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Abstract

This paper presents a novel method for visual-based 3D mapping of underwater cultural heritage sites
through marine robotic operations. The proposed methodology addresses the three main stages of an
underwater robotic mission, specifically the planning phase, the mission-time and the offline processing
phase. Initially, we approach mission planning through multi-vision sensor configurations and simulations
of the underwater medium’s effects. Subsequently, we demonstrate a possibility for real-time 3D surface
reconstruction and hole detection by using Poisson Surface Reconstruction (PSR) and the Ball Pivoting
Algorithm (BPA), that allows for real-time quality assessment of the acquired data and control of the
coverage of the site. Last, an offline photogrammetric workflow is discussed in terms of geometric reliability
and visual appearance of the results. The presented three-steps methodological framework has been
developed and tested in both simulation and real-world environments for three wreck sites in the fjord of
Trondheim, Norway, introducing among others novel marine robotic technology like the articulated robot
Eelume.
Keywords: marine robotics; underwater cultural heritage; shipwreck mapping; surface reconstruction; hole
detection; full site coverage; Ball Pivoting Algorithm; snake robot
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Introduction

By definition, Underwater Cultural Heritage (UCH) is inaccessible to archaeologists and the public without
the application of technological help of some kind. In shallow waters, diving gear can allow human presence
on the seabed for a limited time, while it is an enabling technology for the development ofmarine archaeology
as a sub-discipline. In areas that are too deep, or otherwise prohibits diving, the use of robots is often the
only realistic option available for detecting, investigating, and experiencing underwater cultural heritage.

Although robots do not have the physiological limitations that humans do for being underwater for long
durations, in practice time is still an important factor in terms of energy consumption (batteries) or opera-
tional costs (expensive surface vessels). Effectiveness is an important benchmark for methodological choices.
The increasing capabilities of payload sensors for a variety of platform options, from Remote Operated Vehi-
cles (ROVs) to fully autonomous ones like Autonomous Surface Vehicles (ASVs) and Autonomous Underwater
Vehicles (AUVs), smoothen the path for the maritime archaeologist to pick the right tools for the right venture
(Ludvigsen and Sørensen, 2016; Ødegård, Nornes, et al., 2016).

For surveying, mapping and investigations of UCH sites, acoustic sensors can provide large area coverage
underwater, but lag behind optical sensors in resolution and photorealistic capabilities, two keystones when
it comes to archaeological interpretations of a site (Ødegård, Sørensen, et al., 2016). Multiple underwater
imaging systems mounted on Unmanned Underwater Vehicles (UUVs), as well as innovative computer vision
approaches, offer significant potentials in high-resolution data acquisition and mapping outcomes respec-
tively for sites of high spatial and structural diversity (Figure 1).

Figure 1. Spatiotemporal graph of 3D documentation and mapping of underwater archaeological sites of
diverse scales and structural complexities via marine robotic operations. (SLAM: Simultaneous localization
and mapping)

The effective range of cameras for providing high quality images are limited by the inherent optical prop-
erties of the water column (total suspended matter, colored dissolved organic matter and phytoplankton)
causing color absorption and backscatter. These limitations can be mitigated by navigating the instrument
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carrying platforms close to the objects or areas of interest, but would normally require detailed a priori knowl-
edge of the area of operations. Recent literature ( Karapetyan et al., 2021; Leonardi, Stahl, Gazzea, et al., 2017;
Palomeras et al., 2018; Sheinin and Schechner, 2016; Wu et al., 2019) presents promising steps towards intelli-
gent path planning approaches for optimal collection and online assessment of visual data, collision avoidance
and operational cost-effectiveness in underwater environments.

For telepresent intervention or even excavation with robots, the operator must have sufficient information
for making appropriate decisions for operations. Sensor data, on the other hand, must provide a situational
awareness that is sufficient for both scientific and navigational decision making. Maneuvering and operation
of a robotic platformmust be sufficiently precise and tactile to perform visual scanning in sites of delicate and
fragile objects or in cases of high structural complexity like wreck sites.

The main goals of a non-intrusive mission of a wreck site documentation are threefold: to acquire high
quality data, to reduce or even eliminate relevant risks for both the vehicle and the site, and to do so through
the most cost-effective way. The scientific contribution of the proposed methodology is to address all these
three main goals. Given a basic amount of existing a priori knowledge of a site’s environment, our method
proposes the first runs of an underwater mapping mission within a simulation environment. Developing and
working with synthetic datasets exceeds the cost-effectiveness of real-worldmissions, as (nearly) all salient pa-
rameters of the site’s geometry and prevailing conditions can be parameterized and controllable (Zwilgmeyer
et al., 2021). The vehicle’s trajectories, the sensor’s distances and viewpoints (sensors poses), the desired spa-
tial resolution as well as the the environmental conditions (visibility and illumination) can be pre-estimated
and simulated precisely (Hodne et al., 2022).

