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ABSTRACT Two generalizations of the Friis transmission formula are based on the concept of unnamed

power gain, defined as the ratio of the available power at the port(s) of one or more receiving antennas to

the average power received by the port(s) of one or more transmitting antennas. The first generalization

is about one transmitting antenna and one receiving antenna, at any distance, in any environment. The

second generalization encompasses the first one. It is about two multiport antenna arrays, one used for

emission and the other for reception, at any distance, in any environment. Both generalizations say that

the unnamed power gains have two properties, referred to as “symmetry under link direction reversal” and

“vanishing sensitivity to terminations for small coupling”. The definitions of these properties for multiport

antenna arrays are somewhat more involved than the ones applicable to the two-antenna case. We implement

these generalizations in numerical experiments comprising two or six antennas, to observe and analyze the

behavior of the unnamed power gains and these properties. We also define and investigate a new concept:

the rank measure of the unnamed power gain.

INDEX TERMS Antenna theory, Friis transmission formula, MIMO, antenna array, reciprocity.

I. INTRODUCTION
In 1946, Friis proposed a transmission formula concerning

“a radio circuit made up of a transmitting antenna and a

receiving antenna in free space”. It became a cornerstone

of antenna and radio communication engineering, and was

therefore adapted into different forms to meet varying needs.

The original Friis transmission formula is [1]:

Pavr

Pt
=

ArAt

d2λ2
, (1)

in which: Pavr is the average power available at the port of

the receiving antenna; Pt is the average power fed into the

transmitting antenna at its port; Ar is the effective area of

the receiving antenna, in the direction of the transmitting an-

tenna; At is the effective area of the transmitting antenna, in

the direction of the receiving antenna; d is a distance between

the antennas; and λ is the wavelength of the sinusoidal signal

delivered to the transmitting antenna.

The applicable definition of the average power available at

the port of the receiving antenna, also referred to as “available

power” at this port, is the greatest average power that can

be drawn from this port by an arbitrary linear time-invariant

(LTI) and passive load [2, Sec. 3-8], [3]. The applicable

definition of the effective area of an antenna in a given

direction is: “the ratio of the available power at the terminals

of a receiving antenna to the power flux density of a plane

wave incident on the antenna from that direction, the wave

being polarization matched to the antenna” [4].

The Friis transmission formula (1) is about two single-

port antennas. It assumes that they are polarization matched,

that d is sufficiently large (far-field condition), and that the

transmitting antenna is reciprocal. Here, “reciprocal antenna”

means an antenna to which we could apply the Lorentz

reciprocity theorem if it was used in free space [5, Sec. 13.1].

For polarization-matched antennas and sufficiently large

values of d, another form of (1) is [5, Sec. 4.4.2], [6]:

Pavr

Pt
=

ArGt

4πd2
, (2)

where Gt is the gain of the transmitting antenna, in the

direction of the receiving antenna. The gain of an antenna in

a given direction being defined as “the ratio of the radiation

intensity in a given direction to the radiation intensity that

would be produced if the power accepted by the antenna
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were isotropically radiated” [4], (2) directly follows from the

definitions of Ar and Gt, and therefore does not require any

assumption on the reciprocity of the transmitting antenna.

Another common form of (1) for polarization-matched

antennas and sufficiently large values of d is [5, Sec. 4.4.2]:

Pavr

Pt
= GrGt

(

λ

4πd

)2

, (3)

where Gr is the gain of the receiving antenna, in the direction

of the transmitting antenna. This formula applies only to a

reciprocal receiving antenna.

A ratio of the available power at the port(s) of one or

more receiving antennas to the average power received by the

port(s) of one or more transmitting antennas is an unnamed

power gain [7, Sec. IV], [8, Sec. IX]. Thus, (1)–(3) are

about the unnamed power gain of a radio link. Moreover,

a teaching of (1) and (3) is that, if, without moving the

antennas, their roles are reversed (i.e., the receiving antenna

becomes the transmitting antenna and vice versa), then the

unnamed power gains in the two configurations are equal, if

they are defined and if both antennas are reciprocal.

In [7, Sec. VII], a first generalization of the Friis transmis-

sion formula was proposed. This first generalization is also

about one transmitting antenna and one receiving antenna,

but it neither assumes polarization-matched antennas, nor a

large value of d, nor a free space environment. As explained

in Section II, it says that the unnamed power gains between

the antennas have two important properties: the “symmetry

under link direction reversal” and the “vanishing sensitivity

to terminations for small coupling”.

Numerical experiments involving simple two-antenna se-

tups are used in Section III to study the first generalization,

in free space or in a half-space bounded by a ground plane.

The behaviors of the unnamed power gain and other power

gains are compared in Section III.

In [8, Sec. XIII], a second generalization of the Friis

transmission formula was proposed, in which a multiport

antenna array (MAA) coupled to a multiport generator is

used for emission and a MAA coupled to a multiport load

is used for reception. In this context, the unnamed power

gain depends on the excitation. Like the first one, the second

generalization neither assumes a large value of the distance

between the MAAs, nor a free space environment, nor any

form of polarization-matching. As explained in Section IV, it

says that the unnamed power gains between the MAAs have

two important properties, referred to as “symmetry under link

direction reversal” and “vanishing sensitivity to terminations

for small coupling”, as in the two-antenna case but according

to more general definitions. In Section V, we define two new

parameters called the rank measures of the unnamed power

gain, and we prove a fundamental theorem about them.

