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Abstract: 

Forecasting monthly mean rainfall of Andhra Pradesh (India)using seasonal autoregressive integrated 

moving average (SARIMA) modeland artificial neural networks (ANN)has been discussed.In this paper, we 

have given the prediction values according to SARIMA and neural network models, in whichwe found that the 

ARIMA (1,0,0)(2,0,0)[12] for actual dataand ARIMA (3,0,0)(2,0,0)[12] for rainfall differenceshas been 

fitted.The significance test has been made by using lowest AIC and BIC values.   
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1. Introduction: 

Andhra Pradesh is one of the states of India; we have taken the rainfall data. In this, we performed the 

forecasting of annual rainfall of Andhra Pradeshfor coming years. For the experiment, we have taken data of 

Mean Annual Rainfall from www.data.gov.in. The data is having the information of mean annual rainfall from 

year 1901 to 2016. In this experiment we have taken the help of R programming to fit the ARIMA models and 

SPSS for neural network. For the analysis, first column of the dataset is chosen to do analysis that is having 

annual mean rainfall information in mm unit. 

2. Methodology: 

ARIMA models are capable of modeling a wide range of seasonal data. A seasonal ARIMA model is 

formed by including additional seasonal terms in the ARIMA models we have seen so far. It is written as 

follows: ARIMA (p, d, q) (P, D, Q)m: the first parenthesis represents the non-seasonal part of the model and 

second represents the seasonal part of the model, where m= number of periods per season. We use uppercase 

notation for the seasonal parts of the model, and lowercase notation for the non-seasonal parts of the model. The 

additional seasonal terms are simply multiplied with the non-seasonal terms. 

2.1 ACF/PACF: 

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF. For 

example, an ARIMA (0,0,0)(0,0,1)12 model will show: a spike at lag 12 in the ACF but no other significant 

spikes.The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,….etc. Similarly, 

an ARIMA(0,0,0)(1,0,0)12 model will show:exponential decay in the seasonal lags of the ACFa single 

significant spike at lag 12 in the PACF.In considering the appropriate seasonal orders for an ARIMA model, 

restrict attention to the seasonal lags. The modeling procedure is almost the same as for non-seasonal data, 

except that we need to select seasonal AR and MA terms as well as the non-seasonal components of the model.  

Seasonal autoregressive integrated moving average (SARIMA) model for any variable involves mainly four 

steps: Identification, Estimation, Diagnostic checking and Forecasting. The basic form of SARIMA model is 

denoted by  

   
SQDPXqdpSARIMA ,,,,  

and the model is given by 

        t

s

Qqt

D

s

ds

Pp aBBZBB   , 

Where
tZ is the time series value at time t and  and ,, are polynomials of order of p, P, q and Q 

respectively. B is the backward shift operator, 
stt

s ZZB  and  B 1 . Order of seasonality is represented by 

s. Non-seasonal and seasonal difference orders are denoted by d and D respectively. White noise process is 

denoted by ta . The Box-Jenkins methodology involves four steps (Box et al., 1994): (i) identification (ii) 

estimation (iii) diagnostic checking and (iv) forecasting. First, the original series must be transformed to become 

stationary around its mean and its variance. Second, the appropriate order of p and q must be specified using 

autocorrelation and partial autocorrelation functions. Third, the value of the parameters must be estimated using 

some non-linear optimization procedure that minimizes the sum of squares of the errors or some other 

appropriate loss function. Diagnostic checking of the model adequacy is required in the fourth step. This 
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procedure is continued until an adequate model is obtained. Finally, the future forecasts generate using 

minimum mean square error method (Box et al. 1994). SARIMA models are used as benchmark models to 

compare the performance of the other models developed on the same data set. The iterative procedure of 

SARIMA model building was explained by Kumari et al. (2013), Boiroju (2012), Rao (2011) and Box et al. 

(1994). 

2.1.1 Arima: 

By default, the arima command in R sets c=μ=0 when d>0 and provides an estimate of μ when d=0. 

