link: https://marketplace.bd4opem.eu/

Nuvve FlexTool link: <u>https://data-processing.sandbox.agg2.nuvve.eu/flextool/</u>

Persone

- 1. Data User: DSO
- 2. Data Provider: Nuvve
- 3. Service User: DSO
- 4. Service Provider: Nuvve

BD40PEM

5. FlexTool User Interface User: DSO and Nuvve (in reality, some of them might not be visible for DSO)

```
DSO: Xavier Moreau,
```

Nuvve: Massimiliano Garella,

Use Case

The DSO wants to request flexibility from aggregation of fleets, operated by Nuvve. The DSO will want to check the data that will be used by the service for the forecasting and the capacity pulled for the flexibility (example for V2G Nuvve chargers or V1G fleets operated by Nuvve but owned by its partners). Once data will be accepted by data provider (Nuvve), the DSO will be able to request a Service Contract.

and login.

Go to the Marketplace → Service → Service Provider page
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 <l

Nuvve FlexTool

- 1. Go to the *FlexTool* and follow the indicated steps to test several aspects.
- 2.
- 3. If login succeed, you should see the FlexTool Nuvve

ทบ์√∨ั∈		
	NUVVE	
	Login	
	Email	
	Password	
	Submit	
	Forgot password?	

Figure 69 - Service S5.4 Login page

4. Click on a Grid Event. A panel should open and display the grid service information.

NUVVE FLEXTOOL							Massi Garella Logout
Congestion events						Ð	Create Event
Assets	Service	Power request	Congestion hor	izon		Hems per page	
All	~ AI	IA ~	~ dd/mm/yy	yy 🗖 to dd/mm/yyyy	•	10	~
Event +1	Asset 31	Service #1	Power request - 41	Congestion horizon	Target hours 41	Request date 11	
Event 2022-03-13	Grid B5 Bornholm Hunicipality	Flex downwards Day Charge	40 kW	13.03.2023 - 17.03.2023 5 days	0:00 - 4:00 6 hours	25/05/2023 13.17	
Event 2023-01-03	Grid B1 Bornholm Municipality	Flex downwards Day Charge	20 kW	9.01.2023 - 1X.01.2023 5 days	10:00 - 14:00 6 hours	03/01/2023 09.30	
Event 2023-01-05	Grid B1 Bornholm Hunicipality	Flex upwards Discharge	30 kW	9.01.2023 - 13.01.2023 5 days	15:00 - 19:00 4 hours	05/01/2023 14:47	
Event 2023-01-17	Grid B1 Bornholm Hunicipality	Flex upwards Discharge	20 kW	23.01.2023 - 27.01.2023 5 days	15:00 - 19:00 4 hours	17/01/2023 15.19	
Event 2023-06-02	Grid B5 Bornholm Hunicipality	Flex upwards Discharge	20 kW	5.06.2023 - 9.06.2023 5 days	15:00 - 19:00 4 hours	02/06/2023 %13	
Event 2023-07-24	Grid F1 Frederikaberg	Flex upwards Discharge	10 kW	24.07.2023 - 31.07.2023 8 days	15:00 - 19:00 4 hours	24/07/2023 18:31	
Event 2023-08-30	Grid C1 Copenhagen	Flex upwards Discharge	5 kW	4.09.2023 = 8.09.2023 5 days	15:00 - 19:00 4 hours	30/08/2023 10:12	
General Assembly Test	Grid F1 Frederiksberg	Flex downwards Day Charge	5 kW	4.09.2023 - 8.09.2023 5 days	10:00 - 14:00 4 hours	30/08/2023 10.13	
							< 1 >
This projection revised funding iron the Ecosyme Union's Nortzen 2019 means and mountain programmers and are approved 872537						Provided by	BDLOPEM

Figure 70 - Service S5.4 List of congestion events

5. You can then click on *Pre-Provision* tab to open the information on the forecasted capacity and evaluated performance available from selected

assets. Post-Provision is still not available before the end of the week of service contracted.

- a. Check units involved.
- b. Check the available capacity forecasted

10. Once the event has finished (weekly basis), you can then click on *Post-Provision* tab to open the information on the performed grid service and evaluated performance and KPIs available from selected event .a. Check real power provided per hours of the week

i. Check real energy provided on daily basis in respect to the grid (events depends on the request).

Flexibility provision – Dispatch overview						

Figure 73 - Service S5.4 Post-provision view of energy deliver to grid

ii. Check the KPI

Flexibility provision KPIs			
КРІ	Power availabity	Energy utilization	Limits
Flex cap volumes	20 kW	22.4 kWh	
Grid operator signal	100	149.33	100%, 65%
Provision error	< 1%	< 1%	10%, 35%

Figure 74 - Service S5.4 Post-provision view of KPIs

iii. Check the estimated revenues per grid service (example)

Revenues			
Availability price	0.050 EUR/kW	Utilization price	0.600 EUR/kWh
Availability time	5 days – 4 h/day 20 hours	Utilization time	5 days – 0.75 h/day 3.75 hours
Availability revenue	20 EUR	Utilization revenue	9 EUR

Figure 75 - Service S5.4 Pre-provision view on revenue estimates.