Numerical experiments involving simple six-antenna se-

tups are used in Section VI to study the second generalization

and the rank measures of the unnamed power gain, in free

space or in a half-space bounded by a ground plane.

Corrections to known errors in [7] and [8] are provided in

Appendix A.

FIGURE 1. The configurations considered in Section II, in which the DUS
comprises antenna 1, antenna 2 and their surroundings.

II. THE FIRST GENERALIZATION OF THE
FRIIS TRANSMISSION FORMULA
In this Section II, we consider two LTI and passive antennas

operating in the harmonic steady state, at a given frequency.

We assume that the medium surrounding the antennas is LTI

(and passive), so that the antennas in this medium form a

passive LTI 2-port referred to as “device under study”(DUS),

port 1 of DUS being the port of antenna 1, and port 2 of DUS

being the port of antenna 2. For simplicity and brevity, we

assume that the DUS has an impedance matrix denoted by Z,

though this assumption was not needed in [7].

The antennas are used in two configurations, which are

shown in Fig. 1. In configuration A (CA), antenna 1 is used

for emission and antenna 2 for reception, port 1 of the DUS

being connected to an LTI generator of internal impedance

ZS1, and port 2 of the DUS being connected to an LTI load

of impedance ZS2. In configuration B (CB), antenna 2 is

used for emission and antenna 1 for reception, port 1 of the

DUS being connected to an LTI load of impedance ZS1, and

port 2 of the DUS being connected to an LTI generator of

internal impedance ZS2. Using Re(z) to denote the real part

of a complex number z, we assume that Re(ZS1) > 0 and

Re(ZS2) > 0. This ensures that the loads are passive. We

define the matrix

ZADD =

(

ZS1 0
0 ZS2

)

. (4)

As explained in [7, Sec. II.B], the matrix Z + ZADD is

invertible, so that we can define the matrix

YSAM =

(

YSAM11 YSAM12

YSAM21 YSAM22

)

= (Z+ ZADD)−1 , (5)

YSAM being symmetric if and only if Z is symmetric.

We use GAU to denote the unnamed power gain in CA, and

GBU to denote the unnamed power gain in CB. To ensure that

they are both defined for any nonzero excitation, we assume

that YSAM11 6= 0, Re(Y −1

SAM11
− ZS1) 6= 0, YSAM22 6= 0

and Re(Y −1

SAM22
− ZS2) 6= 0, and we obtain [7]:

GAU =
YAAV P2

YARP1

, (6)

and

GBU =
YBAV P1

YBRP2

, (7)

where

YAAV P2 =
|YSAM21|

2

4Re (YSAM22 − |YSAM22|2ZS2)
, (8)
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YARP1 = Re
(

YSAM11 − |YSAM11|
2ZS1

)

, (9)

YBAV P1 =
|YSAM12|

2

4Re (YSAM11 − |YSAM11|2ZS1)
, (10)

and

YBRP2 = Re
(

YSAM22 − |YSAM22|
2ZS2

)

. (11)

More results about YAAV P2, YARP1, YBAV P1 and YBRP2

are provided in Appendix B.

We now assume that both antennas are reciprocal and that

the medium surrounding them is reciprocal [9, Sec. 13.06].

By theorem II of [10], known as the “Rayleigh-Carson reci-

procity theorem” and corresponding to [9, eq. (13-40)], Z

is symmetric, so that YSAM is symmetric, that is to say

YSAM21 = YSAM12. Using (6)–(11), we get

GAU = GBU (12)

for any nonzero excitation. We call this property “symmetry

under link direction reversal”. It means that, if the stated

conditions are satisfied, the unnamed power gain does not

change when the direction of the link is reversed.

The unnamed power gain has another important property

[7, Sec. VII]: for nonzero excitations, if said conditions are

satisfied and the distance D between the antennas is such that

the interaction between them is small, GAU = GBU depends

very little on ZS1 and very little on ZS2. We refer to this

result as the “vanishing sensitivity to terminations for small

coupling”.

The symmetry under link direction reversal and the van-

ishing sensitivity to terminations for small coupling form the

first generalization of the Friis transmission formula.

III. SOME TWO-ANTENNA SETUPS
A. TWO PARALLEL ANTENNAS IN FREE SPACE

We consider an arrangement of two perfectly conducting

parallel center-fed cylindrical dipole antennas lying in free

space, shown in the not-to-scale drawing of Fig. 2. We use

λ to denote the wavelength. The total length of antenna 1 is

l1 = 0.94λ/2. The total length of antenna 2 is l2 = 0.94λ/4.

Both antennas have the same wire diameter l1/50.

Four setups are defined as follows:

• in setup “a”, we assume that ZS1 = 73Ω and that

ZS2 = (1 + j20)Ω;

• in setup “b”, we assume that ZS1 = (0.05− j16)Ω and

that ZS2 = (10 + j270)Ω;

• in setup “c”, we assume that ZS1 = (10 + j10)Ω and

that ZS2 = (10 + j270)Ω; and

• in setup “d”, we assume that ZS1 = (0.05− j16)Ω and

that ZS2 = (1 + j20)Ω.

We have computed GAU = GBU as a function of D,

using (6)–(11) and the simulation technique summarized in

Appendix C. Fig. 3 shows GAU = GBU for the different

setups. According to the vanishing sensitivity to terminations

for small coupling, we expect the four curves of Fig. 3 to

almost merge at a sufficient distance, and this is observed for

BOTTOM VIEW

FRONT VIEW

l 1
/2

l 1
/2

D

l 2
/2

l 2
/
2

Antenna 1 Antenna 2

FIGURE 2. An arrangement of two parallel antennas in free space.