The parameter μ is called the “intercept” in the R output. It will be close to the sample mean of the time series, 

but usually not identical to it as the sample mean is not the maximum likelihood estimate when p+q>0. 

The arima command has an argument include.mean which only has an effect when d=0 and is TRUE by default. 

Setting include.mean=FALSE will force μ=0. 

The Arima command from the forecast package provides more flexibility on the inclusion of a 

constant. It has an argument include.mean which has identical functionality to the corresponding argument 

for arima. It also has an argument include.drift which allows μ≠0μ≠0 when d=1. For d>1, no constant is allowed 

as a quadratic or higher order trend is particularly dangerous when forecasting. The parameter μμ is called the 

“drift” in the R output when d=1. 

This is also an argument include.constant which, if TRUE will see include.mean=TRUE if d=0 and 

include.drift=TRUE when d=1. If include.constant=FALSE. Both include.mean and include.drift will be set to 

FALSE. If include.constant is used, the values of include.mean=TRUE and include.drift=TRUE are ignored. 

2.1.2 Auto.Arima 

The auto.arima function automates the inclusion of a constant. By default, for d=0 or d=1, a constant 

will be included if it improves the AIC value; for d>1, the constant is always omitted. If allow drift=FALSE is 

specified, then the constant is only allowed when d=0. 

There is another function arima in R which also fits an ARIMA model. However, it does not allow for 

the constant cc unless d=0, and it does not return everything required for the forecast function. Finally, it does 

not allow the estimated model to be applied to new data (which is useful for checking forecast accuracy). 

Consequently, it is recommended that you use Arima instead. 

2.1.3 Modeling Procedure: 

When fitting an ARIMA model to a set of time series data, the following procedure provides a useful 

general approach. 

 Plot the data. Identify any unusual observations. 

 If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance. 

 If the data are non-stationary: take first differences of the data until the data are stationary. 

 Examine the ACF/PACF: Is an AR(pp) or MA(qq) model appropriate? 

 Try your chosen model(s), and use the AICc to search for a better model. 

 Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a 

portmanteau test of the residuals. If they do not look like white noise, try a modified model. 

 Once the residuals look like white noise, calculate forecasts. 

AIC and BIC are both penalized-likelihood criteria. They are sometimes used for choosing best 

predictor subsets in regression and often used for comparing non-nested models, which ordinary statistical tests 

cannot do. The AIC or BIC for a model is usually written in the form [-2logL + kp], where L is the likelihood 

function, p is the number of parameters in the model, and k is 2 for AIC and log(n) for BIC. 

AIC is an estimate of a constant plus the relative distance between the unknown true likelihood 

function of the data and the fitted likelihood function of the model, so that a lower AIC means a model is 

considered to be closer to the truth. BIC is an estimate of a function of the posterior probability of a model being 

true, under a certain Bayesian setup, so that a lower BIC means that a model is considered to be more likely to 

be the true model. Both criteria are based on various assumptions and asymptotic approximations. Each, despite 

its heuristic usefulness, has therefore been criticized as having questionable validity for real world data. But 

despite various subtle theoretical differences, their only difference in practice is the size of the penalty; BIC 

penalizes model complexity more heavily. The only way they should disagree is when AIC chooses a larger 

model than BIC. 

AIC and BIC are both approximately correct according to a different goal and a different set of 

asymptotic assumptions. Both sets of assumptions have been criticized as unrealistic. Understanding the 

difference in their practical behavior is easiest if we consider the simple case of comparing two nested models. 

In such a case, several authors have pointed out that IC‟s become equivalent to likelihood ratio tests with 

different alpha levels. Checking a chi-squared table, we see that AIC becomes like a significance test at 

alpha=.16, and BIC becomes like a significance test with alpha depending on sample size, e.g., .13 for n = 10, 

.032 for n = 100, .0086 for n = 1000, .0024 for n = 10000. Remember that power for any given alpha is 

increasing in n. Thus, AIC always has a chance of choosing too big a model, regardless of n. BIC has very little 
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chance of choosing too big a model if n is sufficient, but it has a larger chance than AIC, for any given n, of 

choosing too small a model. 