7.5 S8.1 – Asset and investment planning

Service	S8.1 Asset and Investment Planning
Algorithm provider	UPC
Solution provider	WEP

Service 8.1: Asset and investment planning

Contracting Service:

- 1. Go to the Marketplace main page and go to the search bar and look the service "Investment Planning".
- 2. Select the service.
- 3. Contract the service, following the default and/or required contract parameters. Contract the required data.
- 4. Execution of the service through the marketplace or by login to the marketplace and running https://s81upc.bd4opem.eu/

isiness parameters		
ntract name	Payment type	
JPC	One time	
ontract period		
om	То	
09/02/2023	09/02/2024	
Size of the grid	Number of grids	Type of analysis
Size of the grid	Number of grids	Type of analysis
Size of the grid Number of busses/loads in the given grid Type	Number of grids The DSO may be interested in inspecting some networks. Type	Type of analysis Type of power flow Type
Size of the grid Number of busses/loads in the given grid Type Implementation	Number of grids The DSO may be interested in inspecting some networks. Type Implementation	Type of analysis Type of power flow Type Application
Size of the grid Number of busses/loads in the given grid Type Implementation Values	Number of grids The DSO may be interested in inspecting some networks. Type Implementation Values	Type of analysis Type of power flow Type Application Values
Size of the grid Number of busses/loads in the given grid Type Implementation Values Less than 50 loads Between 50 and 200 loads	Number of grids The DSO may be interested in inspecting some networks. Type Implementation Values 1 grid 2 or 3 grids Unlimited	Type of analysis Type of power flow Type Application Values Single Date-Time Power Flow

Figure 76 - Example of the UI on technical parameters for Service 8.1

Usability Testing:

1. Go to Dashboard tab to check the contract parameters. The About button provides a short and long description of the service. There's also a Contact us button.

S8.1 Asset and investment	=	Antonio_Service_Te	Antonio_Service_Test_1 *				
planning		About	Con	itact us			
2 Dashboard			Get in touch with the	Service provider: We Plus			
Stress Test	You have o	contracted the service with the following characteristics					
📙 Planning Actions							
🚯 KPIS		Username	UPC CITCEA (UPC)				
		Contract duration	From	21/07/2023			
			to	21/07/2024			
		Execution	parameters				
		On demand	False				
		Technical	parameters				
		Number of grids	1 grid				
		Size of the grid	More than 200 loads				

Figure 77 - Example of the User interface Contracted parameters

2. Go to the Stress Test TAB to start creating an expansion scenario.

S8.1 Asset and investment planning	=			Antonio_Se	rvice_Test_1 *			UPC CITCEA (UPC) -
pianing Datiboard Faming Actions KPIs	Asset to stress Asset name Load increase Type of powerflow Select Date NB. When selecting the dates a Transformers Lines	Transformers Choose. • Choose. • Reset: Add • Single Date Time (55/03/2019 - 0.100) @ Reset: Add • Start Start Add • Bas voltage	Dis Asset to stress mpliant with the actual an	play Act Asset name	Lead increase (%) se data used. Run Powee Flow			
	The project has included European United Tartian Increases United Tartian	Kuding Non Br 2009 research and oder grant		Cookie Poli Privacy Pol	ey ey		POWERED BY	BD40PEM

Figure 78 - Stress Test UI visualization

- 3. Stress the distribution Network by incrementing the loading % of the selected transformers. In this example case follow the configuration showed in the Display Planning Acting box of Fig.4.
- 4. Select the Power Flow analysis Type "Date Time Range"
- 5. Select date-time range for example. When selecting the dates, make sure that these dates are compliant with the actual availabilities of the data used.
- 6. Click on the "Run Power Flow" push button

S8.1 Asset and investment planning	=			Antonio_Service_Test_1 *					
Dashboard Stress Test Planning Actions KPIs	Asset to stress Asset name Load increase	Transformers SS03 300 %	Otic Asset to stress Transformers	Splay Action Asset name SS03	DDS Load increase [%] 300	sstituts Granollers	La Font Verda	1.1	100 80 60 @
	Type of powerflow Select Date NB. When selecting Transformers * The [pu] express	Single D From: US/02/2019 the dates above, make sure that the Lines Bus voltage	ate Time	Date Time Range To: 08/02/2019 - 00:00 Il availabilities of th	e data used. Run Power Flow	ota el imi Ral Sant Mique	Lano	er volta	40 IIII 40 IIII 20
	Show a entries Asset ID 0 3 3 15 11 6 6	Transformer Name 0 SS93 5508 SS15 5511 SS06 5511	Type 0 0.4 MWA 20.5/0.4 kV 0.25 MWA 20.5/0.4 kV 0.2 MWA 20.5/0.4 kV 0.4 MWA 20.5/0.4 kV 0.4 MWA 20.5/0.4 kV 0.4 MWA 20.5/0.4 kV	HV Bus 29 37 1 35 56	 LV Bus 46 51 38 49 57 	HV beviation (pu)*	LV Deviation (pu) * 0 Deviation 0.994 0.995 0.995	Loading [%] 138.4527 35.0478 28.1206 26.802 20.0711	•