The current work proposes a workflow for the three main phases of an underwater robotic mapping op-
eration on a wreck site; the pre-mission phase, the main mission time and the post-mission phase (Figure
3). Mission planning, real-time evaluation of data acquisition, photogrammetric mapping and interpretation
of UCH sites are investigated and implemented through vision sensing technologies, online and offline. First,
the paper provides an overview of the state-of-the-art of marine technologies and algorithmic solutions for
underwater archaeological documentation, while next, the authors present their method through samples
of their ongoing research on visual-based mapping of underwater cultural heritage, in both simulation and
real-world operations. Themain contribution of this paper is the investigation of techniques that optimize the
photogrammetric data acquisition during a robotic mission at an underwater archaeological or historical site.
The branches of this main contribution are:

• the emphasis on the importance of simulations before a robotic operation. Multiple sensors configura-
tions (with a focus on optical sensors), the underwater medium’s effects and the robot’s path are first
estimated and tuned into a simulation environment, thus reducing significantly the time on site, while
increasing operational operational efficiency and collected data quality.

• the real-time evaluation of data, through real-time surface reconstruction and holes detection that en-
sures full coverage, and prevents from revisiting the site.

• the investigation of the potentials of breaktrough marine technology like the snake robot Eelume into
marine archaeological research.

• the validation of the proposed three-phases workflow for UCH photogrammetric mapping in real-world
experiments.
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State-of-the-art in marine technology

The photogrammetric documentation of underwater archaeological sites via submersibles dates back to
the 1960s, when the Yassi Ada Byzantine wreck was surveyed without the necessity for human divers despite
its non-restrictive depth of 35 meters (Bass and Rosencrantz, 1972). Throughout the late 1980s, Unmanned
Underwater Vehicles (UUVs) began to be systematically deployed for the digital recording of marine archaeo-
logical sites in theMediterranean (Ballard et al., 2000; Bingham et al., 2010). Remote Operated Vehicles (ROVs)
have exhibited their increased effectiveness in surveying multiple wreck site scenarios the last decades. Their
umbilical provides extended, if not unlimited, power supply and seamless data transfer, thus facilitating deep-
waters surveys and real-time mapping results. Work-class ROVs, mainly developed and utilized in offshore
industry, are proficiently adopted by the field of marine archaeology, thanks to their high sensors payload
capacity. The discovery and surveying of 65 wreck sites in a depth range from 40 to 2,200 meters during the
Black Sea MAP project (Pacheco-Ruiz et al., 2019), the surveying of the 170 meters deep 18th century wreck
at Ormen Lange in Norway (Soreide and Jasinski, 2005, Figure 2) and the photogrammetric mapping of the
330 meters deep Roman shipwreck Cap Benat 4 during the “The ROV 3D” project (Drap et al., 2015) are three
indicative examples of the successful use of such advanced offshore technology.

(a) ROV Minerva surveying the 18th ct. wreck at Ormen
Lange, Norway, 170m deep (Courtesy of Vitenskapsmuseet,
NTNU).

(b) ROV control room (Courtesy of AUR-lab, NTNU).

Figure 2. ROV operations in shipwreck environments.

Work-class ROVs can be challenging for maneuvering in tight spaces and gives less freedom to bring the
instruments and sensors close to objects or areas of interest without risk to both vehicle and UCH. Mini-ROVs
(drones) are increasingly demonstrating the same capabilities when it comes to precision in positioning and
navigation, and with adequate payload capabilities to carry selected sensors bespoke to purpose.

Recent advances in research on autonomous robotic operations has benefited underwater archaeological
projects as well. AUVs, typically underactuated and torpedo-shaped, have been effectively employed for the
mapping of diverse sites, like the shallow-waters Bronze Age city of Pavlopetri in Greece (Johnson-Roberson
et al., 2017) and the 90 meters deep 17th century shipwreck La Lune in France (Gracias et al., 2013). Due to
the absence of direct GPS signal and data transfer, deploying AUVs for optical underwater surveying requires
a delicate mission planning for the area of interest, which involves high accuracy navigation and positioning
aids. AUVs normally use a combination of acoustic positioning and dead reckoning, using Doppler Velocity
Logs (DVL) and Inertial Measurement Units (IMU) for estimating speed and orientation respectively, while in
some cases Simultaneous Localization and Mapping (SLAM) techniques are applied (Leonardi, Stahl, Brekke,
et al., 2023). Research in the field of autonomous operations is focused on optimizing visual-based navigation

4



through Visual SLAM (VSLAM) and Visual Odometry (VO) techniques (Williams et al., 2016) and intelligent path
planning methods that ensure full coverage of the surveying area (Karapetyan et al., 2021) and collision-free
trajectories (Ochoa et al., 2022), even for scenarios of siteswithout any apriori knowledgeof their environment.
For shallow waters or coastal UCH sites, ASVs are demonstrated as suitable platforms for documentation and
mapping purposes (Vasilijevic et al., 2015).

In the last decade, articulated marine robots with increased kinematic degrees of freedom have been in-
troduced to marine archaeology. The humanoid UUV Ocean One has been deployed on the La Lune wreck
(Khatib et al., 2016), while the Eelume snake robot, with its high payload capabilities including multiple optical
and acoustical sensors as well as a high accuracy positioning system, exhibits promising potential for its uti-
lization in shipwreck mapping (Liljebäck and Mills, 2017).