So what‟s the bottom line? In general, it might be best to use AIC and BIC together in model selection. 

For example, in selecting the number of latent classes in a model, if BIC points to a three-class model and AIC 

points to a five-class model, it makes sense to select from models with 3, 4 and 5 latent classes. AIC is better in 

situations when a false negative finding would be considered more misleading than a false positive, and BIC is 

better in situations where a false positive is as misleading as, or more misleading than, a false negative. 

2.2 Artificial Neural Networks: 

First, Neural Networks are the algorithms (computer applications) that you use when you employ a 

techniquecalled Neural Computing. Neural Networks are very good at detecting patterns in data that may be too 

complexfor us to easily recognize. Using the recognized patterns they can tell us what data is important to the 

patternsand how to use the patterns to interpret new data, including often how to predict future patterns. You 

canconsider a regression model as just a specialized case of a Neural Network because, like regression, 

theknowledge of relationships between the data is stored in the weights (coefficients) that exist inside the 

NeuralNetwork. 

Neural Networks consists of two stages: the training and testing stages. The data is divided into two 

sets– a training (or model building) set and a testing set (as done in prior lessons for multiple regression 

analysis).The majority of the data is in the training set and the testing set is used to see how well themodel 

performed. 

Neural Network architecture, which is comprised of many nodes (perceptrons) arranged in three layers 

 Input layer – the entrances to the network, 

 Hidden layer – the turns inside the network, and 

 Output layer – the center of the network. 

The input layer is comprised of all the inputs that you are planning to use in the data analysis, such as 

square feetof living area and number of bedrooms. 

The output layer is comprised of the expected output or desired results and often a bias node, which is 

used toaccumulate the error from all of the nodes in order to adjust the weights between nodes for the next trial. 

The hidden layer is where all the work happens and is comprised of layers of interconnected 

perceptrons, which use mathematical concepts to determine the turns the data should take. These concepts range 

from simplesummations using weights, which is very similar to linear regression, to the application of vector 

calculus andclustering to determine the path that is the closest to the reality expressed by the data (more on that 

in thesupplement for those interested). Usually there is only one layer of perceptrons in the hidden layer; 

however,some models use two or more layers. In the simplest model, each perceptron in the hidden layer is 

connected toall of the perceptrons in the input layer and all outputs from the final perceptrons of the hidden 

layer feed in to the output layer perceptrons. 

2.2.1 Feed Forward Neural Networks: 

An artificial neural network, usually called neural networks, is a mathematical model or computational 

model that is inspired by the structure and/or functional aspects of biological neural networks. A neural network 

consists of an interconnected group of artificial neurons, and it processes information using a connectionist 

approach to computation. In a feed forward neural network (FFNN) structure, the only appropriate connections 

are between the outputs of each layer and the inputs of the next layer. Therefore, no connections exist between 

the outputs of a layer and the inputs of either the same layer or previous layers. In this topology, the inputs of 

each neuron are the weighted sum of the outputs from the previous layer. There are weighted connections 

between the outputs of each layer and the inputs of the next layer. If the weight of a branch is assigned a zero, it 

is equivalent to no connection between correspondence nodes. The inputs are connected to each neuron in 

hidden layer via their correspondence weights. Outputs of the last layer are considered the outputs of the 

network. Selecting the best number of hidden neurons involves experimentation. The forward selection method 

involves adding hidden neurons until network performance starts deteriorating. A neural network is required to 

go through training before it is actually being applied. Training involves feeding the network with data so that it 

would be able to learn the knowledge among inputs through its learning rule. Back propagation algorithm is 

used in supervised learning of the network. The main idea of the back propagation algorithm is to minimize the 

error, which is the difference between the expected value and the output of the model. Weights between neurons 

are adjusted until the error reaches an acceptable value. In order to train the network successfully, the output of 

the network is made to approach the desired output by continually reducing the error between the network's 

output and the desired output. This is achieved by adjusting the weights between layers by calculating the 

approximation error and back propagating this error from the final layer to the first layer. The weights are then 

adjusted in such a way to reduce the approximation error. The approximation error is minimized using the 

gradient descent optimization technique (Rojas 1996). 