Figure 79 - Example of the results in the Stress Test

- 7. Go to the "Planning Actions" Tab, by clicking in the left side bar.
- 8. A new table of results with 3 different subtabs should be displayed, as showed in Fig.5. Verify also that the table results correspond with the GIS maps results displayed on the right side.

S8.1 Asset and investment planning	=					Antonio_Servic	e_Test_1 *					UPC CITCEA (UPC) -
Dashboard Strass Test	Show & entries		Asset List	Result	S					La F Ver	ont da	1.1 100
Planning Actions	Planning Actions		rt Type		Name	CAPEX	OPEX 0	tituts	Granollers			1.05
G KPIs	Parallel Line	NA2	XS2Y 1x185 RM/25 12/20 kV		LO	€7,656	€79					[1] ω.[2]
•	Parallel Line	NA2	XS2Y 1x185 RM/25 12/20 kV		L1	€1,104	€11					ading 1
	Parallel Line	NA2	XS2Y 1x185 RM/25 12/20 kV		L2	€5,775	€60	ta el	11148	\mathbf{n}		Bus Vo B
	Parallel Line	NA2	XS2Y 1x185 RM/25 12/20 kV		L3	€5,303	€55	hí Ral		1822	TH H	
	Parallel Line	NA2	XS2Y 1x185 RM/25 12/20 kV		L4	€11,974	€124	L L	Sant Miquel		La Torreta	0.95
	Showing 1 to 5 of 13 er	tries		P	revious	1 2	3 Next	eerros				
	Transformers * The [pu] express Show & entries	Lines Bus vo	ltage									
	Asset ID	Name	Туре	0 н	V Bus	LV Bus	HV Deviation [pu]*		UV Deviation [pu]*	0	New Loading [%]	÷
	17	SS03	0.4 MVA 20.5/0.4 kV	2	9	46	1.000		0.995		63.63625091071474	
	3	SS03	0.4 MVA 20.5/0.4 kV	2	9	46	1.000		0.995		63.63625091071474	
	8	SS08	0.25 MVA 20.5/0.4 kV	3	7	51	1.000		0.997		35.0346632889461	
	15	SS15	0.4 MVA 20.5/0.4 kV	1		38	1.000		0.999		28.11416319752428	
			_							_		

Figure 80 - Example of the results in the Planning Actions

9. Finally click the KPIs TAB located on the left side bar. You can download the KPIs in a .xlsx format by clicking in the buttons below.

S8.1 Asset and investment	=	Antonio_Service_Test_1 💌	UPC CITCEA (UPC)
Dashboard		Total Decongestions [%] Total Costs [€]	
Stress Test	Decongestions in Lines [%]	Decongestions in Transformers [%]	Value Improvements [pu] *
Planning Actions			
	Loading: 90.65% Decongrestions: 0.35% Before: 29.59% After: 29.48% Name: L0 \$	 Loading 90.64% Decongestions: 0.30% Defore: 7.66 % After: 7.63 % Name: PS01 *The [pu] expression means "per unit" Downlog 	by b

Figure 81 - Example of the results in the KPIs, Total Decongestion TAB

10. Click on the total cost (\$) TAB to see the following:

S8.1 Asset and investment	=	Antonio_Service_Test_1 *	UPC CITCEA (UPC) -
2 Dashboard		Total Decongestions [%] Total Costs [6]	
Stress Test Planning Actions	Asset Investment Cost [€]	Operation Investment Cost [€]	Total Planning Cost [€]
C IPI	0.00€	0.00€	0.00€
			<u>-</u>
	This project has received funding from the European Union Horizon 2020 research and Involution programme under grant agreement 27232	Cookie Policy Privacy Policy	POWERED BY: DBD40PEM

Figure 82 - Example of the results in the KPIs, Total Cost TAB

8. Appendix B. Service testing & Service KPIs

8.1 S3.1 – Grid disturbance simulations

Service	S3.1 Grid Disturbance Simulation
Algorithm provider	UPC – Alejandro Hernandez
Solution provider	WEP
	Good performance •
	Non-critical error •
	Error detected •
Release date	15/08/2023

Service testing summary

Functional and KPIs testing (Responsible: Alejandro Hernandez)

