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DOLFINx is the next generation problem solving environment from the FEniCS Project; it provides an expressive and performant
environment for solving partial differential equations using the finite element method. We present the novel and modern design
principles that underpin the DOLFINx library, and describe approaches used in DOLFINx that preserve the high level of mathematical
abstraction associated with FEniCS Project libraries, yet support extensibility and specialized customization. At the core of DOLFINx
is a data- and function-oriented design, in contrast with the object-oriented design of more traditional libraries. We argue that this
novel design approach leads to a compact and maintainable library, which is flexible in use and makes possible the creation of high
performance programs in different languages.

CCS Concepts: •Mathematics of computing → Mathematical software; Numerical analysis; Partial differential equations.
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1 INTRODUCTION

The finite element method emerged in the 1950s, driven by a need for accurately and effectively solving structural
mechanics problems originating from aeronautical engineering and the aircraft industry [5, 24, 27, 53, 100]. As the
method evolved, largely in tandem with the computer itself, the development of finite element software dates back
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nearly just as far. The 1960-70s saw the advent of general-purpose finite element software [15, 41, 49, 70, 96, 98],
with expanding functionality, including handling time-dependent and non-linear problems, adaptivity, enhanced user
interfaces and input/output-integration, in the 1980s [65, 97].

As the application domain of finite element methods grew into nearly all areas of engineering and natural sciences,
as well as the life sciences, by the 1990s a new paradigm developed. Object-oriented, general-purpose finite element
libraries such as Diffpack and deal.II [6, 12, 20, 63] were designed, supporting the development and implementation
of simulators for entirely new classes of problems. These libraries typically strongly and purposefully rely on class
hierarchies, templates and operator overloading for representing finite element concepts, such as meshes, finite element
spaces, degrees of freedom, and sparsity patterns. The main (far-from-trivial) task left to the user is to implement
the assembly of element tensors, while taking advantage of predefined basis functions and numerical linear algebra
algorithms.

The quest for even higher levels of abstraction, generality and automation without loss of computational efficiency led
to another revolution. By combining high-level software abstractions, encapsulating as well as mimicking mathematical
objects, with lower-level code generation or other forms of preprocessing, new ecosystems of finite element software
formed and prospered e.g. AceGen, Feel++, NGSolve and Firedrake [2, 3, 39, 47, 60, 61, 67–69, 81, 82, 90]. In particular,
the FEniCS Project [2] (FEniCS) pioneered a software pipeline consisting of a domain-specific language for defining
variational forms (Unified Form Language (UFL)) [3], a finite element form compiler for generating low-level finite
element code (FEniCS Form Compiler (FFC)) [68] and an automated finite element problem solving environment
and library (Dynamic Object-oriented Library for FINite element computation (DOLFIN)) [67]. These new levels of
abstraction enabled advanced higher-order features such as, for example, automated adjoints and derivatives of finite
element models [37, 74], automated error control and adaptivity [87], shape optimization [33, 44, 89], uncertainty
quantification [102], reduced order modeling [11], and hybrid finite element and neural network models [75], to mention
but a few.

FEniCS has made a significant impact across fields in engineering and the applied sciences where PDEs are a
prominent modeling paradigm. We can point to examples in geophysics [101], biomechanics [46], biomedicine [29],
structural mechanics [43, 85], fluid mechanics [76], inverse problems [79] and optimization [32]. In addition, FEniCS
has been used as a foundational tool for developing packages for new numerical approaches, e.g. fictitious-domain
finite element methods [21, 34], hybrid particle-mesh methods [71] as well as for the numerical verification of results
from mathematical analysis of new discretization techniques [28, 52, 95] and preconditioners [18].

Despite these successes, a number of challenges became evident with the design and continued development of the
FEniCS components:

• Age. Parts of the FEniCS software were approaching ten or even twenty years old. Previous design decisions
were based on the prevalent computer science and software engineering paradigms and technologies of the
time, which have limitations that later became apparent.

• Maintainability. The FEniCS pipeline, and DOLFIN in particular, were becoming increasingly complex and
cumbersome to maintain due to their large code base, which included both core and non-core features, and
design limitations.

• Extensibility. Overly encapsulated data storage and a lack of fine-grained control made it difficult for developers
and users to extend FEniCS non-intrusively to new problem settings andmethods when the available abstractions
were not sufficient. This also presented barriers to experimentation on new hardware platforms, e.g. GPUs.
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• Performance. Parallelism was not pervasive when DOLFIN was created, and support for parallel computing was
retrofitted. Although most algorithms were designed for parallel computation, a significant number were not
or were not optimal, resulting in an inconsistent user experience when computing in parallel and hindering
performance on the latest generation of high performance computers.

Here, we present the finite element library and problem-solving environment DOLFINx, the guiding design principles
and how these manifest in the library design, and its context in the revised FEniCS ecosystem (FEniCSx). The main
contributions of DOLFINx are:

• DOLFINx is a ground-up rewrite of DOLFIN using modern C++ and modern, idiomatic Python. The architecture
is fundamentally data-oriented and functional, rather than relying on object hierarchies and polymorphism.