Faraway and Chatfield (1998) compared FFNN models with a SARIMA model on their accuracy for 

forecasting airline data in which the FFNN model also reduces the mean square errors (MSEs) of out-of-sample 
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prediction. Rao(2011), Naveen Kumar Boiroju (2012) and Zhang et.al. (1998) provided a comprehensive review 

of the current status of research in this area. 

1. Rainfall Forecasting in Andhra Pradesh: 

The data has been taken to predict the rain fall ofAndhra Pradesh area of Andhra Pradesh from the year 

1951 to 2016. The data has monthly rainfall for each year. In this section, we have to check forecasting model to 

this data using one of statistical tool R software. In R software majorly we need packages for forecasting model. 

Using these packages is predicting the model for the Andhra Pradeshdata. The packages are „ggplot2’, 

„forecast’ and „tseries’. Install the above mentioned packages using install.packages() function and call that 

packages using library function as below: 

R> x=read.csv(file.choose(), header = T) 

R> AP=ts (x [, 3], start=c (1951, 1), end = c (2016, 12), frequency = 12) 

R>View(AP) 

R>summary(AP)#summery details of the rainfall 

Min.  1st Qu. Median  Mean 3rd Qu. Max.  

   0.0   32.2   135.9   220.4   370.2   981.0  

 The minimum and maximum rainfall is 0.00 and 981.0, first and third quartiles are 32.2and 370.2. it 

shows the data has much scatter. The deviation is 169. Mean and median rainfall of Andhra Pradesh is 220.4 an

d 135.9 respectively. 

R>plot (AP, xlab='year', ylab = 'Rainfall', main="Monthly mean Rainfall of Andhra Pradesh", col="blue") 

 
R>library(tseries) 

R>library(forecast) 

R>adf.test(AP, alternative= c("stationary", "explosive")) 

Augmented Dickey-Fuller Test 

data:  AP 

Dickey-Fuller = -12.788, Lag order = 9, p-value = 0.01 

alternative hypothesis: stationary  

Based on the graph, we cannot identify whether the data is in stationary or not. To check the stationary 

of the data we have applied Augmented Dickey-Fuller test. The test is significant (p=0.01), so the data is 

stationary and we can observe in the graph of the data and its differences also. 

R>Decom = decompose (AP) 

R>plot (Decom, col='red') 
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The above graph of decomposition, it has observed (which is drawn for original values), seasonal 

component (finding the seasonality), trend component and random. It shows the periodic seasonal pattern 

extracted out from the original data and the trend. 

R>acf(ts(AP), main= 'ACF of Mean rainfall', col = "red") 

 
>pacf(ts(AP), main= 'PACF of Mean rainfall', col = "red") 

 
The ACF and PACF plots of the residuals from the ARIMA (1,0,0)(2,0,0)[12] model shows all correlations 

within the threshold limits indicating that the residuals are behaving like white noise.  

R> y=auto.arima(AP, approximation = F, trace = F) 

R>y 

Series: AP  

ARIMA(1,0,0)(2,0,0)[12] with non-zero mean  

Coefficients: 

ar1    sar1    sar2     mean 

Estimates0.0717  0.4047  0.4089  215.497 

Standard error    0.0350  0.0269  0.0330   25.759 

sigma^2 estimated as 18949:  log likelihood=-5028.2 

AIC=10066.41   AICc=10066.48   BIC=10089.78 

The fitted ARIMA model for the data is ARIMA (1,0,0)(2,0,0)[12] with non-zero mean. The predicted 

values for coast area rain fall details using ARIMA method of (1, 0, 0) and (2, 0, 0) is given and forecasts from 

the ARIMA(1,0,0)(2,0,0)[12] model are shown in the graph. 