Underwater LiDAR has started to become popular in recent years. In the work of Akkaynak et al., 2022, they
use Underwater LiDAR to obtain the depth of the camera scene to restore the color of the underwater scene.
This has much potential in obtaining incremental point clouds with high density and accuracy.

In parallel with the marine robotic platforms, significant progress has been showcased on underwater op-
tical sensors. The triptych of a complete underwater imaging system consists of three main components: the
camera sensor, the housing interface, and the additional artificial source of illumination. (Song et al., 2022)
list comprehensively the state-of-the-art in subsea imaging systems with respect to parameters like the depth
rating, the port type, and the diagonal field of view (FoV). As underwater photography is progressing, so does
the possibility for high-resolution photogrammetric mapping of submerged archaeology. Even low-cost com-
mercial action cameras with embedded Inertial Measurement Units (IMU) offer capabilities for detailed 3D
reconstructions through the recording of high-definition videos with synchronized IMU measurements. The
port types of housing interfaces are divided into two main categories: the flat ports and the dome ports. Al-
though flat ports are cheaper construction-wise, dome ports’ main concept is to compensate for the refractive
geometry of the system “camera-housing” and restore the basic principle of the pinhole camera. The thick-
ness of the housing, especially in cases of housings made for deep waters that tolerate high pressure, needs
to be taken into account (Song et al., 2022). Finally, for unbiased 3Dmeasurements, the complicated refractive
geometry of an underwater imaging system has to go through an accurate geometric calibration process.

In the following sections of this paper we use selected case studies of shipwrecks in the Trondheimsfjord,
Norway, to demonstrate steps in our proposed method. The cases are from the ongoing multidisciplinary
research at NTNU’s Applied Underwater Robotics Laboratory (AUR-Lab):

• Tugboat M/S Herkules, which sank in 1957 outside Trondheim’s harbour, laying 50-60 meters deep, of
limited archaeological interest, but serves well as a case study for exploring the challenges associated
with navigation and mapping of modern and structurally intricate shipwrecks. The medium sized ROV
SUB-Fighter 30K (Figure 4) was used for data acquisition in real conditions (Nornes et al., 2015), while
the snake robot Eelume was included in a simulation scenario of the photogrammetric scanning of the
wreck (Figure 5).

• Schooner M/S Helma, which burned down and sank in 1927 off the Skogn coast in the northern part
of Trondheimsfjord is a semi-disintegrated wreck site, that lays 55 meters deep. Its wooden parts have
been mostly burned away, while parts like the boiler and the engine are better preserved. This wreck
also demonstrates a list of challenges in mission planning for a complete photogrammetric documenta-
tion, like protruding objects as obstacles or very fine elements for a 3D reconstruction (Diamanti et al.,
2021). Themedium sized ROV SUB-Fighter 30K (Figure 4) was used for data acquisition in real conditions,
while supplementary data were collected by the underwater drone Blueye (Figures 4 and 6).
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• Seaplane Heinkel He 115 wreck, which sank after an allied air attack in July, 1943, in Ilsvika area, south of
the Trondheimsfjord, in a depth range of 35-45 meters, is an easily approachable site with considerable
dimensions - 17x22x6 meters- for 3D mapping experiments (Dykking.no 2023). The snake robot Eelume
was deployed for the collection of videos and multibeam data (Figure 10).

The proposed method

The proposed method introduces a mission timeline (Figure 3) that is structured as follows:
First, the planning phase involves:
• the definition of the mission’s scope and required results,
• the gathering of all a priori knowledge (if any) for the site,
• the selection of the most suitable UUVs and sensors,
• the configuration and calibration of all sensors,
• and the design and tuning of the mission within a simulation environment, where the effects of the
inherent optical properties of the water column as well as the robot’s trajectories are simulated.

Second, the mission-time phase involves:
• the pre-planned real-world operation,
• the real-time data visualization and assessment,
• and the real-time readjustment of the path, based on data quality, resolution, and coverage criteria.
Third, the post-mission phase involves:
• the post processing of the collecteddata, including imagepre-processing (image enhancement/restoration),
Structure from Motion processing, scaling and georeferencing,

• results evaluation in terms of geometric accuracy and texturing uniformity, based on objective and sub-
jective criteria respectively,

• and the visualization and interpretation of the final outcomes.

Planning a mission

Defining sensors configurations

For the simulated and real-world experiments of this work, multiple imaging systems were considered for
three different sensor-carrying platforms: the light work class ROV SUB-Fighter 30K, which has the highest
payload capacity among the three UUVs, the compact Blueye underwater drone and the articulated snake
robot Eelume. Three scenarios of multi-camera configurations for visual mapping, one for each vehicle, are
presented (Figure 4):

• A 45°-down-looking stereo rig of two Allied Vision GC1380C cameras, a 45°-looking ZED depth stereo-
camera and a down-looking GoPro camera, mounted on the 30K ROV.