• The core features of DOLFINx are focused on automatically solving PDEs using advanced finite element
discretization techniques on unstructured meshes. Our focus on achieving a relatively stable public application
programming interface (API) means that DOLFINx can be used as a basis for experimental or research work
without requiring intrusive extension of the core library with possibly immature and experimental technologies.

• DOLFINx integrates seamlessly with modern Python tools such as NumPy and Numba [62] for implementing
finite element cell kernels, creating meshes and finite element assembly algorithms, without loss of performance
over, e.g., C++ implementations of the same functionality.

• All algorithms in DOLFINx are designed with massively parallel computations in mind, and we no longer accept
contributions that do not meet this design goal.

The remainder of this paper is structured as follows. We discuss the underlying design principles of the DOLFINx
library in section 2, followed by a high-level overview of DOLFINx and the class of problem that it targets in section 3.
In section 4, we discuss some key design features that support efficient parallel computation. In section 5, we describe
how finite elements are defined in DOLFINx using the FEniCS library Basix, and how user-defined custom elements can
be created. In section 6, we look at how meshes are represented and accessed in DOLFINx, with a focus in distributed
parallel storage. Section 7 looks at how function spaces are defined in DOLFINx and how interpolation into arbitrary
spaces can be performed. In section 8, we discuss assembly kernels, including those generated by FEniCSx Form
Compiler (FFCx) and user-defined custom kernels and the creation of user assembly functions. Section 9 describes
linear algebra interfaces, and looks at how DOLFINx can be used alongside a range of external linear algebra libraries
without intrusion. We provide concluding remarks and pointers to further work and challenges in section 10.

2 DESIGN PRINCIPLES

The design of DOLFINx differs fundamentally from its predecessor DOLFIN in following a data-oriented and functional
design, and a more modular approach that allows for lower-level and fine-grained control. This is complemented by
higher-level interfaces, which characterized DOLFIN, being constructed from lower-level, user-accessible interfaces in
DOLFINx. The design principles are informed by the objectives of high-performance, flexibility and usability, support
for modern computer hardware (e.g. GPUs), language interoperability, and user and developer experiences of the
legacy DOLFIN library. DOLFINx is distributed memory parallel by design, with a focus on scalability and consistent
functionality in serial and parallel.

2.1 Data-oriented design

The design of DOLFINx follows a data-oriented approach, complemented by functional approaches, rather than a
heavily object-oriented design. Data encapsulation is used where appropriate, but not dogmatically. This design
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approach supports custom, low-level operations without use of object-oriented patterns such as inheritance and
polymorphism. The loss of some data encapsulation is often of little consequence in scientific computing as performance
considerations often place strong constraints on how data can be stored and accessed. Moreover, when exposing data the
layout of data can also be programmatically described. A data-oriented approach lends itself to extensions to different
hardware technologies, e.g. GPUs, without intrusive changes, since the underlying data can be accessed and operated
on. Also, a data-oriented approach eases interoperability across languages; data is common whereas language-specific
object-oriented features are not. We highlight in later sections examples of the data-oriented design.

2.2 Functional-style design

The data-oriented design is partnered with functional programming techniques in DOLFINx. Where possible, the design
favors pure functions. This aligns with the mathematical structure that we aim to follow, and pure functions are simpler
for users and developers to reason with in general, and have particular benefits in parallel. In many cases, modern C++
allows the use of pure functions without any performance penalty over a traditional design where functions modify
their arguments. We avoid polymorphism in DOLFINx by working with, and passing, functions that act on data. Where
in a traditional C++ library user-implemented functionality would typically be provided using polymorphism and
implementing virtual functions, in DOLFINx a function would be passed. Both modern C++ and Python provide simple,
native support for passing functions, including with captures. The resulting code is simpler, flexible, efficient and works
naturally across languages. Examples of the functional design are presented in later sections.

2.3 Minimal code generation

DOLFINx leverages domain-specific code generation for specific operations where there is a compelling user benefit to
do so, namely for the generation of finite element kernels for user-specified problems, and for the minimal ancillary
information required to support this. In all other respects DOLFINx prefers library implementations. A guiding principle
is that all operations should be possible with traditional development techniques, complemented by targeted code
generation tools. DOLFIN employed more extensive code generation than DOLFINx. Despite the success of DOLFIN and
its extensive user base, ultimately an expanding reliance on code generation led to increased library complexity, reduced
maintainability, slowed the rate at which new features and performance improvements could be made, and limited
extensibility and customizability. The DOLFINx design overcomes these issues without loss of the most appealing
features of DOLFIN.

2.4 Extensibility

DOLFINx is designed to be extensible, supporting the development of new and experimental features outside of the core
library. Broadly applicable features, once matured, are considered for incorporation into the library. This extensibility is
made possible by the data- and function-oriented design; programmatically described data arrays that define library
objects can be accessed and used. An example of this is research into finite element assembly operations on GPUs.
The necessary mesh and degree of freedom (DOF) map data can be accessed and used in computations outside of the
DOLFINx library and in different languages and frameworks.