FIGURE 3. Unnamed power gains for the four different setups defined for the
arrangement of Fig. 2, as a function of D/λ.

FIGURE 4. Parameter gT for the four different setups defined for the arrange-
ment of Fig. 2, as a function of D/λ.

D > 0.6λ. For setup “d”, we note that GAU = GBU > 1 at

very short distances, and GAU = GBU ≃ 1.6 at D = 0.1λ.

Fig. 4 shows the parameter

gT =

(

4πd

λ

)2

GAU =

(

4πd

λ

)2

GBU . (13)

The plateau of gT indicates that, in each setup, the Friis

transmission formula (1)–(3) gives an accurate value of

GAU = GBU if D > 1.5λ, and that GrGt ≃ 2.5 in (3).
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BOTTOM VIEW

FRONT VIEW
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FIGURE 5. Two parallel antennas above a ground plane.

FIGURE 6. Unnamed power gains for the four different setups defined for the
arrangement of Fig. 5 and H = λ, as a function of D/λ.

FIGURE 7. Parameter gT for four different setups defined for the arrangement
of Fig. 5 and H = λ, as a function of D/λ.

B. PARALLEL ANTENNAS ABOVE A GROUND PLANE

We now look at an arrangement of two perfectly conducting

parallel center-fed cylindrical dipole antennas lying parallel

to an infinite and perfectly conducting ground plane, shown

FIGURE 8. Unnamed power gains for the four different setups defined for the
arrangement of Fig. 5 and H = 10λ, as a function of D/λ.

FIGURE 9. Parameter gT for four different setups defined for the arrangement
of Fig. 5 and H = 10λ, as a function of D/λ.

in the not-to-scale drawing of Fig. 5. The antennas are identi-

cal to the one used in Fig. 2. We use H to denote the height of

both antennas above the ground plane. Four different setups

are defined as above for Fig. 2.

GAU = GBU was computed as above in Section III.A.

Fig. 6 and Fig. 7 show GAU = GBU and gT for H = λ.

Fig. 8 and Fig. 9 show GAU = GBU and gT for H = 10λ.

In Fig. 6 to Fig. 9, the four curves practically merge in the

region D > 0.6λ, in line with the vanishing sensitivity to

terminations for small coupling. In the case of setup “d”,

Fig. 6 and Fig. 8 show that GAU = GBU is again greater

than 1 at very short distances. Clearly, (3) cannot be used in

setups involving a ground plane.

C. RESULTS ABOUT OTHER POWER GAINS

In addition to the unnamed power gain, four other power

gains were investigated in [7]: the insertion power gain, the

transducer power gain, the operating power gain and the

available power gain. For nonzero excitations, if the distance

D between the antennas is such that the interaction between

them is small, simulations showed that none of these other

power gains, in CA or in CB, is such that it depends very

little on ZS1 and very little on ZS2. This was observed in

setups using the free-space arrangement of Fig. 2, and the

half-space arrangement of Fig. 5.

D. TEACHING OF THE NUMERICAL EXPERIMENTS

Our 2-antenna numerical experiments exemplify the vanish-

ing sensitivity to terminations for small coupling, and show

that this property is unique to the unnamed power gain.

4 Copyright © 2024 by Excem



Excem Research Papers in Electronics and Electromagnetics, no. 8, January 2024

EXCEM 

IV. THE SECOND GENERALIZATION OF THE
FRIIS TRANSMISSION FORMULA
In this Section IV, we consider two LTI and passive MAAs

operating in the harmonic steady state, at a given frequency,

MAA 1 having m ports numbered from 1 to m, and MAA 2

having n ports numbered from 1 to n, where m and n are

positive integers. We assume that the medium surrounding

the MAAs is LTI and passive. Thus, the MAAs in this

medium form a passive LTI multiport referred to as “device

under study” (DUS) and having 2 sets of ports, called port

set 1 and port set 2. Port set 1 consists of the m ports of

MAA 1, and port set 2 consists of the n ports of MAA 2.

The m+ n ports of the DUS are considered in the following

order: ports 1 to m of port set 1, then ports 1 to n of port set

2. For simplicity and brevity, we assume that the DUS has an

impedance matrix denoted by Z, though this assumption was

not needed in [8]. The matrix Z is of size m+ n by m+ n.

The MAAs are used in two configurations, which are

shown in Fig. 10. In configuration A (CA), MAA 1 is used

for emission and MAA 2 for reception, port set 1 being

connected to an LTI m-port generator of internal impedance

matrix ZS1, and port set 2 being connected to an LTI n-

port load of impedance matrix ZS2. In configuration B (CB),

MAA 2 is used for emission and MAA 1 for reception, port

set 1 being connected to an LTI m-port load of impedance

matrix ZS1, and port set 2 being connected to an LTI n-port

generator of internal impedance matrix ZS2.

Let M be a complex matrix. We use M
∗ to denote the

hermitian adjoint of M. If M is square, trM denotes the

trace of M and H(M) denotes the hermitian part of M, that

is to say (M+M
∗)/2. We assume that H(ZS1) and H(ZS2)

are positive definite. This ensures that the loads are passive.