• A down-looking stereo rig of two GoPros and an integrated HD wide lens camera in the Blueye ROV.
• Four GoPro cameras distributed along the modules of the Eelume ROV and two integrated cameras in
the snake robot, one forward looking and one down-looking in the middle module.
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Figure 3. Flowchart of the proposed method: The three phases of an underwater robotic operation for the
documentation of UCH sites.

The concept behind the implementation of multi-camera systems, or multi-vision, facilitates all the basic
needs of an underwater mapping mission. First, the extension of the FoV offers higher potentials for full cov-
erage of the site, while it reduces the required movements and maneuvers, and respectively the dive time
of the vehicle. Another advantage of extended viewing frustum is detection of obstacles to decrease risk for
collisions. Finally, in photogrammetric terms, a network of cameras of known relative locations and orienta-
tions, besides the redundancy in projections of 3D points thanks to overlap, they can provide scale to the 3D
reconstruction. On the other hand, multi-vision systems, especially underwater, require a lot of planning in
the setup of the additional lights, so that a consistency in illumination and color can be achieved. This plan-
ning is feasible within a simulation environment, as it is described in the proposed system of the following
section. Moreover, the synchronization of all optical sensors within the same system is not always straightfor-
ward, referring especially to the sensors which are not connected to the control system of the vehicle, like the
action cameras in our case. An example of a multi-camera photogrammetric mission at M/S Herkules wreck
is depicted in Figure 5, where two recording scenarios are simulated: on the left, a vertically-sway path with
the vehicle in a straight pose and in a 90 degrees roll so that cameras are capturing the hull sides of the ship,
and on the right, a vertically-sway path, keeping the 90 degrees roll configuration, but with the vehicle in a
U-shape, following the bow’s geometry.

In cases of lack of synchronization, there are a few actions that can be taken so that footage from all sen-
sors can be post-synchronized. Oneway is flashing the lights in a pattern and themeasurement of themedian
intensity values for high frequency frames for each dataset, while another way can be based on the alignment
of the vehicle’s trajectories for each dataset. The second, geometrical way of synchronization, can only be
achieved in the first two multi-camera scenarios, where all cameras move as a rigid body in 3D space. For the
snake robot scenario, cameras are synchronized roughly by their internal clocks and more accurately by light
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Figure 4. Left: A ZED stereo camera, a stereo rig of HD cameras and a GoPro cameramounted on SUB-Fighter
30K ROV.Middle: A down-looking stereo rig of GoProsmounted on a Blueye ROV. Right: Four GoProsmounted
along the snake robot.

Figure 5. Left: Eelume snake robot scanning the hull of M/S Herkules wreck in a straight pose. Right: Eelume
snake robot scanning the bow of M/S Herkules wreck in a U-shape.

intensity measurements.
Camera calibration is also an important component of the mission planning (Pre-Mission phase in Figure

3). The cameras’ housings and their customized viewports cause refraction in the light beams and cancel the
standard pinhole camera model. For offline photogrammetry, calibration data acquisition is not necessarily
required before the main mission, but in cases of accurate real-time reconstructions, the camera intrinsic
parameters need to be pre-estimated. For the estimation of each camera’s intrinsics, we follow the typical
checkerboard data acquisition (Zhang, 2000)(Figure 6).

Simulating the underwater medium’s effects

Ocean optics involves a range of complex physical processes. One of the main challenges for realistic imag-
ing is accurately simulating the propagation of light in the underwater environment. This pertains primarily
to the effect of volumetric scattering of light, the effect of reflected light from surrounding objects, as well as
camera settings. This can be accomplished using 3Dmodeling and rendering software such as Blender™ (Com-
munity, 2018), which allows for editing input data through nodes. A node in Blender is a collection of data and
is used for tuning input data by different parameters to get desired outputs (Zwilgmeyer et al., 2021). This in-
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Figure 6. Calibration of the Blueye’s ROV integrated camera.

cludes nodes with parameters that can be tuned for the simulation of volumetric light scattering. Zwilgmeyer
et al., 2021 have created an underwater environment in Blender. This setup was used for simulating under-
water conditions for the existing 3D model of the Herkules wreck from Nornes et al., 2015. A real underwater
image was also used as a reference to tune the node’s parameters of the simulated underwater environment.
There are mainly four parameters to tune:

• Volume density: Indicates how many particles are in a volume to mimic volumetric scattering.
• Scattering direction (anisotropy): Represents the main scattering direction.
• Scattering color: Represents the color of the light scattered by the water medium.
• Absorption color: Represents the color of the light passing through the water medium.

The 3D model of the Herkules and its reference image was used as an example (cf.Figure 7). The 3D model
was imported into Blender, and the Principled Volume node in Blender was used for mimicking volumetric scat-
tering. The Principled Volume node in Blender is commonly used to simulate fog and smoke. The parameters
of the node were intentionally tuned in order to make the synthetic image resemble the reference image as
closely as possible. Since the Principled Volume node only alters the model’s surroundings to simulate the wa-
termedium, it should not have an impact on the 3Dmodel itself. This implies that the tuned node’s parameters
should be applicable to the rest of the reference images, evenwith a different camera location and orientation.