R> forecast(y, h=60) 

Point            Forecast     Lo 80       Hi 80       Lo 95        Hi 95 

Jan 2017      79.48285    -96.931  255.8976   -190.320   349.286 

Feb 2017      101.93115   -74.936186  278.7985   -168.564097  372.426 

Mar 2017      109.35396   -67.515695  286.2236   -161.144836  379.852 
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Apr 2017      109.89402   -66.975647  286.7637   -160.604795  380.392 

May 2017      178.85831     1.988641   355.7280    -91.640506  449.357 

Jun 2017        223.80622    46.936548  400.6759    -46.692599  494.305 

Jul 2017        364.46937   187.599705 5 41.3390    93.970558   634.968 

Aug 2017       348.31543   171.445757  525.1851     77.816610   618.814 

Sep 2017        323.52112   146.651452  500.3908     53.022305   594.019 

Oct 2017        378.09632   201.226647  554.9660    107.597500  648.595 

Nov 2017       140.43343   -36.436239  317.3031   -130.065386  410.932 

Dec 2017        91.99488   -84.874794  268.8645   -178.503941  362.493 

Jan 2018         95.56073   -95.176623  286.2981   -196.146877  387.268 

Feb 2018        111.47439   -79.331595  302.2804   -180.338185  403.287 

Mar 2018        124.29171   -66.514628  315.0981   -167.521404  416.104 

Apr 2018        119.64461   -71.161732  310.4510   -172.168509  411.457 

May 2018       189.13925   -1.667093   379.9456   -102.673871  480.952 

Jun 2018         214.19994    23.393591  405.0063    -77.613186  506.013 

Jul 2018          334.66970   143.863357  525.4760     42.856579   626.482 

Aug 2018        332.46594   141.659600  523.2723     40.652823   624.279 

Sep 2018         303.90881   113.102468  494.7152     12.095690   595.721 

Oct 2018         339.08087   148.274528  529.8872     47.267751   630.894 

Nov 2018        148.48252   -42.323821  339.2889   -143.330598  440.295 

Dec 2018        107.41206   -83.394286  298.2184   -184.401063  399.225 

Jan 2019         111.34240  -104.560424  327.2452   -218.852475  441.537 

Feb 2019        126.96171   -89.062510  342.9859   -203.418828  457.342 

Mar 2019       135.18423   -80.840615  351.2091   -195.197262  465.565 

Apr 2019       133.52426   -82.500592  349.5491   -196.857241  463.905 

May 2019      189.84855   -26.176300  405.8734   -140.532949  520.230 

Jun 2019        218.36953     2.344678   434.3944   -112.011971  548.750 

Jul 2019         324.64094   108.616088  540.6658     -5.740561   655.022 

Aug 2019      317.14399   101.119141  533.1688    -13.237508  647.525 

Sep 2019       295.44833    79.423480   511.4732    -34.933168  625.829 

Oct 2019       331.99804   115.973185  548.0229     1.616536   662.379 

Nov 2019      157.68262   -58.342232  373.7075   -172.698881  488.061 

Dec 2019      121.25484   -94.770010  337.2797   -209.126659  451.636 

Jan 2020       124.30355  -102.805103  351.4122   -223.029163  471.636 

