Translation Validation for JIT Compiler
in the V8 JavaScript Engine

1 PURPOSE

This document describes the artifact for TORBOTV presented in the
paper "Translation Validation for JIT Compiler in the V8 JavaScript
Engine". TURBOTV is a translation validator for the JavaScript (JS)
just-in-time (JIT) compiler of V8. This artifact provides an environ-
ment to run TURBOTV to validate TURBOFAN’s (JIT compiler of V8)
optimization passes. We claim the available and reusable badges
for our artifact.

2 PROVENANCE

The artifact is provided as a Docker image that includes the ex-
periment environment, the source code of the tool, and the scripts
to run the tool and evaluate the results. We publicize the artifact
on Zenodo (https://doi.org/10.5281/zenodo.10453785). The Zenodo
archive includes the artifact, the LICENSE, and a copy of the paper.
Our artifact does not have any security, privacy, or ethical concerns.

3 SETUP

In this section, we describe how to set up the artifact for TuRBOTV.

3.1 Hardware and Software Requirements

We ran the experiment on the machines equipped with Intel(R)
Xeon(R) Gold 6226R CPU (2.90GHz) with 64 cores and 512 GB of
RAM. It is possible to run the experiment on a machine with fewer
CPU cores and smaller RAM, but it is recommended to use the
artifact with more than 4 CPU cores and 16 GB of RAM.

We provide our artifact as a Docker image based on Ubuntu 22.04
and Docker 24.0.7. Since the volume of the Docker image is 23 GB,
we recommend at least 30 GB of disk space.

3.2 Installation

(1) Download the turbo-tv.tar.gz from the Zenodo website.
(2) Then, load and run the Docker image from the file.

docker load < turbo-tv.tar.gz
docker run -it --privileged prosyslab/turbo-tv

4 BASIC USAGE

This section describes the utilization of TUrRBOTV and the subse-
quent analysis of outputs. Essentially, TURBOTV extracts Interme-
diate Representations (IRs) during JIT compilation and performs
translation validation process. The process divided into two compo-
nents: the Undefined Behavior (UB) Checker and the Equivalence
(EQ) Checker, as detailed in Section 2.3.2 of the paper. The UB
Checker checks the presence of undefined behavior within a single
IR, while the EQ Checker checks the semantic equivalence between
two IRs before and after reduction. We provide a script designed
to assist TURBOTV in receiving JS files and executing Translation
Validation. The detailed usage of the script is as follows:

(1) Select a version of V8 for a specific bug. For example, the fol-
lowing command selects the version of V8 for the bug 1199345.

’./exp v8 --select --issue 1199345 ‘

(2) Run TurBoTV on a JS file. For example, the following command
runs the UB Checker on the JS file 1199345. js.
’./exp turbo-tv --check-ub issues/1199345/1199345. js

The following command runs the EQ Checker on the same
file.
’./exp turbo-tv --check-eq issues/1199345/1199345. js

Once a validation fails, TURBOTV presents a counterexample
that describes a potential miscompilation. For example, the above
EQ check generates the following output:

/home/user/turbo-tv-exp/workbench/1199345/2: X
c.e. =
/home/user/turbo-tv-exp/workbench/1199345/2.ce

The output indicates that the counterexample is stored at
/home/user/turbo-tv-exp/workbench/1199345/2. ce. The pro-
vided counterexample will be as follows:

Result: Not Verified
CounterExample:

Parameters:

Parameter[@]: TaggedSigned(®)

State of src
#0:NumberConstant (@) [Range (0.0000, 0.0000)] =>
Value: TaggedSigned(@)

The provided counterexample illustrates a potential miscompilation
when the first parameter (i.e., Parameter[0]) of the function in
1199345. js is constant @ (i.e., TaggedSigned(0)).

5 REPRODUCE EVALUATION

In this section, we describe the process for reproducing the experi-
ments conducted in our paper. We provide scripts to easily replicate
the experiment for each research question (RQs). Certain experi-
ments necessitate several hours to complete. For convenience, all
experimental results are already available at /home/user/turbo-
tv-exp/eval.

Note that some of the experiments may produce different results
from those in the paper. All experiments in the paper were con-
ducted in the environment described in Sec 3.1 and concurrently
conducted using 64 cores. Thus, the experimental results may vary
depending on the reviewer’s environment. For convenience, we
provide estimated execution times using 64-core and 4-core envi-
ronments, for each experiment.