(a) Real Herkules image sequence serves as the reference images. (b) The 3D model of the Herkules wreck is utilized in
Blender to simulate underwater images.

Figure 7. The 3D model was imported into Blender, and the Principled Volume node was used for mimicking
volumetric scattering. The parameters were set as follows: scattering color to RGB (0.008, 0.012, 0.264); ab-
sorption color to RGB (0.628, 0.628, 0.628); density to 0.1, and anisotropy to 0.9.

Once the simulated image is close enough to the reference image, one can define the whole path of the
virtual camera in the simulation software (Pre-mission phase in Figure 3). This will generate a sequence of
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images with and without the underwater medium’s effect, depth map image, and ground truth of camera lo-
cation and orientation. This data can be used for verifying path planning algorithms or visual-SLAMalgorithms.

Running a mission

Real-time 3D point cloud data acquisition

Exploring the possibility of obtaining 3D point clouds incrementally enables qualitative evaluation during
robot operation (Mission phase in Figure 3). In addition, several surface reconstruction methods can be ap-
plied to 3D point clouds to obtain a surface model.

This section discusses two possible sensor setups to obtain incremental 3D point clouds underwater:
• (Stereo-) camera(s) + Artificial light(s) + IMU
• Multibeam Echosounder (MBES)
(Stereo) images from (stereo-) camera(s) can be used with/without IMU for performing Visual-inertial SLAM

(VISLAM). A VISLAM system processes a sequence of (stereo) images in real-time. It produces a camera trajec-
tory (location and orientation) and a 3D point cloud. The point cloud and camera trajectory are frequently up-
dated during the real-time process. Data association between the images is utilized to compute a new camera
location and orientation. The process repeats to build the camera trajectory and point cloud incrementally.
IMU data will further increase the robustness of VISLAM. A state-of-the-art VISLAM system, ORB-SLAM3 (C
Campos et al., 2021), was applied to the underwater sequence of the Herkules wreck (Figure 8b) without avail-
able IMU data. This experiment was performed offline, not during a mission; however, ORB-SLAM3 is able to
perform real-time processing given a frame rate of 24 frames per second (FPS). The ORB-SLAM3 system was
able to track the camera trajectory and constantly updated the point cloud during tracking. The system lost
tracking after ten minutes in a scene containing mainly vast blue darkness with no distinct features. Dynamic
objects, like fishes, were mostly ignored by the ORB-SLAM3 system. Figure 8a shows the camera trajectory
and point cloud at a given time during tracking. The 3Dmodel of the Herkules shipwreck is shown in Figure 9.

Another way of obtaining a real-time 3D reconstruction that aids the path re-planning is the use of sonar
data, like 3D bathymetry data from a multibeam echosounder. This acoustic sensor detects the distance be-
tween the sonar sensor and the object by the reflection of acoustic waves. The transmitter sends multiple
acoustic waves across a surface per time instance, and the receiver receives the rebound signals. With the
navigation data, the point cloud can be geo-referenced for each time instance. Figure 10 shows a 3D point
cloud of the WWII Heinkel He 115 seaplane wreck generated by MBES. MBES generally generates a much
denser point cloud than most Visual SLAM methods in underwater environments.

Real-time surface reconstruction and data assessment

Surface reconstruction methods can be applied during mission time when real-time incremental 3D point
cloud data is available (Mission phase in Figure 3). In the field of computer graphics, there are established sur-
face reconstruction methods such as the Poisson Surface Reconstruction (PSR)(Kazhdan et al., 2006) method
and the Ball Pivoting Algorithm (BPA)(Bernardini et al., 1999).

PSR reconstructs a water-tight surface from the point cloud data. Regions with few or even no points will be
reconstructed by interpolation and extrapolation, andmay therefore not represent the real-worldmodel. This
means it can fill holes even in the absence of point cloud data. Points around the local surface can be used for
estimating the lacking information. The region of missing information is represented by a darker color; see
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(a) The frequently updated point cloud and trajectory of the monocular camera.

(b) The green boxes are feature point regions recognized by ORB-SLAM3. Those are used to estimate camera
location and orientation.

Figure 8. Applying ORB-SLAM3 to real underwater footage of the Herkules wreck without IMU.

Figure 12 and 11b. In addition, the 3D points do not lie on the surface of PSR exactly. One can consider the
surface as an approximation of the ‘mean’ surface of the point cloud. This property suits well for very noisy
data (but not outlier data). In contrast, BPA generates from the point cloud data a surface withmissing surface
information (holes). These holes can be detected and directly indicate lack of information. Not all points are
used for the reconstruction. Points that contribute to the surface lie precisely on the surface itself, as depicted
in Figure 11a. This implies the noisy data will have a more significant influence on the surface reconstruction
compared to the PSR method.