2.5 Language interoperability

The core of DOLFINx is a library with a C++20 [26] interface. It is designed, however, to support inter-language
interoperability, with the data-oriented and functional design lending itself to this interoperability. The Python interface
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is developed in Python and with interfaces to the C++ library (generated using pybind11 [55]). Despite the C++ core,
the Python interface is idiomatic. While most users choose to use the Python interface, the C++ interface is feature
complete, and with modern C++ features the syntax is similar to the Python equivalent.

Many of the underlying data structures used in DOLFINx are based on contiguous arrays, described by shape and
sometimes strides, and this is exposed. This allows data to be passed in a straightforward way, without copy where
possible, between languages and for the data to wrapped or owned by a suitable data structure in a given language,
e.g. NumPy arrays in Python, or std::span or std::mdspan in C++23. Use of pure functions eliminates most memory
management issues when passing data into the C++ library, and the object lifetime support in pybind11 supports
memory management for data shared into the Python layer.

Building on the functional design, functions can be passed through the Python/C++ language barrier. Examples of use
include passing a user-provided graph partitioning function for computing the parallel distribution of a mesh, a function
for evaluating a mathematical expression at points for interpolating an expression in a finite element space, and finite
element kernel functions. Performance limitations of a language like Python for certain operations are overcome by the
provided functions performing vectorized operations using NumPy [45] or JIT compiled functions with Numba [62]. In
other cases tools such as Numba [62] and the C Foreign Function Interface (CFFI) can be used to compile functions
with C signatures, with function pointers passed into the C++ library.

2.6 Fine-grained control

The DOLFIN library provided mathematically expressive high-level interfaces which were well-suited to problems with
well-matched abstractions. However, the high-level interfaces were not constructed/composed from lower-level, fine-
grained interfaces. This could make application to problems that did not match the high-level interfaces challenging, and
the implicit nature of high-level interfaces could hide performance issues in some cases. Users without an understanding
of the details of the underlying implementation could write outwardly reasonable code that could be slow. Common
examples include the creation and destruction of non-trivial objects within a time loop that could be re-used (e.g. sparse
matrices), the pre-processing of variational forms for extraction from a JIT cache inside a loop, and increases in memory
usage due to the caching of large objects that might not be re-used. The DOLFINx API is designed to (i) expose the
lower-level steps in the solution of a finite element problem in a fine-grained manner and (ii) be explicit rather than
implicit, e.g. potentially expensive operations, steps that might not be required in all cases, or opaque caching objects
should be explicitly controlled by the user. The approach is supported by the functional design of DOLFINx with pure
functions preferred over class methods.

To preserve high-level interfaces that characterized DOLFIN and which in many cases enhanced usability and
accessibility, DOLFINx composes a high-level interface from its granular lower-level interface. This preserves some
attractive and easy-to-use features while permitting lower-level customizations that were difficult with DOLFIN.
Moreover, high-level and explicit interfaces in DOLFINx are designed to avoid opaque performance pitfalls. Interfaces
that were frequently used in ways that led to poor performance have been removed.

3 DOLFINX OVERVIEW

DOLFINx is a library for solving partial differential equations (PDEs) using the finite element method and mirrors
many of the mathematical abstractions that define the finite element method. Here we provide a short synopsis of finite
element concepts that are reflected in the DOLFINx design.
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A large class of finite element problems can be formulated as follows. Given a mesh T of a domain, finite element
spaces𝑈 and 𝑉 defined on the mesh, and a functional 𝐹 : 𝑈 ×𝑉 → C: find 𝑢 ∈ 𝑈 such that

𝐹 (𝑢; 𝑣) = 0 ∀𝑣 ∈ 𝑉 .

As an example, for the Helmholtz equation 𝐹 is defined as

𝐹 (𝑢, 𝑣) :=
∫
T
∇𝑢 · ∇𝑣 − 𝑘2𝑢𝑣 − 𝑓 𝑣 d𝑥,

where 𝑘 is the wave number, 𝑓 is a prescribed function and 𝑣 denotes the complex conjugate of 𝑣 . It is typical to set
𝑈 = 𝑉 , and for problems that are linear in 𝑢, such as the Helmholtz equation, to phrase the problem as: find 𝑢 ∈ 𝑈 such
that

𝑎(𝑢, 𝑣) = 𝐿(𝑣) ∀𝑣 ∈ 𝑈 ,

where for the Helmholtz equation

𝑎(𝑢, 𝑣) :=
∫
T
∇𝑢 · ∇𝑣 − 𝑘2𝑢𝑣 d𝑥, (1)

is referred to as the bilinear form, and

𝐿(𝑣) :=
∫
T
𝑓 𝑣 d𝑥,

is referred to as the linear form.
To provide an early sense of DOLFINx, we present in figure 1 a complete solver in Python for the Helmholtz equation

on a unit cube mesh with tetrahedral cells using a degree 3 Lagrange finite element space.