5.1 Precision and Scalability of TurBoTV (RQ 1)

5.1.1 Effectiveness of TURBOTV in discovering known bugs. (Table 1).
The experiment evaluates the precision of TUrRBOTV by discovering
previously reported bugs in TURBOFAN. To replicate the experiment,

https://doi.org/10.5281/zenodo.10453785

ICSE 2024, April 2024, Lisbon, Portugal

execute the following command. (~30 minutes using 64 cores, ~2
hours using 4 cores)

./exp eval --precision

The output will be as follows:

======issue 1126249 UB check result.======
IR_ALL 20

IR_TV 20

ALARM(s) ©

TIMEOUT 3

Counter examples are saved to
"./eval/precision-1126249-ub-ce.txt"
======jssue 1126249 EQ check result.======
RDC_ALL 17

RDC_TV 17

ALARM(s) 1

TIMEOUT @

Counter examples are saved to
"./eval/precision-1126249-eq-ce.txt"

The output describes the results of both checkers for each known
bug and corresponds to the rows of Table 1 in the paper. Specif-
ically, IR_ALL and RDC_ALL indicate the number of extracted
IRs or reductions, IR_TV and RDC_TYV indicate the number of IRs
and reductions supported by TurBoTV, ALARM(s) indicates the
number of IRs and reductions that are not verified by each checker.
Note that ALARM(s) includes both true positives (TP) and false
positives (FP). Once a validation fails, the counterexample is saved
in the path specified in the output.

5.1.2 Effectiveness of TurboTV for a large set of JS programs. (Table
2). The experiment evaluates the performance of TuRBOTV. Since
this experiment is conducted on a large set of JS programs, it can
take a long time to complete. To replicate the experiment, run the
following command (~3 hour with 64 cores, 8 hours with 4 cores):
’./exp eval --scalability ‘

For convenience, we also provide a scaled-down version of the ex-
periment. We randomly selected 5 and 10 samples from the UnitJS
and Corpus benchmarks, respectively. The following command
replicates the experiment on these small benchmarks (~5 minutes
with 64 cores, 10 hours with 4 cores):

./exp eval --scalability --small ‘

The output provides the summary of the translation validation
results for the benchmarks. Total Elapsed denotes the cumulative
time spent on the checking process, while Avg Elapsed indicates
the average time consumed per IR. The other part of the output is
the same as in the previous section.

5.2 Effectiveness of Cross-Language TV (RQ 2)

The experiment evaluates the effectiveness of cross-language TV
on the LLVM unit test cases. To replicate the experiment, run fol-
lowing command (~30 minutes with 64 cores, 1 hours with 4 cores):

./exp eval --cross-validation ‘

The output format is as shown in Sec 5.1.2, wherein 100 alarms
are generated in the Refinement check. Among these alarms, there
are 90 true positives (TPs) relating to the bugs documented in the
paper, and 10 false positives (FPs).

For convenience, we provide a command to run cross-language
TV on a single LLVM IR. For example, the following command
reproduces the bugs in the paper.

./exp v8 --select
./exp turbo-tv --cross-refine benchmarks/unit-11/bool-ext-inc.11

The above Refinement check generates the following output:

. /workbench/bool-ext-inc/bool-ext-inc.11: X
c.e. =>
. /workbench/bool-ext-inc/bool-ext-inc.ce

The output indicates that the counterexample is stored at
. /workbench/bool-ext-inc/bool-ext-inc.ce.
The provided counterexample will be as follows:

sat . ..

(define-fun p1 () (_ BitVec 69)
#b. . . 00000)

(define-fun p@ () (_ BitVec 69)
#b. . . 00001)

The provided counterexample illustrates a potential problem when
the first and second parameters (i.e., p@, p1) of the function in bool-
ext-inc.1l are constant 1and @ (i.e., #b. . . 00001,#b. . . 00000).

5.3 Effectiveness of TURBOTV as Fuzzing Oracle

(RQ 3)
This experiment evaluates the effectiveness of TURBOTV as a fuzzing
oracle. Through a fuzzing process, we generate random JS files and
measure an overhead for TURBOTV to validate these JS files. The
overhead denotes the ratio between the time consumed by TUR-
BOTV and the fuzzer.

Since the corpus generation process is non-deterministic and
time-consuming, we provide the corpus used in the paper. The
following command will validate the pre-generated corpus (~12
hours with 64 cores, 24 hours with 4 cores):

‘./exp eval --overhead --corpus benchmarks/corpus-overhead

For convenience, we provide a command to generate a corpus
from scratch. For example, the following command generates ran-
dom JS files for 10 seconds and measures overhead on the generated
corpus (~3 minutes with 64 cores, 5 minutes with 4 cores):

‘./exp eval --overhead --timeout 10 ‘

The generated corpus is saved in ./fuzz-out/corpus. The out-
put of above command will be as follows.

Total Overhead: 171.86%
=> The time spent on each JS is saved at ./overhead.json

The output describes the overhead (Total Overhead) incurred
when employing TURBOTV as a fuzzing oracle for the corpus. The
time spent validating each JS file in the corpus is stored in the JSON
file. Note that translation validations are performed concurrently,
so the overhead may rise if fewer cores are used than in our envi-
ronment. For instance, if validating a single IR takes 0.1 seconds,
the validation of 30 IRs with 30 cores takes 0.1 seconds. but with
only one core, it takes 3 seconds.

	1 Purpose
	2 Provenance
	3 Setup
	3.1 Hardware and Software Requirements
	3.2 Installation

	4 Basic Usage
	5 Reproduce Evaluation
	5.1 Precision and Scalability of TurboTV (RQ 1)
	5.2 Effectiveness of Cross-Language TV (RQ 2)
	5.3 Effectiveness of TurboTV as Fuzzing Oracle (RQ 3)