The BPA is a conceptually incremental surface reconstruction method. In contrast, Poisson surface recon-
struction can not handle incremental point cloud data since the surface is an iso-curve of a solution to a
Poisson equation. However, it seems PSR can be further developed in an incremental manner, shown by Yu
et al., 2019. Both BPA and PSR require normal vectors of the point cloud as input. A normal vector of a point
represents the infinitesimal surface orientation near the point. Usually, it is not simple tomeasure the normal
vector of the detected point. However, there is a way to approximate it.

1. First, calculate the line-of-sight vector from the detected point to the simultaneous sensor. A line-of-
sight vector represents the direction from the detected 3D point to the sensor discovering it.

2. Then, the line-of-sight vectors can be refined by incorporating the information from neighboring points
to improve the estimation of normal vectors. Open3D (Zhou et al., 2018) provides such functionality.
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(a) Overview of the Herkules model and a virtual
camera.

(b) Image from the virtual camera. Similar location andorientation
as in Figure 8

Figure 9. The Herkules model in Blender.

Figure 10. Digital Terrain Model (DTM) built from a point cloud of the WWII airplane wreck obtained by a
multibeam echosounder sensor on the Eelume snake robot (Courtesy of Eelume AS).

Based on our experiments, the normal vector estimation gave satisfactory qualitative results due to the initial
input of the line-of-sight vector. The estimated normal vectors were good enough to be used by the BPA and
the PSR method.

An experiment was performed to apply the BPA and the PSR method to MBES point cloud data; see Figure
12. 10000 points were randomly selected. BPA generated holes, and PSR generated no holes but different
colors of triangle vertices to indicate lack of information. Figure 12a shows holes generated by BPA. Using
PSR, regions of missing information (no point cloud data information) in the same region of interest are filled
by interpolation and represented by a darker color.

With BPA, all holes can be extracted; Figure 13b shows all the holes extracted from Figure 12. Principal
Components Analysis (PCA) can be utilized to determine the hole’s position and dominant orientation. This
is presented in Figure 13a with the red, green, and blue arrows with coordinates corresponding to X, Y, and
Z, respectively. Since it is possible to obtain the position orientation of holes in real-time, the robot can, in
theory, autonomously target the hole and gather more information.

The PSR method processes two million points in 2.5 seconds. However, when the point cloud accumulates
over time during a large-scale mission, PSR will take too much computational time as it processes the entire
point cloud at once, whereas BPA considers the local point cloud as it could, in theory, process the point cloud
data incrementally. Our main goal here is to show the possibility of performing real-time 3D surface recon-
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(a)BPA: The black lines represent the surface in 3D. The
green circle is a ’2D ball’ used for reconstructing the sur-
face. Notice that there is no line in between because
the gap is too big compared to the diameter of the ball.

(b) PSR: The lines represent the surface in 3D. The light
orange line indicates good support from its neighbor
points; the dark orange line indicates bad support from
its neighbor points. Points do not lie on the surface in
general.

Figure 11. Demonstration of the intuition of BPA and PSR.

(a) Ball Pivoting Algorithm with balls radii 0.5, 0.7, 1.0
meters. All holes indicate lack of information.

(b) Poisson Surface Reconstruction with the level of de-
tail 9. The reconstruction surface’s colors indicate the
lack of information from violet to yellow. Violet indi-
cates the least supported surface patch; Yellow indi-
cates the most supported surface patch. We use the
plasma color scale from matplotlib (Hunter, 2007).

Figure 12. There are 2159476 points from the seaplane wreck (see 10). 10000 points were extracted from it.
The BPA and the PSR method from Open3D were applied to the extracted point cloud. (Zhou et al., 2018).

struction and detection of missing surface data (holes) during an online mission. Currently, this approach was
tested using simulated data, and it shows promising results. We will transfer it to a real experiment in the
future. For the time being, PSR is preferable since we can execute PSR on the research vessel immediately
after the first scanning. As illustrated in Figure 12b, this procedure enables us to evaluate the integrity of the
triangularmesh generated by PSR. Consequently, it helps identify specific sections of the shipwreck thatmight
need more detailed data collection before the research mission concludes. Regrettably, the ORB-SLAM3 sys-
tem does not offer an API (Application Programming Interface) for accessing the point cloud, preventing us
from conducting BPA and PSR.

Processing a mission

Structure from Motion

Once the mission has been completed with respect to the initial documentation’s requirements and real-
time evaluation of the quality of the data, offline processing begins (Post-mission phase in Figure 3). Before
the initialization of a typical Structure from Motion (SfM) workflow all gathered data need to be filtered for
their adequateness for 3D reconstruction. Visual data formats are still images and videos. Videos are pre-
programmed to record in a standard frame rate for all cameras (usually at 30 fps), and video frames are
extracted through the open-source software ffmpeg (Tomar, 2006). Poor quality images (due to backscatter-
ing, overexposure, lack of features etc) are selected manually and removed. After the synchronization - if
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(a) Holes with mean locations and orientations. (b) Overview of all holes and the model boundary.
Figure 13. Holes extracted from 12a.

needed in the post-processing phase - all imagery data are named after the sequence “operation-platform-
sensor-timestamp”.