Table 18: Testing Summary Table

Pilot	Functional Test ID	Functional Test	Check	Test responsi ble	Comments
	DENMARK_S3.1_UPC_FT.1	Data Ingestion	•		
	DENMARK_S3.1_UPC_FT.2	Review Load forecasts	•		
DENMARK	DENMARK_S3.1_UPC_FT.3	Evaluate Lines behaviour	•		
	DENMARK_S3.1_UPC_FT.4	Analyse Report Tab	•		
	DENMARK_S3.1_UPC_KPI.5	KPIs	•		
	PILOT_SP.3.1_UPC_EX.1	Execution times	•		

Usability testing

Table 19: UI non-critical errors

UI Non-critical errors	UI Non-critical errors
Font size	Font size
Limit axis	Limit axis

) BD40PEM

Table 20: UI recommendations

UI Recommendations

Provide recommendations for improving the front-end UI

Service Functional and KPIs Testing Actions

Pilot: DENMARK

Table 21: DENMARK_S3.1_UPC_FT.1 Functional Test Task 1

Functional Test Description	Test Actions	Check
1. Data Ingestion	Make sure the data from the pilot is correctly ingested for the service.	•
	Verify there are no NaN values	•

Table 22: DENMARK_S3.1_UPC_FT.2 Functional Test Task 2

Functional Test Description	Test Actions	Check
	Check Aggregated Loads forecast plot	•
2. Review Loads forecast	Check Aggregated Loads forecast plot Check dropdown list working Working Choose a line: Aggregated resources Cr.157, Torreta Cr.281, Cuartel Cr.292, Urguay Cr.502, Pedrats Cr.641, Lileo Cr.642, Cranada Cr.642, Cranada Cr.644, Cranada Cr.647, Cr.647, Cranada Cr.647, Cr.647, Cr.	•
	Verify Load1 button from dropdown list to plot Verify Load2 button from dropdown list to plot	•

	Verify download file button	•
· · · · · · · · · · · · · · · · · · ·		

Table 23: DENMARK_S3.1_UPC_FT.3 Functional Test Task 3

Functional Test Description	Test Actions	Check
	Check Lines tab button to be sent to new window	•
3. Evaluate Lines	Select Line1 from dropdown	•
behaviour	Select Line2 from dropdown	•
	Verify download file button	•

Table 24: DENMARK_S3.1_UPC_FT.4 Functional Test Task 4

Functional Test Description	Test Acti	ons		Check
	Check <i>Report</i> tab button to be sent to new window			•
	Verify the r	esults for all lines for	r all hours	•
	Time period	15/08/2023 - h24		
	Show s ϕ entries		Choose a line: Line 15 a	
	Hour	Probability [%]	Overload [kA]	
	0	0	0.01276375722826952	
	1	0	0.01118695257600832	
4. Analyse Report	3	0	0.009078616027253846	
Tab	4	0	0.008296619363542215	
	Showing 1 to 5 of 24 entries		Previous 1 2 3 4 5 Next	
	Comment: instead of r	I think the table sho needing to select the	ould show the 24 hrs for default, number of entries.	,
	00:00, 01 Probability	:00, Also, the and Overload] should	labels of the columns [Hour d be centered.	
	Download report in excel form		•	

Table 25: DENMARK_S3.1_UPC_KPI.5Functional Test Task 5

Functional Test Description	Test Actions	Check
5. КРІ	KPI benchmark/range comparison number of congestions found	•

Table 26: PILOT_SP.3.1_UPC_EX.1 Functional Test Task 6

Functional Test Description	Test Actions	Execution time local/front-end	Check
6. Execution time	Executing algorithm for Use Case 1	10 s/ 60 s	•
	Training algorithm for algorithm	60 s/ 70s	•

Usability testing UI Non-critical errors

Errors that do not affect the tangible/numeric results: font sizes, colors of graphs, limits of the axis, etc.

Table 27: UI non-critical errors

Non-critical errors	Screen shots
Font size	Font sizes in the whole UI is good.
Limit axis	N/A

UI Recommendations

Provide recommendations for improving the front-end UI

 Table 28: UI Recommendations

Recommendations	Screen shots
Recommendation 1	The recommendations have been made in section 1.

ANNEX

The results show no congestions, however, this is coherent with the input data used in this version of the testing.