3.1 Components

FEniCSx is composed of four main libraries: UFL is a domain specific language that can be used to express finite element
forms; Basix is a library for constructing finite elements; FFCx generates fast element-level C kernels from UFL forms;
and DOLFINx, the largest component, manages finite element meshes, assembly over meshes, linear algebra data
structures and solvers, and input/output (I/O). UFL and FFCx are written in Python. Basix and DOLFINx are written in
C++ with Python interfaces to the majority of their functionality. These libraries, and the modules of DOLFINx are
summarized in figure 2.

Figure 3 shows how the components of FEniCSx depend on each other for a typical user application code developed
in Python. The user defines elements with Basix and writes their form with UFL. When assembly begins, dolfinx.jit
passes this form to FFCx to generate code that can assemble it. Alternatively, users can develop their application code
in C++: a typical workflow in this case is shown in figure 4. In our experience this has advantages, for example when
running on a high performance computer (HPC) cluster. In this case, FFCx can be used to generate the assembly kernels
ahead-of-time for use in a C++ code.

DOLFINx is designed such that it can be used without FFCx generated code. Element-level kernels can be programmed
in C or C++ for use via the C++ or Python interfaces of DOLFINx, or programmed using the Python-based JIT compilation
library Numba for high-performance kernels in a Python environment. A workflow using Numba is illustrated in
figure 5. This is discussed in section 8.3.
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1 from mpi4py import MPI

2

3 import numpy as np

4

5 import dolfinx.fem.petsc

6 from dolfinx import fem , io, mesh

7 from ufl import (SpatialCoordinate , TestFunction , TrialFunction , cos , dx, grad ,

8 inner)

9

10 # Create mesh and define function space

11 msh = mesh.create_unit_cube(MPI.COMM_WORLD , 12, 16, 12)

12 V = fem.functionspace(msh , ("Lagrange", 3))

13

14 # Define variational problem

15 u, v = TrialFunction(V), TestFunction(V)

16 x = SpatialCoordinate(msh)

17 k = 4 * np.pi

18 f = (1.0 + 1.0j) * k**2 * cos(k * x[0]) * cos(k * x[1])

19 a = inner(grad(u), grad(v)) * dx - k**2 * inner(u, v) * dx

20 L = inner(f, v) * dx

21

22 # Solve a(u, v) = L(v)

23 problem = dolfinx.fem.petsc.LinearProblem(

24 a, L, bcs=[], petsc_options ={"ksp_type": "preonly", "pc_type": "lu"})

25 uh = problem.solve()

26

27 # Save solution in VTX (.bp) format

28 with io.VTXWriter(msh.comm , "helmholtz.bp", [uh], engine="BP4") as vtx:

29 vtx.write (0.0)

Fig. 1. DOLFINx solver for the Helmholtz problem on a unit cube with homogeneous Neumann boundary conditions.

3.2 Summary of DOLFINx features

We briefly summarize some of the main features of DOLFINx. We expand on some of these features in the following
sections.

• Arbitrary degree finite elements on interval, triangle, quadrilateral, tetrahedral and hexahedral cells, including
unstructured meshes without special ordering;

• Scalable, distributed meshes;
• Meshes with flat or curved cells;
• Parallel I/O;
• Code generation can be used to generate finite element kernels from forms written using UFL;
• Assembly and solvers using different floating point scalar types;
• Assembly of custom element kernels written using Numba;
• Interpolation of functions into arbitrary function spaces;
• Interpolation between function spaces built on different (non-matching) meshes, including meshes using

non-affine geometry;
• Ability to non-intrusively support different linear algebra backends, e.g., NumPy, Portable, Extensible Toolkit

for Scientific Computation (PETSc), Trilinos, and Eigen;
• Assembly into blocked and nested matrices, supporting the efficient and scalable [103] implementation of

physics-based block preconditioners [36];
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FEniCSx

UFL [3]
Unified Form Language

Domain specific language used to describe finite element
forms, plus a set of algorithms related to these forms.

Basix [92]
Basis evaluation library

Library containing definitions of finite elements, and func-
tionality to evaluate them on a reference cell. Includes the

submodule basix.ufl, which can create UFL-compatible elements.

FFCx
FEniCSx Form Compiler

Generates C code that assembles a fi-
nite element form locally on a cell.

DOLFINx

dolfinx.common

General tools for tim-
ing and configuration

dolfinx.fem

Tools for assembling and ma-
nipulating finite element forms

dolfinx.fem.petsc

Assembly functions
into PETSc objects

dolfinx.geometry

Methods for geometric
searches and operations

dolfinx.graph

Graph representations
and operations on graphs

dolfinx.io

Tools for file I/O

dolfinx.jit

Just-in-time (JIT) com-
pilation using FFCx

dolfinx.la

Linear algebra functionality

dolfinx.mesh

Creation, marking and
refining of meshes

dolfinx.nls

Tools for solving
nonlinear problems

Fig. 2. The packages that make up FEniCSx, and the submodules of DOLFINx.

• User-defined finite elements.

3.3 License, availability and development

DOLFINx is released under the LGPL version 3 or later licenses. The other first-party components of the FEniCS Project,
namely FFCx and UFL are also released under the LGPL version 3 or later licenses, while Basix is released under the
MIT license. FEniCSx development takes place at https://github.com/FEniCS. DOLFINx is available as Debian/Ubuntu
packages, via the Conda and Spack package managers and in Docker images.