We define the matrix

ZADD =

(

ZS1 0

0 ZS2

)

. (14)

As explained in [11, Sec. II], the matrix Z + ZADD is

invertible, so that we can define the matrix

YSAM = (Z+ ZADD)−1 , (15)

and, if ZADD is symmetric, YSAM is symmetric if and only

if Z is symmetric. The matrix YSAM is of size (m + n)
by (m + n) and it may be partitioned into four submatrices,

YSAM11 of size m by m, YSAM12 of size m by n, YSAM21

of size n by m and YSAM22 of size n by n, which are such

that

YSAM =

(

YSAM11 YSAM12

YSAM21 YSAM22

)

. (16)

As in Section II, we use GAU to denote the unnamed

power gain in CA, and GBU to denote the unnamed power

gain in CB. To ensure that they are both defined for any

nonzero excitation, we assume that YSAM11, YSAM22 ,

H(Y−1

SAM11
− ZS1) and H(Y−1

SAM22
− ZS2) are invertible.

Following [8], we define the positive definite matrices

YAAV P2 =
1

4
Y

∗

SAM21
Y

−1∗

SAM22

×H(Y−1

SAM22
− ZS2)

−1
Y

−1

SAM22
YSAM21 , (17)

FIGURE 10. The two configurations considered in Section IV, in which the DUS
comprises MAA 1, MAA 2 and their surroundings.

YARP1 = Y
∗

SAM11
H(Y−1

SAM11
− ZS1)YSAM11 , (18)

YBAV P1 =
1

4
Y

∗

SAM12
Y

−1∗

SAM11

×H(Y−1

SAM11
− ZS1)

−1
Y

−1

SAM11
YSAM12 , (19)

and

YBRP2 = Y
∗

SAM22
H(Y−1

SAM22
− ZS2)YSAM22 . (20)

Other results about YAAV P2, YARP1, YBAV P1 and

YBRP2 are provided in Appendix D. We have

GAU =
V

∗

O1
YAAV P2 VO1

V∗

O1
YARP1 VO1

(21)

and

GBU =
V

∗

O2
YBAV P1 VO2

V∗

O2
YBRP2 VO2

, (22)

where VO1 and VO2 are the column vectors of the rms

open-circuit voltages of the m-port generator connected to

port set 1 in CA, and of the n-port generator connected to

port set 2 in CB, respectively. Accordingly, GAU and GBU

depend on the excitation. This dependence is immaterial for

GAU if m = 1, and for GBU if n = 1.

It is shown in [8, Sec. IX] that:

(a) the set of the values of the unnamed power gain in

CA, obtained for all nonzero excitations, has a least

element referred to as “minimum value” and denoted

by GAU MIN , and a greatest element referred to as

“maximum value” and denoted by GAU MAX ;

(b) the eigenvalues of the matrix

TAU = YAAV P2Y
−1

ARP1
(23)

are real, GAU MIN being the smallest eigenvalue of TAU

and GAU MAX the largest eigenvalue of TAU ;

(c) an average value of GAU over a number min{m,n} of

nonzero excitations is

GAU AV R =
trTAU

min{m,n}
; (24)

Copyright © 2024 by Excem 5
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(d) the set of the values of the unnamed power gain in

CB, obtained for all nonzero excitations, has a least

element referred to as “minimum value” and denoted

by GBU MIN , and a greatest element referred to as

“maximum value” and denoted by GBU MAX ;

(e) the eigenvalues of the matrix

TBU = YBAV P1Y
−1

BRP2
(25)

are real, GBU MIN being the smallest eigenvalue of

TBU and GBU MAX the largest eigenvalue of TBU ; and

(f) an average value of GBU over a number min{m,n} of

nonzero excitations is

GBU AV R =
trTBU

min{m,n}
. (26)

We now assume that both MAAs and the medium sur-

rounding them are reciprocal. It follows from the Rayleigh-

Carson reciprocity theorem that Z is symmetric. We also

posit that ZS1 and ZS2 are symmetric, so that YSAM is

symmetric. It is shown in [8, Sec. IX] that

GAU MAX = GBU MAX , (27)

GAU AV R = GBU AV R , (28)

(m = n) =⇒ (GAU MIN = GBU MIN ) , (29)

(m > n) =⇒ (GAU MIN = 0) (30)

and

(m < n) =⇒ (GBU MIN = 0) . (31)

We call (27)–(31) “symmetry under link direction rever-

sal”. It means that, if the stated conditions are satisfied, the

maximum value of the unnamed power gain for all nonzero

excitations, the minimum value of the unnamed power gain

for all nonzero excitations, and the average value of the

unnamed power gain do not change when the direction of

the radio link is reversed.

The unnamed power gain between two MAAs has another

fundamental property. It says that, if said conditions are

satisfied and the distance D between the MAAs is such that

the interaction between them is small, then [8, Sec. XIII]:

GAU MAX = GBU MAX and GAU AV R = GBU AV R

depend very little on ZS1 and ZS2; and, if m = n, then

GAU MIN = GBU MIN depends very little on ZS1 and

ZS2. We refer to this result as the “vanishing sensitivity

to terminations for small coupling”, because it generalizes

the vanishing sensitivity to terminations for small coupling

defined in Section II for two antennas.

The symmetry under link direction reversal and the van-

ishing sensitivity to terminations for small coupling, applied

to two MAAs, form the second generalization of the Friis

transmission formula. In the special case m = n = 1, it uses

the same assumptions and provides the same conclusions as

the first generalization studied in Section II.