8.2S3.2 – Impact study PV, EV & new loads

Service	S3.2 Impact study
Algorithm provider	ODT
Solution provider	ODT
	Good performance \bullet
	Non-critical error •
	Error detected •

Service testing summary Marketplace testing

Release date

Table 29: S3.2 Testing Summary Table

13/10/2023

Functional Test ID	Functional Test	Test responsible	Check	Comments
	Service contracts	ODT	•	The complete contractual
3.2_ODT_MK.1	management	NUVVE	•	workflow is working as expected

Functional and KPIs testing (Responsible: Algorithm dev)

Table 30: S3.2 Testing Summary Table

Pilot	Functional Test ID	Functional Test	Test responsible	Check	Comments
	3.2_ODT_FT.1	Active service contracts collection	ODT	•	Access to contract database has been successfully tested
	3.2_ODT_FT.2	Data collection	ODT	•	Data access through data lake has been successfully tested, tested instance on manually ingested data
DENMARK	3.2_ODT_FT.3	LV networks modelling	ODT	•	Validated in expert testing session
	3.2_ODT_FT.4	Results export	ODT	•	Validated in expert testing session
	3.2_ODT_FT.5	User access	NUVVE	•	Validated in expert testing session
	3.2_ODT_KPI	KPIs validation	ODT	•	Not shared on a regular basis, offline calculation

|--|--|

Usability testing

Table 31: UI critical errors

UI Critical errors	
NA	

Table 32: UI non-critical errors

	UI Non-critical errors	
Issue with the display of headers	Issue with the display of headers	

Table 33:

UI Recommendations

Include bi-directional capacity with the EVSEs

Marketplace testing

Table 34: 3.2_ODT_MK.1 Service contracts management

Marketplace Description	Test	Test Actions	Test responsible	Check
		Found service in marketplace by searching it with one of the following keywords:		
7. Contract service		 Renewable energy, modelling, integration, low voltage grid, AI, digital twin, photovoltaic, electric vehicles 	ODT	•
	Select service to see details about it Contract the service		ODT	•
			NUVVE	•
		Validate contract (data validation)	ODT	•

Service Functional and KPIs Testing Actions

Table 35: 3.2_ODT_FT.1 Active service contracts collection

Fu De	nctional Test	Test Actions	Test responsible	Pilot	Check
8.	Active service contracts	List all the active and approved contracts	ODT	Denmark	•

collection through the UnifiedAPI	Get the data tokens linked to the contracts	ODT	Denmark	•
---	---	-----	---------	---

Table 36: 3.2_ODT_FT.2 Data collection

Functional Test Description	Test Actions	Test responsible	Pilot	Check
9. Data collection through the		ODT	Denmark	•
UnifiedAPI	Pre-process data in Odit-e format	ODT	Denmark	•

Table 37: 3.2_ODT_FT.3 LV networks modelling

Functional Test Description	Test Actions	Test responsible	Pilot	Check
	Low voltage networks models (Digital Twins) trained	ODT	Denmark	•
10. Low voltage networks modelling	PV capacity estimation for each smart meter	ODT	Denmark	•
	EV or new load capacity estimation for each smart meter	ODT	Denmark	•

Table 38: 3.2_ODT_FT.4 Results export

Functional Test Description	Test Actions	Test responsible	Pilot	Check
11. December of the	Save low voltage networks models in database	ODT	Denmark	•
11. Results export in Odit-e database and	PV, EV and New load capacities estimations are available on the webapp	ODT	Denmark	•
	Webapp credentials sent to the customer	ODT	Denmark	•

Table 39: 3.2_ODT_FT.5 User access

Functional Test Description	Test Actions	Test responsible	Pilot	Check
12 6 4	The customer successfully connects to the webapp	NUVVE	Denmark	•
12. Customer access to the	The customer sees the results on the webapp	NUVVE	Denmark	•
results	The customer can simulate PV, EV or new load insertion	NUVVE	Denmark	•

The customer can add to the waiting list th simulated PV insertions	NUVVE	Denmark	•
---	-------	---------	---

Table 40: 3.2_ODT_KPI KPIs validation

Functional Test Description	Test Actions	Test responsible	Pilot	Check
13. KPIs (see Erreur !	All KPI are computed each week (excepted #3)	ODT	Denmark	•
Source du renvoi introuvable.)	All KPI (excepted #3) are validated	ODT	Denmark	•

Table 41: S3.2 KPI list table

#	КРІ	Description	Calculation	Expected value	Offline calculation
1	Runtime	Runtime of the algorithm with a substation with 100 three-phase meters and one year of data	tresults – torder	<150s	Initialization takes 3 hours (with data ingestion, preprocessing, deployment, training). Iterative simulation takes less than a minute but must be improved for better UX
2	Number of meters analysed	Total number of meters analysed by the service through the platform	∑nmeters	-	117
3	Impact prediction accuracy	[Require field intervention] Calculates the accuracy of the forecasted impacts, by training the model before or after the field intervention, then estimating smart meters voltage over the other time interval.	MAE of smart meters voltage estimation	<3V	Not applicable because no field validation
4	Digital twin accuracy	Estimation of the digital twin accuracy out of trainning regression domain	MAE of smart meters voltage estimation	<3V	Not computed

Usability testing

UI Critical errors

Errors that affect the tangible/numeric results: graphs display, login error, etc.

Table 42: UI critical errors

Critical errors	Screen shots and description	Reporter
NA		

UI Non-critical errors

Errors that do not affect the tangible/numeric results: font sizes, colors of graphs, limits of the axis, etc.