The DOLFINx codebase is remarkably compact for a finite element library with a wide range of functionality. The
C++ library has approximately 27 000 lines of code. The Python interface has around 3600 lines of pybind11 C++ binding
code and 2100 lines of Python, excluding tests. The important dependencies, Basix, FFCx and UFL contain an additional
22 000 lines of C++ and 20 000 lines of Python in total.

https://github.com/FEniCS
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Python

C++ C

The majority of the
user-facing functional-
ity is in DOLFINx

Finite element
forms are
written using
UFL

Elements are
defined using
basix.ufl

User application code (Python)

DOLFINx

DOLFINx
Python
interface dolfinx.jit

basix.ufl

Basix
Python
interface

Basix

FFCx

Code generated
by FFCx

UFL

Key
A B A calls functionality from B
A B A outputs B

Main component of FEniCSx
Subcomponent
Other code

Fig. 3. The interdependence of the core components of FEniCSx (DOLFINx, FFCx, Basix, and UFL) as employed by typical user
application code in Python.

4 PARALLELISM

DOLFINx is designed from the outset to support distributed memory parallelism using Message Passing Interface (MPI)
and parallel efficiency has been a major consideration in the design. The library has been used to solve problems with
more than 1 trillion cells. A full description of parallel design aspects of DOLFINx would require extensive coverage;
we choose in this section to discuss two key building blocks for parallel designs that are used throughout DOLFINx:
index maps and scatterers. We note that other libraries uses similar concepts, e.g. index sets (IS) and vector scatters
(VecScatter) in PETSc.

MPI-3 neighborhood collectives are used extensively in DOLFINx, and are naturally suited to finite element com-
putations on meshes and for linear algebra operations. Well-partitioned and well-ordered simulation data leads to
small communication neighborhoods, with neighborhood sizes independent of the overall size of a problem and the
number of MPI processes used in a simulation. In unstructured grid computations, there are sometimes cases where
the determination of a communication neighborhood is not straightforward, for example when constructing a mesh
from data in a file produced by another program. A common scenario is when a process knows which other process
holds data that it requires, but the holding process is not aware of which processes require (some of) its data. In
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Python C++

C

Finite element
forms are
written using
UFL

Elements are
defined using
basix.ufl

User-provided form file (Python) User application code (C++)

DOLFINx

basix.ufl

Basix
Python
interface

Basix

FFCx
Code generated from
form file by FFCxUFL

Key
A B A calls functionality from B
A B A outputs B

Main component of FEniCSx
Subcomponent
Other code

Fig. 4. The interdependence of the core components of FEniCSx (DOLFINx, FFCx, Basix, and UFL) as employed by typical user
application code written in C++ and finite element formulations described by UFL in Python. The C kernel is automatically generated
from a one-time execution of the Python form file code.

DOLFINx we use the non-blocking NBX consensus algorithm [50] to build neighborhood communication graphs when
the communication graphs cannot be built using already known neighborhood information. With the NBX algorithm,
DOLFINx does not use any MPI all-to-all communication functions.

4.1 Index maps

A typical design for distributing an object, such as a mesh, across multiple processes is to assign ownership of object
entities to processes, e.g. assign ownership of each entry in a vector (distributed array) to a process. In many cases
some entities will be stored on more than one process (ghost or halo regions).

The parallel layout of objects in DOLFINx is described by index maps, which describe how a range of indices is
distributed across parallel processes. Each index is uniquely ‘owned’ by a single process, although other processes may
be aware of the index: indices that a process is aware of but does not own are referred to as ghost indices. Ghost indices
may be included because (for example) a vertex not owned by the current process is adjacent to a cell owned by the
current process.

In DOLFINx, we have introduced the IndexMap class to describe the data layout in parallel. An IndexMap instance
partitions a set of 𝑛𝑔 ∈ N contiguous indices across a set of processes 𝑃 . Each process 𝑝 ∈ 𝑃 owns a contiguous subset
of indices [𝑖𝑝 , 𝑖𝑝 + 𝑛𝑝 ), for some 𝑖𝑝 , 𝑛𝑝 ∈ N, 𝑖𝑝 , 𝑛𝑝 ⩽ 𝑛𝑔 . The disjoint union of these owned indices across all processes
is equal to the entire range of indices [0, 𝑛𝑔). The global index corresponding to the first local index on process 𝑝 is
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Fig. 5. A possible user workflow when using a custom assembler written in Numba.

determined by the offset 𝑖𝑝 . The indices are distributed so that the first partition is owned by process 0, the next partition
chunk by process 1, and so on, i.e. 𝑖𝑝 =

∑𝑝−1
𝑖=0 𝑛𝑝 . In addition to the owned indices, an IndexMap stores a list of ghosts.