To ascertain whether image pre-processing is necessary, data are evaluated during the visual inspection
process. This assessment is based on both objective and subjective criteria. Typical effects on underwater
images like light and color absorption, suspended particles and turbidity are removed or corrected through
two main categories of image processing algorithms: the image restoration ones, which refer to the objec-
tive criteria and assist the performance of the feature detection and matching algorithms, and the image
enhancement ones, for reaching the subjective criteria, improving the visual appearance of the results, and
facilitating finally the archaeological interpretation. Comprehensive surveys on underwater image restora-
tion and enhancement techniques can be found in (Song et al., 2022; Yang et al., 2019). Additional effects
that are present in underwater archaeological sites are caustics and fishes, which are effectively addressed
in literature through deep learning approaches and convolutional neural networks, usually as a classification,
masking, and removal problem (Forbes et al., 2018; He et al., 2017). For the purposes of our work, we have
mainly applied the Contrast Limited Adaptive Histogram Equalization (CLAHE) (Reza, 2004) algorithm, an im-
age enhancement technique that is popular for its successful results on underwater data.

Next, the synchronized navigational data are used for the corresponding images as reference data, so that
the first alignment of images can be speeded up. The computed intrinsic parameters, namely the perspec-
tive projection (focal length fx,fy , the principal point cx,cy and the distortion coefficients), are given for each
camera. Concerning SfM software, we use either the open-source COLMAP (Schönberger and Frahm, 2016)
or the commercial Agisoft Metashape. The first scene graph is created by the extraction and matching of ho-
mologous features among overlapping images. This first sparse 3D point cloud is optimized through a global
bundle adjustment, taking into account the camera parameters and the precision weights of the navigational
measurements.

When the reprojection error of matches reaches the accuracy standards (optimally sub-pixel), a Multi-View
Stereo (MVS) algorithm is implemented for the densification of the first point cloud using the computed cam-
era poses as input. The dense 3D reconstruction is then triangulated for the creation of a 3D surface, while the
last step is the texturing of the surface by the oriented images, resulting in the final photorealistic 3D model
(Figure 14). The open-source MeshLab (Cignoni et al., 2008) is then used for potential further editing of the
3D point cloud and model (noise removal, holes filling, disconnected components removal etc) as well as for
visualization and measuring purposes.
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Figure 14. Photogrammetric reconstruction ofM/SHelmawreck. Left: Original underwater image. Middle: 3D
point cloud. Right: Simulated trajectory of 30K ROV and multi-camera system recording the wreck in Blender.

Accuracy and texturing assessment

Onemajor issue related to the objective accuracy assessment of underwater datasets is the lack of ground
truth. In land applications of archaeological 3D documentations, prior to the collection of images for pho-
togrammetry, it is typical to establish a network of control points and then measure it with a total station.
The accuracy of the surveyed control points then can be 1-2 centimeters and the integration of the land
measurements within the global bundle adjustment can yield equally accurate photogrammetric products.
Alternatively, it is common to extract control points from models obtained by terrestrial 3D scanners or Li-
dar systems with equally high reliability. Underwater, the sources of ground truth are the navigational data,
where the accuracy depends on the performance of the underwater positioning system or sonar data, where
a post-processing step is also needed in order to define the accuracy of the measurements. Therefore, the
reliability of a proposed methodology or imaging system for an underwater application is usually tested in
controlled environments like a test tank or a previously well 3D documented space.

Given that the accuracy of the navigational data is known and correct, it is important to integrate this
weighted accuracy in the final bundle adjustment. Pure computer vision SfM software like COLMAP do not
offer this option, so we prefer more topographical solutions, like Metashape, for this step of the final global
bundle adjustment. Moreover, the impact of refraction on the geometric accuracy of the final reconstruction is
apparent in the absence of an accurate camera calibration. Althoughmodern photogrammetric SfM software
have built-in parameters for optimizing the lens distortions, the importance of importing a calibrated camera
within the processing for accurate reconstruction results remains high. Finally, photometric invariances are
usually addressed through the image pre-processing stage, so that seamlines on mosaics and 3D models can
be avoided.

Discussion & Future Work

Surveying extended geographic areas for the potential detection and classification of sites of UCH interest
via autonomous robotic missions requires a lot of input data from the maritime archaeologist during the ini-
tialization phase. Once the mission is launched, a great challenge is to make the underwater vehicle’s visual
perception able to re-evaluate the overall assessment process and classification libraries based on new, grow-
ing data in mission-time.

An early goal for the pioneers in the field was to achieve the same scientific standards for fieldwork under-
water as on dry land. Perhaps it is only natural then, that we regard the required technology as tools for doing
the same job underwater as we do on land – namely archaeology. However, doing archaeology underwater is
different not only regarding tools and methodology in a technical sense. Being underwater, the ability to pon-
der over an enigmatic structure or discuss a particular feature with colleagues is constrained by limited time
and communication bandwidth. The ability to consult notes or literature while on the site is also significantly
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restricted. Jonathan Adams has reflected on the primacy of the visual, that is characteristic for the practice
(Adams, 2003). Even our visual perception is distinctly different, as optical properties such as attenuation and
turbidity affect the spectral perception and limits our field of view. We can therefore argue that archaeological
fieldwork underwater is characterized by a focus on solving tasks through applying methods that are prede-
fined and accepted as best practice, and to a large extent decoupled from analysis and interpretation that
are integrated elements in archaeological workflows on land. Not only are the tools different, but our way of
doing fieldwork – iterations of reflection and action – is different.