Feb 2020      137.13185   -90.032350  364.2960   -210.285813  484.549 

Mar 2020      145.70045   -81.464033  372.8649   -201.717648  493.118 

Apr 2020      143.12851   -84.035975  370.2930   -204.289590  490.546 

May 2020     194.33930   -32.825188  421.5038   -153.078804  541.757 

Jun 2020       216.12924   -11.035242  443.2937   -131.288858  563.547 

Jul 2020        308.39756    81.233070   535.5620    -39.020545  655.815 

Aug 2020      304.46229    77.297804   531.6268    -42.955812  651.880 

Sep 2020       284.00508    56.840598   511.1696    -63.413017  631.423 

Oct 2020       313.17879    86.014305   540.3433    -34.239310  660.596 

Nov 2020      164.69724   -62.467251  391.8617   -182.720866  512.113 

Dec 2020      133.16113   -94.003354  360.3256   -214.256969  480.579 

Jan 2021      136.00206  -101.606989  373.6111   -227.389621  499.393 

Feb 2021      147.58041   -90.081110  385.2419   -215.891519  511.052 

Mar 2021      154.41035   -83.251434  392.0721   -209.061986  517.882 

Apr 2021      152.69070   -84.971092  390.3525   -210.781645  516.163 

May 2021      196.44683   -41.214961  434.1086   -167.025513  559.912 

Jun 2021       216.92741   -20.734378  454.5892   -146.544930  580.399 

Jul 2021        297.72291    60.061116   535.3847    -65.749436  661.195 

Aug 2021      293.06486    55.403065   530.7266    -70.407487  656.537 

Sep 2021       275.91440    38.252613   513.5762    -87.557939  639.386 

Oct 2021       302.66616    65.004369   540.3280    -60.806183  666.138 

Nov 2021      171.29796   -66.363833  408.9597   -192.174385  534.770 

Dec 2021      143.63994   -94.021854  381.3017   -219.832407  507.112 

R>plot (forecast(y, h=60), xlab='year', ylab = 'Rainfall', col="red") 
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3.1 Forecasting for Seasonal Differences: 

In this section, we have considered the rainfall data with differences. The same interpretation has been 

carried out for the below mentioned model. 

R>plot (diff (AP), main="Rainfall difference in Andhra Pradesh", ylab='Differenced Rainfall', col="red") 

 
 

R>acf(ts(diff(AP)), main = 'ACF of Rainfall differences', col = "blue") 

 
R>pacf(ts(diff(AP)), main = 'PACF of Rainfall differences', col = "blue") 
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R> y = auto.arima(diff(AP), approximation = F, trace = F) 

R>y 

Series: diff(AP)  

ARIMA(3,0,0)(2,0,0)[12] with zero mean  

Coefficients: 

ar1      ar2      ar3    sar1    sar2 

Estimates       -0.6703  -0.3878  -0.1804  0.4140  0.3891 

Standard error   0.0375   0.0430   0.0362  0.0328  0.0330 

sigma^2 estimated as 24043:  log likelihood=-5115.44 

AIC=10242.88   AICc=10242.99   BIC=10270.92 

R> forecast(y, h=60) 

Point              Forecast        Lo 80        Hi 80                             Lo 95      Hi 95 