V. THE RANK MEASURES
To better characterize the radio link shown in Fig. 10 as

regards spatial multiplexing or spatial diversity, we propose

two new quantities: the rank measure of the unnamed power

gain in CA, denoted by ρA, and the rank measure of the

unnamed power gain in CB, denoted by ρB . Their definitions

are based on the effective rank of a matrix [12].

We use rankM to denote the rank of a complex matrix

M. If M is of size M by M , such that rankM > 0, and of

singular values σ1, . . . , σM , we define

pk =
σk

M
∑

k=1

|σk|

(32)

for any k ∈ {1, . . . ,M}, and the effective rank of M is given

by [12]:

erankM = exp

(

−
M
∑

k=1

pk ln pk

)

, (33)

where, by convention, 0 ln 0 = 0. According to [12], we

have:

1 6 erankM 6 rankM 6 M , (34)

where erankM = 1 if and only if M has a single nonzero

singular value, and where erankM = rankM if and only if

all nonzero singular values of M are equal.

Moreover, it follows from [13, Sec. 2.6.4] that the effective

rank is a continuous function of the entries of M.

We use A
−1/2 to denote the inverse of the unique positive

definite square root of a positive definite matrix A. We posit

ρA = erank
(

Y
−1/2
ARP1

YAAV P2Y
−1/2
ARP1

)

(35)

and

ρB = erank
(

Y
−1/2
BRP2

YBAV P1Y
−1/2
BRP2

)

. (36)

Theorem. We assert that:

• the singular values of Y
−1/2
ARP1

YAAV P2Y
−1/2
ARP1

, count-

ing multiplicity, are the eigenvalues of TAU , counting

multiplicity;

• the singular values of Y
−1/2
BRP2

YBAV P1Y
−1/2
BRP2

, count-

ing multiplicity, are the eigenvalues of TBU , counting

multiplicity; and

• if both MAAs and the medium surrounding them are

reciprocal, and if ZS1 and ZS2 are symmetric, then

ρA = ρB . (37)

Proof: KAU = Y
−1/2
ARP1

YAAV P2Y
−1/2
ARP1

is hermitian and

similar to TAU . It follows that KAU is positive semidefinite.

By [14, Sec. 7.3.5], it follows that the singular values of

KAU , counting multiplicity, are the eigenvalues of KAU ,

counting multiplicity. Thus (result A), the singular values

of KAU , counting multiplicity, are the eigenvalues of TAU ,

counting multiplicity.

Likewise, KBU = Y
−1/2
BRP2

YBAV P1Y
−1/2
BRP2

is hermitian

and similar to TAU . Thus (result B), the singular values of

6 Copyright © 2024 by Excem
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FIGURE 11. An arrangement of six parallel antennas in free space.

KBU , counting multiplicity, are the eigenvalues of TBU ,

counting multiplicity.

If both MAAs and the medium surrounding them are

reciprocal, and if ZS1 and ZS2 are symmetric, we have

already seen that YSAM is symmetric. It follows from the

last steps of the proof of Theorem 29 of [8] that (result C):

• if m = n, then TAU and TBU have the same eigenval-

ues, counting multiplicity;

• if m > n, then TAU has the same eigenvalues as TBU ,

counting multiplicity, together with m − n additional

eigenvalues equal to zero; and

• if m < n, then TBU has the same eigenvalues as TAU ,

counting multiplicity, together with n − m additional

eigenvalues equal to zero.

Using result A, result B and result C, we obtain:

• if m = n, then KAU and KBU have the same singular

values, counting multiplicity;

• if m > n, then KAU has the same singular values

as KBU , counting multiplicity, together with m − n
additional singular values equal to zero; and

• if m < n, then KBU has the same singular values

as KAU , counting multiplicity, together with n − m
additional singular values equal to zero.

This and (35)–(36) lead us to the last assertion of the

theorem.

We see that: ρA = m if and only if GAU MAX and

GAU MIN are equal; and ρA = 1 if and only if TAU has

a single nonzero eigenvalue.

Likewise, we see that: ρB = n if and only if GBU MAX

and GBU MIN are equal; and ρB = 1 if and only if TBU has

a single nonzero eigenvalue.

FIGURE 12. Maximum values (curves labeled “MAX”), average values (curves
labeled “AVR”) and minimum values (curves labeled “MIN”) of the unnamed
power gains for the three different setups defined for the arrangement of Fig. 11,
as a function of D/λ.

FIGURE 13. Rank measure of the unnamed power gain for the three different
setups defined for the arrangement of Fig. 11, as a function of D/λ.

VI. SOME SIX-ANTENNA SETUPS
A. SIX PARALLEL ANTENNAS IN FREE SPACE

We consider an arrangement of six perfectly conducting

parallel cylindrical center-fed dipole antennas lying in free

space, forming two MAAs and shown in the not-to-scale

drawing of Fig. 11. The total length of each antenna of

MAA 1 is l1 = 0.94λ/2, and their spacing is s = λ/4. The

total length of each antenna of MAA 2 is l2 = 0.94λ/4, and

their spacing is s. All antennas have the same wire diameter

l1/50. The distance D between the MAAs is regarded as a

variable. Four setups are defined as follows:

• in setup “a”, we assume that

ZS1 =

(

0.05− 16j 0 0

0 0.05− 16j 0

0 0 0.05− 16j

)

Ω (38)

and

ZS2 =

(

1 + 20j 0 0

0 1 + 20j 0

0 0 1 + 20j

)

Ω ; (39)

• in setup “b”, we assume that

ZS1 =

(

3 −1− 2j 1 + j

−1− 2j 2 + 3j −2− 2j

1 + j −2− 2j 3− 2j

)

Ω (40)

and

ZS2 =

(

4 + 25j −1− 3j −2− 2j

−1− 3j 5 + 12j 1 + 5j

−2− 2j 1 + 5j 6 + 27j

)

Ω ; (41)
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BOTTOM VIEW

FRONT VIEW

infinite ground plane
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H

FIGURE 14. Six parallel antennas above a ground plane.