These ghosts represent the indices that the process needs to be aware of but does not own. For each ghost, we store its
global index, the rank of the owning processes and the local index of the ghost on the owning rank. Additionally, each
process stores lists of ‘source’ and ‘destination’ ranks (processes that own ghost indices and processes that ghost owned
indices, respectively). This data supports the creation of MPI neighborhood communicators, when required. The use of
index maps in the partitioning of meshes is discussed in section 6.1.

4.2 Scatterers

Building upon the index maps, DOLFINx uses a Scatterer object to manage data communication between processes for
distributed objects. A Scatterer is created from an IndexMap and supports communication of data associated with owned
indices to processes that ghost indices (forward scatter) and communications of data associated with ghost indices
to process that own the indices (reverse scatter). An IndexMap only stores information for the reverse communication
pattern (i.e. communication edges to processes that own ghosted indices), a Scatterer has communication graphs for
both forward and reverse communication patterns.

Communication in finite element solvers is sparse, i.e. each process exchanges data with only a small number of other
processes. A DOLFINx Scatterer uses MPI neighborhood collectives by default for communication1, with neighborhood
communicators created by a Scatterer using the forward and reverse communication graphs. A Scatterer also supports
1DOLFINx provides an implementation based on MPI point-to-point communication functions to replicate neighborhood collective functionality for MPI
implementations that do not support neighborhood collectives.
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any required packing and unpacking operations in-and-out of communication buffers. In support of communication
between GPUs, a Scatterer is templated over a C++ allocator, and also supports the passing of custom pack and unpack
functions, allowing host-to-device transfers to be minimized.

5 FINITE ELEMENTS AND BASIX

FEniCSx normally solves problems using finite elements defined by the library Basix [92]. Basix provides a wide range
of elements, including 𝐻 (div)- and 𝐻 (curl)-conforming elements, at arbitrary order on different cell shapes and with
fine-grained control over element construction, and support for creating user-defined elements that follow the Ciarlet
finite element definition. Both cases are discussed in this section.

5.1 Basix supported elements

Basix provides functionality to define a finite element, evaluate basis functions at a set of points, and apply push-forward
and pull-back operations to map between reference and physical cells. Basix further provides information to DOLFINx
about the layout of DOFs on each cell. Basix is written in C++ and includes a Python interface to its public API. The
full list of elements implemented in Basix is shown in table 1. Basix additionally allows the user to provide their own
custom element, which we discuss in section 5.2.

For Lagrange and discontinuous polynomial cubical (DPC) elements, the spacing of the points that define the element
can be controlled. Typically, schemes for tensor-product elements use the Gauss–Legendre (GL) or Gauss–Lobatto–
Legendre (GLL) points. For non-equispaced simplex cells, Basix can position points using one of three methods: warped
[48], those defined by centroids [17] and Isaac’s method [54]. For elements that are defined using integral moments
against either a Lagrange or DPC element, variants can be used to control the polynomials against which moments are
taken. If no variant is input, continuous higher-degree Lagrange elements use GL or GLL points and integral moments
are taken with Legendre polynomials.

5.2 User-defined finite elements

A feature of Basix is the ability to define custom finite elements through the library’s Python or C++ interfaces. Using
Python, custom elements can be created using Basix’s UFL submodule for use with UFL in the same way as any other
UFL element. We demonstrate this by example, but before doing so we introduce the Ciarlet definition of a finite element
(definition 5.1), which Basix follows:

Definition 5.1 (Ciarlet finite element). A finite element is defined by the triplet (𝑅,P,L), where

• 𝑅 ⊂ R𝑑 is the reference element, usually a polygon or polyhedron;
• P is a finite dimensional polynomial space on 𝑅 of dimension 𝑛;
• L := {𝑙0, . . . , 𝑙𝑛−1} is a basis of the dual space P∗ := {𝑓 : P → R | 𝑓 is linear}. Each functional 𝑙𝑖 ∈ L is

associated with a sub-entity of the cell.

The basis functions {𝜙0, . . . , 𝜙𝑛−1} of the space P are defined by

𝑙𝑖 (𝜙 𝑗 ) =


1 𝑖 = 𝑗,

0 𝑖 ≠ 𝑗 .
(2)

We associate a local DOF with each functional 𝑙𝑖 (or equivalently with each basis function 𝜙𝑖 ). When defining a
function space on a mesh, we associate a global DOF with each local DOF. Local DOFs whose functionals are associated
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Element Supported cells Supported degrees

Lagrange interval, triangle, quadrilateral, tetrahedron, hexahedron ⩾ 0

Nédélec first kind (N1) [77] triangle, quadrilateral, tetrahedron, hexahedron ⩾ 1

Raviart–Thomas (RT) [83] triangle, quadrilateral, tetrahedron, hexahedron ⩾ 1

Nédélec second kind (N2) [78] triangle, quadrilateral, tetrahedron, hexahedron ⩾ 1

Brezzi–Douglas–Marini (BDM) [19] triangle, quadrilateral, tetrahedron, hexahedron ⩾ 1