By resolving an archaeological surveying mission into three phases and subsequent steps or processes
as shown in Figure 3, we accentuate the operational and very task-based logic that is typical for the robotic
domain but also arguably lends itself well to the praxis of underwater archaeology. As the human is grad-
ually removed from the loop, it becomes necessary to define purposes, goals and actions that are perhaps
tacit or heuristic for a diving archaeologist into explicit tasks that are executable by machines. In the method
proposed in this paper we have adopted a very technical and challenge/solution oriented view of underwater
archaeological fieldwork. While this has helped to showcase our results and demonstrate the potential of the
method, we acknowledge that it also entails oversimplifications and sometimes reductive representations of
archaeological knowledge production. Table 1 summarizes the strengths and weaknesses of the presented
three-phases workflow. The current technological development represents a huge potential for archaeolog-
ical applications but should be complemented by more attention to theoretical issues that can bridge these
new tools and methods to relevant discourses in archaeological research.

The future directions of our research move towards addressing the listed challenges (Table 1) as well as
investigating and integrating more vision-aided methods to our system, so that the requirements for active
human perception will be decreased and autonomy levels could be increased. We are also exploring the
potentialities of multi-imaging configurations on the snake robot Eelume and its implementation in marine
archaeological surveys. High degrees of freedom in maneuverability and vision are demonstrated as promis-
ing features for efficient photogrammetric reconstructions of UCH sites, while the sensor payload capacity
of this robot yield advanced capabilities in multi-sensors (combination of acoustical with optical data, under-
water hyperspectral imaging etc.) mapping and data fusion. Decisions on the survey’s boundaries as well as
relevance and levels of importance of detected targets will be potentially made exclusively by robots, pushing
notably autonomy limits. The up-to-today fiction idea of surveying, detecting, and documenting an UCH site
in the same dive is now highly considered.

Conclusions

This paper presents a methodological framework for the visual-based 3D documentation of underwater
archaeological sites via marine robotic operations. The proposed techniques deal with the three main phases
of an underwater robotic mission, namely the planning phase, the mission-time phase, and the offline pro-
cessing one. First, we demonstrate howmulti-vision sensors configurations and underwater effects on images
can be pre-estimated for a mission within a simulation environment. Next, emphasis is given on the real-time
assessment of the acquired data, targeting the maximization of the in-situ information gain. According to the
proposed method, hole detection on the incremental 3D reconstruction is feasible in mission-time, thereby
allowing for the online re-planning of the robot’s path, while ensuring full coverage of the site. The method
has been developed and tested in a simulation environment and the next step is to validate it in real-world
experiments. Finally, an offline photogrammetric workflow is discussed in terms of geometric accuracy and
visual appearance of the results.
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Strengths:

• Cost-effectiveness: Both the planning of operations into simulation environments
and the ability for real-time data evaluation yield significant time savings on-site,
increased operational efficiency and minimization of the need for repeat visits.

• Increased data quality: Adequate overlap, site coverage and detection of sensitive
areas either because of high complexity or presence of obstacles, are achieved in
real-time, ensuring high quality data for post-processing. Multi-vision and sensor
data fusion provide redundancy in data collection, the possibility for obstacle avoid-
ance and control of geometric accuracy.

• Reliability: The application of the three-phases workflow in real-world experiments
validates the practicality and general robustness of the methods for UCH mapping.

• Innovation: Marine archaeological research shows high adaptability towards new
technologies coming from different scientific fields and industries.

• Autonomy: Although themarine archaeologist is present during all three phases of
UCH documentation, decision making is mostly held during mission-time through
real-time data evaluation.

Weaknesses:

• ORB-SLAM3 System Dependence on Visual Features: While the ORB-SLAM3 sys-
tem is operational during a mission, it can falter if there aren’t enough visual fea-
tures for a match. Although the system can resume tracking when adequate visual
features are present, it initializes with a new map each time, posing continuity chal-
lenges.

• Underutilized Incremental Nature of BPA: The incremental characteristic of BPA
remains untapped. Development is required to harness this feature effectively.

• Speed Constraints with PSR: Even though PSR outpaces BPA for large point clouds,
processing as many as twomillion points in 2 seconds in our tests, its efficiency may
decrease with extremely large point clouds. Nevertheless, for shipwreck reconstruc-
tions, the speed is typically adequate.

• Lack of real-time footage from the externally mounted cameras, in real-world
multi-camera scenarios: The assumption of full coverage and extended field of view
comes from their pre-defined configuration on the robot on the simulation phase.

• Human operator in the loop: Currently a human operator needs to constantly
track the robot’s trajectories, verify the site’s coverage and quality of images, detect
obstacles, and take decisions.

Table 1. Strengths and weaknesses of the presented three-phases workflow.
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