• in setup “c”, we assume that ZS1 is 10 times the matrix

given by (41) and ZS2 is 10 times the matrix given by

(40).

Each of these matrix is symmetric, and we checked that

each of them has a positive definite hermitian part.

We have computed GAU MAX , GBU MAX , GAU AV R,

GBU AV R, GAU MIN and GBU MIN as a function of D, for

the three setups, using (17)–(20), (23)–(26) and the simula-

tion technique summarized in Appendix C. We have checked

that our results are compatible with (27)–(31).

Fig. 12 shows the quantities GAU MAX = GBU MAX ,

GAU AV R = GBU AV R and GAU MIN = GBU MIN for

the different setups. According to the vanishing sensitivity

to terminations for small coupling, we expect the three curves

corresponding to each of these quantities to practically merge

at a sufficient distance, and this is observed for D > 2λ.

Most curves of Fig. 12 take on values that are greater than 1

at very short distances.

Fig. 13 shows ρA = ρB for the different setups. The curves

practically merge for D > λ. Furthermore, ρA = ρB < 1.5
for D > 0.9λ, and ρA = ρB becomes very close to 1 for

D > 6λ.

B. PARALLEL ANTENNAS ABOVE A GROUND PLANE

We now look at an arrangement of six perfectly conducting

parallel cylindrical center-fed dipole antennas lying parallel

to an infinite and perfectly conducting ground plane, forming

FIGURE 15. Maximum values (curves labeled “MAX”), average values (curves
labeled “AVR”) and minimum values (curves labeled “MIN”) of the unnamed
power gains for the three different setups defined for the arrangement of Fig. 14,
and H = λ, as a function of D/λ.

FIGURE 16. Rank measure of the unnamed power gain for the three setups
defined for the arrangement of Fig. 14, and H = λ, as a function of D/λ.

two MAAs and shown in the not-to-scale drawing of Fig. 14.

The antennas are identical to the ones used in Fig. 11. We

use H to denote the height of both MAAs above the ground

plane. Three different setups are defined as above for Fig. 11.

GAU MAX , GBU MAX , GAU AV R, GBU AV R, GAU MIN

and GBU MIN were computed as above in Section VI.A.

Fig. 15 and Fig. 16 show the maximum values, average values

and minimum values of GAU or GBU , and ρA = ρB for the

different setups and H = λ. Fig. 17 and Fig. 18 show the

same quantities for the different setups and H = 10λ. In

Fig. 15 and Fig. 17, the vanishing sensitivity to terminations

for small coupling is observed for D > 2λ. Most curves of

Fig. 15 and Fig. 17 take on values that are greater than 1 at

very short distances.

In Fig. 16 and Fig. 18, the curves practically merge for

D > 2λ. In Fig. 16, ρA = ρB < 1.5 for D > 4λ, and

ρA = ρB becomes very close to 1 for D > 7λ. In Fig. 18,

the region over which ρA = ρB > 1.5 is quite different from

the corresponding regions of Fig. 13 and Fig. 16.

C. TEACHING OF THE NUMERICAL EXPERIMENTS

Our 2-MAA numerical experiments exemplify the vanishing

sensitivity to terminations for small coupling, and show that

the rank measure of the unnamed power gain ρA = ρB
effectively supplements the maximum values, average values

and minimum values of GAU or GBU .
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FIGURE 17. Maximum values (curves labeled “MAX”), average values (curves
labeled “AVR”) and minimum values (curves labeled “MIN”) of the unnamed
power gains for the three different setups defined for the arrangement of Fig. 14,
and H = 10λ, as a function of D/λ.

FIGURE 18. Rank measure of the unnamed power gain for the three setups
defined for the arrangement of Fig. 14, and H = 10λ, as a function of D/λ.

VII. CONCLUSION
We have precisely defined and implemented two generaliza-

tions of the Friis transmission formula, which are collectively

applicable to any number of reciprocal antennas, at any dis-

tance, in any reciprocal environment. These generalizations

relate to the unnamed power gains of a radio link. They use

the concepts of symmetry under link direction reversal, and

of vanishing sensitivity to terminations for small coupling,

which were introduced in Section II for the first generaliza-

tion and in Section IV for the second generalization.

The other power gains studied in [7] and [8], namely the

transducer power gains, the operating power gains, the avail-

able power gains, and the insertion power gains if m = n,

do not have a property similar to the vanishing sensitivity to

terminations for small coupling. In this sense, the vanishing

sensitivity to terminations for small coupling is unique to the

unnamed power gains.

In contrast, it is shown in [7] and [8] that if some condi-

tions are met, the transducer power gains, and the insertion

power gains if m = n, each have a property similar to

the symmetry under link direction reversal. Accordingly, the

symmetry under link direction reversal is not unique to the

unnamed power gains.