Table 43: UI non-critical errors

Non-critical errors	Screen	shots								Reporter
Tables header cannot be	Smartmeter 0	Feeder 0	Phase 0	Insta (kWp) 0	Plan (kWp) 0	Simu (kWp) 0	Resi Capa ≎ (kWp)	Delta initial o capa	Capacities 0	ODI
seen completely neither be made broader	♥ Filter Bunker 1 onco -2 klimabord DL12-TV	▼ Filter Feeder_0 Feeder_0	Three		150 15		200.7 292.6			
	Montilatia kombora 4	Fooder 0	Theory				4.0		I	

UI Recommendations

Provide recommendations for improving the front-end UI

Table 44: UI Recommendations

Recommendations	Screen shots		Reporter
			NUVVE
	Edit meter 101	×	
	EV installed (kWmax)	0 0	
	EV planned to be added (kWmax)	0	
	Max EV capacity (kWmax)	276 0	
		Concel	

8.3S5.1 – Flexibility Forecast

8.3.1 UPC approach: Flexibility forecast

S5.1 FLEXIBILITY FORECAST
UPC – Rafaela Ribeiro / Arthur Pasquet
ICOM
Good performance •
Non-critical error •
Error detected •

Release date 20/10/2023

Service testing summary

Functional and KPIs testing (Responsible: Algorithm dev)

Table 45: S5.1 Testing Summary Table

Pilot	Functional Test ID	Functional Test	Check	Test responsible	Comments
	DENMARK_5.1_UPC_F T.1	History	•	UPC	
DENMARK	DENMARK_5.1_UPC_F T.2	Data Selection •		UPC	
	DENMARK_5.1_UPC_F T.3	Training model results	٠	UPC	
	DENMARK_5.1_UPC_F T.4	Forecast results	•	UPC	
	DENMARK_5.1_UPC_K PI.1	KPIs	•	UPC	
	DENMARK_5.1_UPC_E XEC	Execution times pilot	•	UPC	

Usability testing

Table 46: S5.1 UI critical errors

UI Non-critical errors	
Font size	
Limit axis	

Table 47: S5.1 UI Recommendations

UI Recommendations

Include selection of "Positive Flexibility" or "Negative Flexibility"

Service Functional and KPIs Testing Actions

Pilot: DENMARK

Table 48: DENMARK_5.1_UPC_FT.1 History.

Functional Test Description	Test Actions	Check
	List of previous runs can be observed	•
1. History	"Model Info" and "Forecast" buttons return corresponding information	•
	Within "Model Info" functions as verified in Table 3.	•
	Within "Forecast" functions as verified in Table 4.	•

Table 49: DENMARK_5.1_UPC_FT.2 Data selection.

Functional Test Description	Test Actions	Check
2. Data selection	Selection of "EV" and/or "ESS" from droplist	•
	Selection of either "Positive Flexibility" or "Negative Flexibility"	•
	Date selection is more than 1 year and it exists on dataset	•
	If time resolution is lower than present in the data, the time resolution of the data is used.	•
	The last 7 days of data exist.	•
	The user can consult previous runs.	•

Table 50: DENMARK_5.1_UPC_FT.3 Training model results.

Fu De	nctional Test escription	Test Actions	Check
3. Training model results	Summary of Data Selection correctly presented	•	
	Table presents model results and real data comparison with correct units and title	•	
	Plot presents the model results and real data comparison with correct units and title	•	
		Selection of training line or input values on plot	•

Interaction with plot lines is available	•
Data download button delivers the file	•

Table 51: DENMARK_5.1_UPC_FT.4 Forecast results.

Functional Test Description	Test Actions	Check
4. Forecast results	Summary of Data Selection correctly presented	•
	Table presents the forecasted flexibility values for all times of the day with correct units and title	•
	Plot presents the forecasted flexibility values for all times of the day with correct units and title	•
	Interaction with plot line is available	•
	Metrics shown should be bigger or equal to zero	•

Table 52: DENMARK_5.1_UPC_KPI.1 KPIs.

Functional Test Description	Test Actions	Check
	Use case 1 - Total flexibility value: 3521.69/>0	•
	Use case 1 - Average flexibility value: 5.13/>0	•
	Use case 1 - Average flexibility availability: 1.96/[0-100%]	•
5. KPI	Use case 1 - Mean Absolute Percentage Error: 143.75/[0-100%]	•
	Use case 2 - Total flexibility value: 3521.69/>0	•
	Use case 2 - Average flexibility value: 5.13/>0	•
	Use case 2 - Average flexibility availability: 1.96/[0-100%]	•
	Use case 2 - Mean Absolute Percentage Error: 147.78/[0-100%]	•

Table 53: S5.4 Execution table table

Functional Test Description	Test Actions	Execution time local/front-end	Check
6. Execution time	Executing algorithm for Use Case 1	54 min / 60 s	•

Usability testing

UI Non-critical errors

Errors that do not affect the tangible/numeric results: font sizes, colors of graphs, limits of the axis, etc.