Jan 2017      6.9803553  -191.7346   205.695322  -296.9280   310.888 

Feb 2017     21.5878978  -217.6390   260.814792  -344.2781   387.453 

Mar 2017      7.6660553  -231.8725   247.204596  -358.6765   374.008 

Apr 2017      0.1613994  -239.4985   239.821318  -366.3668   366.689 

May 2017     68.6469904  -171.4319   308.725866  -298.5220   435.819 

Jun 2017       43.2166482  -197.3097   283.742949  -324.6366   411.069 

Jul 2017        138.3278071  -102.2166   378.872263  -229.5532   506.208 

Aug 2017      -15.0630551  -255.6103   225.484144  -382.9483   352.821 

Sep 2017       -24.8926593  -265.4410   215.655644  -392.7795   342.994 

Oct 2017        52.8509127  -187.7019   293.403691  -315.0428   420.744 

Nov 2017      -232.814973  -473.3682    7.738357   -600.7094   135.079 

Dec 2017      -47.606542  -288.1599   192.946724  -415.5011   320.288 

Jan 2018        3.9405839  -250.2893   258.170427  -384.8704   392.751 

Feb 2018       15.433744  -244.7347   275.602116  -382.4595   413.320 

Mar 2018      12.511657  -247.7072   272.730546  -385.4588   410.481 

Apr 2018       -4.563277  -264.8014   255.674816  -402.5631   393.436 

May 2018      67.987428  -192.3167   328.291547  -330.1134   466.082 

Jun 2018        24.426597  -235.9486   284.801646  -373.7829   422.635 

Jul 2018       117.726478  -142.6516   378.104518  -280.4874   515.940 

Aug 2018     -2.1111048  -262.4896   258.267368  -400.3256   396.103 

Sep 2018      -27.930296  -288.3089   232.448356  -426.1451   370.284 

Oct 2018        34.328920  -226.0504   294.708276  -363.8869   432.544 

Nov 2018     -186.216436  -446.5959   74.163007   -584.4324   211.996 

Dec 2018       -40.134342  -300.5138   220.245100  -438.3503   358.086 

Jan 2019         4.347227  -278.8503   287.544791  -428.7661   437.460 

Feb 2019       14.788537  -278.0968   307.673867  -433.1409   462.710 

Mar 2019      8.162089  -284.8039   301.128077  -439.8907   456.219 

Apr 2019     -1.826203  -294.8234   291.170995  -449.9268   446.273 

May 2019     54.853788  -238.2511   347.958628  -393.4114   503.190 

Jun 2019       26.926715  -266.2934   320.146877  -421.5148   475.363 

Jul 2019        102.55579  -190.6691   395.780619  -345.8930   551.005 

Aug 2019     -6.734795  -299.9604   286.490772  -455.1846   441.710 

Sep 2019      -21.247449  -314.4733   271.978403  -469.6977   427.208 
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Oct 2019       34.774487  -258.4525   328.001490  -413.6775   483.225 

Nov 2019     -167.671759  -460.8988  125.555428  -616.1239  280.705 

Dec 2019      -35.137166  -328.3643   258.089970  -483.5894   413.310 

Jan 2020       3.332808  -300.1195   306.785096  -460.7574   467.423 

Feb 2020      12.126933  -295.8215   320.075313  -458.8395  483.093 

Mar 2020      8.246928  -299.7395  316.233333  -462.7776  479.275 

Apr 2020       -2.531496  -310.5325   305.469529  -473.5784   468.514 

May 2020     49.160381  -258.8910   357.211751  -421.9635   520.243 

Jun 2020       20.650637  -287.4548   328.756037  -450.5559   491.852 

Jul 2020        88.259952  -219.8477   396.367559  -382.9500   559.469 

Aug 2020     -3.609329  -311.7173   304.498607  -474.8198   467.611 

Sep 2020      -19.662943  -327.7710  288.445126  -490.8736   451.577 

Oct 2020        27.752209  -280.3564   335.860819  -443.4592   498.937 

Nov 2020     -141.863962  -449.9726   166.244710  -613.0755   329.376 

Dec 2020      -30.161176  -338.2699   277.947498  -501.3727   441.054 

Jan 2021        3.071102  -314.1930   320.335189  -482.1424   488.287 

Feb 2021       10.774109  -310.5267   332.074914  -480.6131   502.163 

Mar 2021      6.589664  -314.7452   327.924524  -484.8496   498.029 

Apr 2021     -1.758491  -323.1065   319.589509  -493.2178   489.709 

May 2021     41.693381  -279.6999   363.086680  -449.8353   533.220 

Jun 2021      19.025486  -302.4165   340.467279  -472.5775   510.623 

Jul 2021       76.439371  -245.0045   397.883169  -415.1666   568.043 

Aug 2021     -4.114552  -325.5587   317.329598  -495.7210   487.419 

Sep 2021     -16.40679  -337.8511   305.037471  -508.0134   475.198 

Oct 2021     25.018649  -296.4261   346.463404  -466.5887   516.620 

Nov 2021    -123.96507  -445.4099   197.479732  -615.5725   367.643 

Dec 2021     -26.156976  -347.6018   295.287837  -517.7644   465.454 

R>plot(forecast(y, h=60), xlab='year', ylab = 'Rainfall', col="red") 

 
3.2 Building FFNN Model: 

The data set is partitioned into two sets namely training set and testing set. For model building 71.2% 

of the data is taken as training set and 28.8% of the data is taken as testing set. The feed forward neural network 