We have also defined and investigated a new concept:

the rank measure of the unnamed power gain, in a given

direction. It is intended to better characterize the potential

of a radio link as regards spatial multiplexing or spatial

diversity, because it is defined as the effective rank of a matrix

that is closely related to the second generalization of the Friis

transmission formula. We have shown that the rank measure

of the unnamed power gain is invariant under link direction

reversal, if some conditions are met.

A comparison between the results of the numerical exper-

iments reported in Section III (where ρA = ρB = 1) and

the ones reported in Section VI is instructive, and left to the

reader.

APPENDIX A
This Appendix provides corrections to [7] and [8].

Several errors have been detected in [7]: in page 5, column

2, in the first sentence of Section IV.E, “operating power

gains is” should be replaced with “operating power gain is”;

in page 6, column 2, in the first sentence of Section V, “is

lossless if and only if” should be replaced with “is lossless

only if”; in page 6, column 2, in Section V, “ZAPP2” should

be replaced with “ZBPP2” (4 occurrences); in page 9, after

equation (99), “where Gr is the effective area of the receiving

antenna” should be replaced with “where Gr is the gain of

the receiving antenna”; and in page 10, column 2, the titles

of references [16] and [17] should be in italics instead of

between quotation marks.

Note that in [7], in (79) the equality GAT = tA1 is

not subject to the condition PARP1 6= 0 W, and in (80)

the equality GBT = tB2 is not subject to the condition

PBRP2 6= 0 W. Thus, the presentation used in Section XI

of [8] to introduce (320)–(322) is more general.

Several errors have been detected in [8]: in page 2, col-

umn 2, in the sentence following (4), “and the positive

definite hermitian quadratic form fD : Cν → R such that

fD(x) = x
∗
Dx” should be replaced with “and the positive

semidefinite hermitian quadratic form fD : Cν → R such

that fD(x) = x
∗
Dx”; in page 4, column 1, (17) should be

replaced with

r(x) =
p2(x)

∗
N p2(x)

p2(x)∗ D p2(x)
= r(p2(x)) ; (42)

in page 12, column 2, at the end of Theorem 19, “if YSAM11

is invertible, for a specified DUS and a specified ZS1,

GBOMIN and GBOMAX do not depend on ZS2” should be

replaced with “if YSAM22 is invertible, for a specified DUS

and a specified ZS1, GBOMIN and GBOMAX do not de-

pend on ZS2”; in page 14, the first term of the right-hand side

of (135) should be I
∗

S1
Z

∗

PAM21
(YS2 + Y

∗

S2
)ZPAM21IS1

instead of I∗S1
Z

∗

PAM21
(YS2+YS2)ZPAM21IS1; in page 15,

column 2, a full stop is missing after “are positive semidef-

inite”; in page 33, column 2, after (359), “because Z is the

impedance matrix of a lossless DUT” should be replaced with

“because Z is the impedance matrix of a lossless DUS”; in

page 34, column 1, “of Theorem 29 on unnamed power gain

in CA and CB” should be replaced with “of Theorem 29 on

unnamed power gains in CA and CB”; and, throughout the

article, “right hand side” should be replaced with “right-hand

side” (1 occurrence) and “right hand sides” with “right-hand

sides” (4 occurrences).
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Note that, in Appendix C of [8], the proof of (372) uses

the assumption that V∗

O1
YN1VO1 and I

∗

S1
ZN1IS1 are the

same power for any excitation, and that V∗

O1
YD1VO1 and

I
∗

S1
ZD1IS1 are the same power for any excitation. This

assumption was satisfied wherever (372) was used in [8].

Likewise, in Appendix C of [8], the proof of (373) uses

the assumption that V∗

O2
YN2VO2 and I

∗

S2
ZN2IS2 are the

same power for any excitation, and that V∗

O2
YD2VO2 and

I
∗

S2
ZD2IS2 are the same power for any excitation. This

assumption was satisfied wherever (373) was used in [8].

APPENDIX B
In this Appendix B, we establish some additional formulas

about YAAV P2, YARP1, YBAV P1 and YBRP2, using the

notations and assumptions of Section II. We write

Z =

(

Z11 Z12

Z21 Z22

)

. (43)

The DUS being passive, H(Z) is positive semidefinite. By

[13, Sec. 7.1.2], we consequently have Re(Z11) > 0. Since

Re(ZS1) > 0, it follows that Z11 + ZS1 6= 0. Likewise, we

get Z22 + ZS2 6= 0. Accordingly, we easily show that the

generator connected to port 1 in CA sees an impedance

ZAPP1 = Z11 −
Z12Z21

Z22 + ZS2

, (44)

and the generator connected to port 2 in CB sees an

impedance

ZAPP2 = Z22 −
Z12Z21

Z11 + ZS1

. (45)

It follows from (4) and (5) that

YSAM =
1

∆

(

Z22 + ZS2 −Z12

−Z21 Z11 + ZS1

)

, (46)

where

∆ = (Z11 + ZS1)(Z22 + ZS2)− Z12Z21 . (47)

Using (44)–(47) in (8)–(11), we obtain

YAAV P2 =
|Z21|

2

4 |Z11 + ZS1|2 Re(ZAPP2)
, (48)

YARP1 =
Re(ZAPP1)

|ZAPP1 + ZS1|2
, (49)

YBAV P1 =
|Z12|

2

4 |Z22 + ZS2|2 Re(ZAPP1)
(50)

and

YBRP2 =
Re(ZAPP2)

|ZAPP2 + ZS2|2
. (51)

It follows that

GAU =
|Z21|

2 |ZAPP1 + ZS1|
2

4 |Z11 + ZS1|2 Re(ZAPP1)Re(ZAPP2)
(52)

and

GBU =
|Z12|

2 |ZAPP2 + ZS2|
2

4 |Z22 + ZS2|2 Re(ZAPP1)Re(ZAPP2)
. (53)

APPENDIX C
This Appendix C provides a short explanation about the

simulation results presented in this work.