Regge [23, 84] triangle, tetrahedron ⩾ 0

Hellan–Herrmann–Johnson (HHJ) [9] triangle ⩾ 0

Crouzeix–Raviart (CR) [30] triangle, tetrahedron 1

discontinuous polynomial cubical (DPC) [8] quadrilateral, hexahedron ⩾ 0

serendipity [7] interval, quadrilateral, hexahedron ⩾ 1

bubble [58] interval, triangle, quadrilateral, tetrahedron, hexahedron
⩾ 3 (triangles),
⩾ 4 (tetrahedron),
⩾ 2 (other cells)

iso [16] interval, triangle, quadrilateral, tetrahedron, hexahedron ⩾ 1
Table 1. Elements that are supported in Basix, and the cells and degrees for which they are supported. Note that we start the
numbering of Raviart–Thomas (RT) and Nédélec first kind (N1) elements from degree 1. The lowest-degree RT elements that we refer
to as RT degree 1 are referred to as RT degree 0 in some sources (for example, [10, 93]).

with sub-entities shared between cells will be assigned the same global DOF number, seen from neighboring cells. This
yields the appropriate continuity between cells.

To demonstrate the construction of custom elements, we consider the degree 1 tiniest tensor (TNT) element [25].
The TNT element is defined by:

• 𝑅TNT := [0, 1]2 is the unit square. In Basix, the entities of this cell are numbered as shown in figure 6.
• PTNT := span{1, 𝑥,𝑦, 𝑥𝑦, 𝑥2, 𝑥2𝑦,𝑦2, 𝑥𝑦2}.
• LTNT := {𝑙0, . . . , 𝑙7}, where 𝑙0 to 𝑙3 are point evaluations at vertices 0 to 3 and 𝑙4 to 𝑙7 are integrals of the

function on edges 0 to 3. Each functional is associated with the vertex or edge that is used to define it.

The complete code to create this element in Basix from Python (the element could also be created in C++) is given in
figure 7. The polynomial space PTNT is defined by a matrix containing coefficients of a basis of PTNT in terms of a set
of orthogonal polynomials on the quadrilateral. The degree 2 orthogonal polynomials on a quadrilateral are ordered
so that the 𝑛th polynomial is in the span of elements 0 to 𝑛 of the set {1, 𝑦,𝑦2, 𝑥, 𝑥𝑦, 𝑥𝑦2, 𝑥2, 𝑥2𝑦, 𝑥2𝑦2}. The order that
Basix uses for arbitrary degree orthogonal polynomials on any cell type can be found in the Basix documentation. The
elements of the dual basis LTNT that are associated with each sub-entity of the reference cell are defined by providing
a set of points and weights. These points and weights discretely define the functional: the functional can be applied to a
function by evaluating the function at the points, multiplying by the weights, then taking the sum. For example, the
points and weights for the integral functionals 𝑙4 to 𝑙7 will be a set of quadrature points and weights. Finally, a Python
version of the element is created using the function basix.ufl.create_custom_element. We can immediately use any of the
functionality of Basix with this element and employ it directly with UFL and the code generator FFCx, highlighting
extensibility with the ability to generate code for element that are not defined in UFL or FFCx non-intrusively.
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Fig. 6. The numbering of local entities on each cell type. These figures are taken from [91].

6 MESHES

DOLFINx supports distributed, unstructured meshes composed of simplex or tensor-product cells with arbitrary
overlaps (support for mixed topology meshes and meshes with multiple geometric map types is under development).
The representation of meshes follows a graph-centric approach, as described in [66] for non-distributed meshes (see
also [59]), but the underpinning algorithms and data storage structures differ. A full discussion of the data structures,
algorithms and parallel treatment would require extensive treatment; we limit our discussion to some main points.

The mesh design follows a strict separation of topology and geometry, with a Mesh consisting simply of the pair (i)
mesh Topology and (ii) mesh Geometry defined on the topology. In its simplest form, a mesh Topology holds the cells of a
mesh, with a cell defined by its vertices. From this, algorithms are provided that can create and number (in parallel)
entities of other topological dimensions (edges and faces, which are also defined by their connected vertices). The
numbering of these entities is typically required to create function spaces for high-order finite elements. It is also
possible to create ‘sub-meshes’ (which are full Mesh objects) from (subsets) of mesh entities and to define finite element
spaces on these sub-meshes. Examples of cases where this is helpful include defining Lagrange multiplier spaces on
surfaces (internal or external), defining bounding condition functions that only exist on boundaries, and hybridized
finite elements methods with spaces that are defined only on the facets (‘skeleton’) of a mesh. A mesh Topology can also
store connectivities other than for an entity to its incident vertices. The connectivity fromgit entities of topological
dimension 𝑑0 to entities of 𝑑1 can be computed and stored in a mesh Topology.