(FFNN) consists of input layer, hidden layer and output layer. Input layer consists of 12 units representing the 

month (numbers from 1 to 12), 1tZ  and 12tZ  values. Output layer consists of only one neuron and represents 

the forecast value ( tẐ ) of the series. Number of hidden neurons in the hidden layer is determined using forward 

selection method. The optimum number of hidden neurons is four. Hyperbolic tangent function is used as an 

activation function and scaled conjugate gradient algorithm is used to train the network. The network is trained 

until the number of epochs is equivalent to 10,000. SPSS software is used to train the network. With the above 

specifications the following synaptic weights are obtained.  

Case Processing Summary 

 N Percent 

Sample Training 47 71.2% 
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Testing 19 28.8% 

Valid 66 100.0% 

Total 66  

 
Model Summary 

Training 
Sum of Squares Error 13.417 

Relative Error 0.583 

Testing 
Sum of Squares Error 4.639 

Relative Error 0.702 
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Parameter Estimates 

Predictor 

Predicted 

Hidden Layer 1 Output Layer 

H(1:1) H(1:2) H(1:3) YEAR 

Input Layer 

(Bias) -0.598 0.651 0.405  

JAN -0.556 -0.918 0.061  

FEB -0.518 -0.725 0.028  

MAR -0.510 -0.241 0.154  

APR 0.350 -0.777 0.004  

MAY -0.341 -0.352 -0.814  

JUN 1.065 -1.037 0.143  

JUL -0.108 -0.383 -1.047  

AUG -0.740 -0.188 -0.530  

SEP -0.275 -0.412 -0.526  

OCT -0.103 -0.198 -0.023  

NOV -0.280 -0.056 0.024  

DEC 0.250 -0.035 -0.693  

Hidden Layer 1 

(Bias)    -0.273 

H(1:1)    -0.535 

H(1:2)    -0.572 

H(1:3)    0.371 

 The below model is used to forecast the values of monthly mean rainfall of Andhra Pradesh.FFNN 

forecasting model can be constructed using above synoptic weights as follows 

  )3:1(371.0)2:1(572.01:1535.0273.0ˆ HHHZs   

Where 

 
























)(250.0)(280.0)(103.0)(275.0

)(740.0)(108.0)(065.1)(341.0

)(350.0)(510.0)(518.0)(556.0598.0

1:1

DECINOVIOCTISEPI

AUGIJULIJUNIMAYI

APRIMARIFEBIJANI

TanhH

 

 
























)(035.0)(056.0)(198.0)(412.0

)(188.0)(383.0)(037.1)(352.0

)(777.0)(241.0)(725.0)(918.0651.0

2:1

DECINOVIOCTISEPI

AUGIJULIJUNIMAYI

APRIMARIFEBIJANI

TanhH

 

 
























)(693.0)(024.0)(023.0)(526.0

)(530.0)(047.1)(143.0)(814.0

)(004.0)(154.0)(028.0)(061.0405.0

2:1

DECINOVIOCTISEPI

AUGIJULIJUNIMAYI

APRIMARIFEBIJANI

TanhH

 

 
Conclusion: 

The data has been fitted to the ARIMA (1, 0, 0) (2, 0, 0)[12] model for rainfall of Andhra Pradesh. 

Augmented Dickey-Fuller Test has been tested for stationarity of the data. Basing on the p-value (p=0.01), the 

data has been stationary and we have applied for auto ARIMA to find and check the best model using R. We 

made the interpretation basing on the AIC and BIC values of the model. The lowest AIC and BIC will give us 
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the best fit of the forecast model. Based on auto ARIMA, the best fitted model has been found ARIMA (1, 0, 0) 

(2, 0, 0) [12], which has the seasonality. The prediction values and its graphs have been shown. Using neural 

network, it found that there are three hidden layers, from which it has been given the hyperbolic tangent form. 

Predicted and residual plot has been shown in the graph. 
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