The center-fed cylindrical dipole antennas are excited by

a delta-gap source when they are used for emission. The

simulation are obtained using a method-of-moment-based

program implementing the computation technique presented

in [15, Ch. 2]. According to this approach, we solve Hallén

integral equation, and the numerical solutions are obtained

using Lagrange polynomials of order 2 for the basis func-

tions, and point-matching.

Between points belonging to the same dipole antenna, we

implement an accurate approximation of the exact thin-wire

kernel proposed in [16, Sec. 24.7]. A part of the kernel,

comprising all ill-behaved terms, is integrated exactly using

known primitives, the other terms of the kernel are integrated

numerically. Between points belonging to different dipole

antennas, we implement the same approximate thin-wire

kernel as the one used in [15, Ch. 2].

When an infinite ground plane is present, we assume that

it is perfectly conducting, and it is taken into account using

image theory.

This computation provides an impedance matrix, of size 2

by 2 for two antennas, or of size m + n by m + n for two

MAAs. This matrix is close to a symmetric matrix. However,

to enforce an exact reciprocity, the symmetric part of this

matrix is assumed to be equal to Z.

APPENDIX D
In this Appendix D, we establish some additional formulas

about YAAV P2, YARP1, YBAV P1 and YBRP2, using the

notations of Section IV.

The matrix Z is of size (m+ n) by (m+ n) and it may be

partitioned into four submatrices, Z11 of size m by m, Z12

of size m by n, Z21 of size n by m and Z22 of size n by n,

which are such that

Z =

(

Z11 Z12

Z21 Z22

)

. (54)

The DUS being passive, H(Z) is positive semidefinite.

By [13, Sec. 7.1.2], Z11 is such that H(Z11) is positive

semidefinite. Since H(ZS1) is positive definite, it follows

that H(Z11 +ZS1) is positive definite. By Lemma 1 of [11],

it follows that Z11 + ZS1 is invertible. Likewise, Z22 + ZS2

is invertible. Accordingly, we easily show that the generator

connected to port set 1 in CA sees an impedance matrix

ZAPP1 = Z11 − Z12(Z22 + ZS2)
−1

Z21 (55)

and the generator connected to port set 2 in CB sees an

impedance matrix

ZAPP2 = Z22 − Z21(Z11 + ZS1)
−1

Z12 . (56)

ZAPP1 being the impedance matrix of a passive system, it

must be such that H(ZAPP1) is positive semidefinite. Since

H(ZS1) is positive definite, it follows that H(ZAPP1+ZS1)
is positive definite. By Lemma 1 of [11], it follows that
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GAU =
V

∗

O1
(ZS1 + Z11)

−1∗
Z

∗

21
H(ZAPP2)

−1
Z21(ZS1 + Z11)

−1
VO1

4V∗

O1
(ZS1 + ZAPP1)−1∗H(ZAPP1) (ZS1 + ZAPP1)−1VO1

(65)

and

GBU =
V

∗

O2
(ZS2 + Z22)

−1∗
Z

∗

12
H(ZAPP1)

−1
Z12(ZS2 + Z22)

−1
VO2

4V∗

O2
(ZS2 + ZAPP2)−1∗H(ZAPP2) (ZS2 + ZAPP2)−1VO2

. (66)

ZAPP1 + ZS1 is invertible. Likewise, ZAPP2 + ZS2 is

invertible.

It follows from the formula for the inverse of a partitioned

matrix [13, Sec. 0.7.3], [14, Sec. 0.7.3] that

YSAM11 = (ZS1 + ZAPP1)
−1 , (57)

YSAM12 = −(ZS1 + Z11)
−1

Z12(ZS2 + ZAPP2)
−1

= −(ZS1 + ZAPP1)
−1

Z12(ZS2 + Z22)
−1 , (58)

YSAM21 = −(ZS2 + ZAPP2)
−1

Z21(ZS1 + Z11)
−1

= −(ZS2 + Z22)
−1

Z21(ZS1 + ZAPP1)
−1 (59)

and

YSAM22 = (ZS2 + ZAPP2)
−1 . (60)

In Section IV, we assume that H(Y−1

SAM11
− ZS1) and

H(Y−1

SAM22
−ZS2) are invertible. It follows that H(ZAPP1)

and H(ZAPP2) are invertible.

Using (57)–(60) in (17)–(20), we obtain

YAAV P2 =
1

4
(ZS1 + Z11)

−1∗
Z

∗

21

×H(ZAPP2)
−1

Z21(ZS1 + Z11)
−1 , (61)

YARP1 = (ZS1 + ZAPP1)
−1∗

×H(ZAPP1) (ZS1 + ZAPP1)
−1 , (62)

YBAV P1 =
1

4
(ZS2 + Z22)

−1∗
Z

∗

12

×H(ZAPP1)
−1

Z12(ZS2 + Z22)
−1 (63)

and

YBRP2 = (ZS2 + ZAPP2)
−1∗

×H(ZAPP2) (ZS2 + ZAPP2)
−1 . (64)

Thus, GAU and GBU are given by (65) and (66) shown at

the top of this page.
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