Table 54: S5.1 UI non-critical errors

Non-critical errors	Screen shots
Font size	Nothing to declare.
Limit axis	Nothing to declare.

UI Recommendations

Provide recommendations for improving the front-end UI

Table 55: S5.1 UI Recommendations

8.4 S5.4 - EV to Grid

Pilot: Denmark

Table 56: DENMARK_5.4_UPC_FT.1 History.

Functional Test Description	Test Actions	Check
1. History	List of previous event runs can be observed	•

	Each event run has the features as described in table 4	•
·		

Table 57: DENMARK_5.4_UPC_FT.2 New event.

Functional Test Description	Test Actions	Check
2. New Event	Input event name	•
	Select location	•
	Select service between discharge or charge	•
	Input DSO requirement	•
	Congestion horizon date selection	•
	Target hours can be selected	•
	Client selection	•

Table 58: DENMARK_5.4_UPC_FT.3 Results.

Functional Test Description	Test Actions	Check
3. Results	Table with event summary correctly filled	•
	On the same table: additional information concerning provision is available	•
	Graphs available for selected horizon and target hours shows DSO request	•
	Table with provision data is available and filled	

Table 59: DENMARK_5.4_UPC_KPI.1 Functional Test Task 3

Functional Test Description	Test Actions	Check
4. KPI	Use case 1 - Forecasting Error: 55.37%/[0-100%]	•
	Use case 2 - Forecasting Error 38.87%/[0-100%]	•

Table 60: DENMARK_5.4_UPC_EXEC.X Functional Test Task 4

5. Execution time Training + Executing algorithm for Use Case 1	7 min/ 60 s	•
---	-------------	---

Usability testing

UI Non-critical errors

Errors that do not affect the tangible/numeric results: font sizes, colors of graphs, limits of the axis, etc.

Table 61: S5.4 UI non-critical errors

Non-critical errors	Screen shots
Font size	
Limit axis	

UI Recommendations

Provide recommendations for improving the front-end UI

Table 62: S5.4 UI Recommendations

Recommendations	Screen shots
Recommendation 1	
Recommendation 2	

8.5 S8.1 – Asset and investment planning

Service Testing

Service	S8.1 Asset and Investment Planning
Algorithm provider	UPC – Antonio E. Saldaña González
Solution provider	WEP

Good performance •

Non-critical error •

Error detected •

Release date 22/03/2023

Service testing summary

Functional and KPIs testing (Responsible: Algorithm dev)

Table 63: S8.1 Testing Summary Table

Pilot	Functional Test ID	Functional Test description	Check	Comments
	Denmark_8.1_UPC_FT.1	Stress test tab display options	•	The load increase button is not working. See more details in the table below.
	Denmark_8.1_UPC_FT.2	Planning Action tab display options	•	
Denmark	Denmark_8.1_UPC_FT.3	KPIs results	•	
	Denmark_8.1_UPC_FT.4	Download results	•	I cannot open the excel file "KPI Results" (only download).
	Denmark_8.1_UPC_FT.5	Execution time	•	

Usability Testing

Table 64: S.8.1

UI Non-critical errors Font size: Font size of the two tables (Asset List Results and Results of the Power Flow) in the Planning Actions TAB need to be the same. Color of the row could be better if it showed in red only if the value is higher than 100%. Orange color between 99% and 61 % and below 60% in yellow color. (But this action is not critical) The maximum decimals of the New Loading % column need to be 4 (Planning Actions TAB). Limit axis:

No comments

Table 65: S8.1

UI Recommendations

Instead of having the PU legend in the top of the table in the middle of the push buttons:

Asset ID	÷ Tra	ansformer Name	÷	Туре		HV Bus		LV Bus	HV Deviation (pu) *	÷LV	eviation (pu) *	4 Loading	[%] ÷	
3	SS	03		0.4 MVA 20.5/0.4 kV		29		46	0.999	0.9	8	128.45	7	1
8	SS	08		0.25 MVA 20.5/0.4 kV		37		51	0.999	0.9	4	35.0478		
15	SS	15		0.4 MVA 20.5/0.4 kV		1		38	1.000	0.9	16	28.1206		
11	SS	11		0.4 MVA 20.5/0.4 kV		35		49	0.999	0.9	15	26.802		
6	SS	06		0.4 MVA 20.5/0.4 kV		56		57	0.999	0.9	16	20.0711	I	
Showing 1	to 5 of 17 entrie	es		Previous	1	2	3	4 Nex						
ose to Also p ample o	mov ut the of the	e the le e push t e image	gen outto belo	d (* The on (Tran ow:	[p sfor	u] e rme	r, L	essior ines, l	ı means ` Bus Volta	ʻper (ge) c	unit") loser to	to the	e bott able. F	om 'lea:
ose to Also p ample o	mov ut the of the	e the lee e push t e image Busvoltage	gen outto belo	d (* The on (Tran ow:	[p sfor	u] e rme	r, L	ressior ines, l	ı means ` 3us Volta	ʻper (ge) c	unit") loser to	to the	e bott able. F	om 'lea
ose to Also p ample o ansformers	mov ut the of the Lines t	e the le e push t e image Bus voltage	gen outto belo	d (* The on (Tran ow:	sfor	u] e rme	expr r, L	essior ines, l	n means ' Bus Volta ^{Hy Deviation [pu]*}	ʻper (ge) c	unit") loser to	to the	e botte able. F	om 'lea
ose to Also p ample o ransformers	mov ut the of the Lines R Transformer #	e the lee e push b e image Busvoltage	gen butte belo	d (* The on (Tran ow:	e [pi sfoi	u] e rme ^{HV Bus}	r, L	ressior ines, l	n means ' Bus Volta ^{Hy Deviation [pu]*}	ʻper (ge) c	unit") loser to	to the	e bott able. F	om 'lea
ose to Also p ample o ansformers	mov ut the of the tines t sso3 sso8	e the lev e push b e image Bus voltage	gen belo belo	d (* The on (Tran ow:	sfor	u] e rme ^{HV Bus} 29	r, L	tybus (46 51	HY Deviation [po]*	ʻper (ge) c	unit") loser to	to the	e bott able. F	om 'lea
ose to Also p ample o ansformers	mov ut the of the times t SS03 SS08 SS15	e the lev e push b e image Bus voltage	gen butte belo 0.4 MV 0.25 M 0.4 MV	d (* The on (Tran ow: 420.5/0.4 kV vA 20.5/0.4 kV	e [pi sfor	u] e rme ^{HV Bus} 29 37 1	expr r, L	tybus (46 51 38	M means ` Bus Volta My Deviation [pu]*	ʻper u ge) c	LY Deviation (pu)*	to the	e bott able. F	om 'lea
ransformers	mov ut the of the soa soa soa soa soa soa soa soa	e the lev e push b e image	gen belo belo 0.4 MV 0.25 M 0.4 MV 0.4 MV	d (* The on (Tran ow: A20.5/0.4 kV VA 20.5/0.4 kV A20.5/0.4 kV	sfor	u] e rme ^{HV Bus} 29 37 1 35	expr r, L	ty Bus (46 51 38 49	My Deviation [pu]*	ʻper (ge) c	LY Deviation (pu)*	to the ta	e bott able. P	om Plea

Pilot: Denmark

Table 66: DENMARK_8.1_UPC_FT.1 Stress test Tab display options

Functional Test Description	Test Actions	Check
	Select the "Name" options from the "Stress Test" tab to display all the transformer names. Make sure that all the names are written correctly.	•
14. Stress test Tab display options	Select the "Expansion" option from the "Stress Test" tab to display the loading percent. Make sure that values are displayed correctly (Ex. 5%, 10%, 15%).	
	The issue is that when I apply 100%, 500%, or 600% of load increase the results are always the same. And the network cannot be stressed is this action is not changing.	

BD40PEM

٦

Table 67: DENMARK_8.1_UPC_FT.2 Planning Actions Tab Display Options

Functional Test Description	Test Actions	Check
	Click the "Planning Actions" Tab (from the main left column). Make sure that there is no error in the time series or single power flow simulation.	
15 Diagning Actions	After running the power flow simulation, the planning actions must be displayed in the table located in the bottom side of the UI. Make sure is displayed correctly .	•
Tab Display Options	After running the power flow simulation, a GIS map with a color bar must be displayed. Make sure the GIS map is displayed correctly (zoom in and out, view results of the asset and coordinates correspond to the pilot).	•
	After running the power flow simulation, the results of the planning power flows must be shown in table formats, divided in 3 tabs (Transformers, Lines and Bus voltages). Make sure that all the asset names, types and results are shown correctly.	•

Table 68: DENMARK_8.1_UPC_FT.3 KPIs results in the marketplace

Functional Test Description	Test Actions	Check
--------------------------------	--------------	-------

) BD40PEM

Table 69: DENMARK_8.1_UPC_FT.4 Download results

Functional Test Description	Test Actions	Check
17. Download	Download results by clicking in the Save Results botton (.xlsx and .csv).	•
results	Make sure that the file corresponds to the KPIs displayed in the UI.	•

Table 70: DENMARK_8.1_UPC_FT.5 Execution time

) BD40PEM

18. Execution time	Executing (Annex)	algorithm	for	Use	Case	1	10 s/ 60 s	•	
--------------------	----------------------	-----------	-----	-----	------	---	------------	---	--

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 872525