A mesh Geometry describes the geometry of the topological cells declared in a Topology. A mesh Geometry stores (i) a
finite element (typically Lagrange) that provides the map for how a cell is transformed from a reference configuration
to a physical configuration, (ii) coordinate DOFs, usually the coordinates of the mesh vertices and any ‘high-order’
geometry points, and (iii) a DOF map that for each cell gives the indices of the coordinate DOFs. Geometry is templated
over the float type used to represent the mesh geometry.
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1 import numpy as np

2

3 import basix

4 import basix.ufl

5

6 # Coefficients defining the polynomial space in terms of orthogonal polynomials on the cell

7 wcoeffs = np.eye(8, 9)

8

9 geometry = basix.geometry(basix.CellType.quadrilateral)

10 topology = basix.topology(basix.CellType.quadrilateral)

11

12 # Points and weights use to define functionals on each sub -entity of the cell

13 x = [[], [], [], []]

14 M = [[], [], [], []]

15

16 # Associate one point evaluation with each vertex

17 for v in topology [0]:

18 x[0]. append(np.array(geometry[v]))

19 M[0]. append(np.ones([1, 1, 1, 1]))

20

21 # Associate an integral with each edge

22 pts , wts = basix.make_quadrature(basix.CellType.interval , 1)

23 for e in topology [1]:

24 v0 = geometry[e[0]]

25 v1 = geometry[e[1]]

26 # Map points on the reference interval to each edge of the quadrilateral

27 edge_pts = np.array([v0 + p * (v1 - v0) for p in pts])

28 x[1]. append(edge_pts)

29

30 mat = np.zeros((1, 1, pts.shape[0], 1))

31 mat[0, 0, :, 0] = wts

32 M[1]. append(mat)

33

34 # Associate 0 DOFs with the interior of the cell

35 x[2]. append(np.zeros([0, 2]))

36 M[2]. append(np.zeros([0, 1, 0, 1]))

37

38 tnt_degree1 = basix.ufl.custom_element(

39 basix.CellType.quadrilateral , [], wcoeffs , x, M, 0,

40 basix.MapType.identity , basix.SobolevSpace.H1, False , 1, 2)

Fig. 7. Creating a degree 1 TNT element in Basix. The polynomial space PTNT is defined by wcoeffs (line 7): in this example wcoeffs is
an 8 × 9 matrix that is an 8 × 8 identity plus an extra column of zeros. The functionals in LTNT are defined by a set of points x and
a 4-dimensional array M for each sub-entity of the cell (lines 13 to 36). The element is initialized in lines 38–40 using Basix’s UFL
submodule; the element can then be used directly with UFL.

6.1 Creating meshes

Distributed meshes can be created via a number of different interfaces at different levels of abstraction. At the lowest
level, users can create a Topology and a Geometry directly, but this is rarely done in practice as all (parallel) pre-processing
must be performed by the user; data must already be partitioned and distributed across process, if the input mesh data
mixes topological and geometric data (which most mesh generators do) the caller must separate the two concepts and
any local reordering for data locality should already be applied. An interface that users commonly call is (C++ version
given):

1 fem:: CoordinateElement element (.....);

2 std::vector <float > x{0.0, 0.0, 1.0, 0.0, 2.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 1.0};
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3 std::vector <std::int64_t > cells{0, 1, 4, 4, 1, 2, 5, 4};

4 mesh::Mesh mesh = mesh:: create_mesh(MPI_COMM_WORLD , cells , element , x, {x.size() / 2, 2});

The above example creates a mesh of two bilinear quadrilateral cells. The float type for the mesh geometry is inferred
from the type of the x array. The argument following x is the shape of the logically rectangular coordinate data; a
quadrilateral cell mesh could be embedded in two- or three-dimensions. The input cell and coordinate data can be
distributed across any of the MPI processes; it could also reside on one process or be distributed across all processes.
Internally, a distributed dual graph is constructed and a partitioning of cells across ranks computed, cells are ordered
for data locality, and a distributed mesh is created. The interface from Python is very similar:

1 x = np.array ([[0.0 , 0.0], [1.0, 0.0], [2.0, 0.0],

2 [0.0, 1.0], [1.0, 1.0], [2.0, 1.0]], dtype=np.float32)

3 cells = np.array ([[0, 1, 4, 4], [1, 2, 5, 4]], dtype=np.int64)

4 coordinate_element = basix.ufl.element("Lagrange", "quadrilateral", 1,

5 shape=(x.shape [1],), gdim=x.shape [1])

6 msh = mesh.create_mesh(MPI.COMM_WORLD , cells , x, ufl.Mesh(coordinate_element))

In the above examples a default graph partitioner, e.g. PT-SCOTCH [22], is called to compute the distribution of cells
across processes. However, a user may wish to provide their own cell distribution function. This is made straightforward
with the function-oriented design of DOLFINx by passing a user-defined partitioning function:

1 auto part_fn = []( MPI_Comm comm , int nparts , int tdim ,

2 std::span <const std::int64_t > cells , std::array <std::size_t , 2> cshape)

3 -> graph:: AdjacencyList <std::int32_t >

4 {

5 // Compute destination rank(s) for each cell in cells. Cells sent to

6 // more than one rank will be ghosts on some ranks. Return

7 // destinations for each cell as an adjacency list , where nodes are

8 // cells and edges are destination ranks.

9 };

10

11 mesh::Mesh mesh = mesh:: create_mesh(MPI_COMM_WORLD , cells , element , x, {x.size() / 2, 2}, part_fn);

For convenience, DOLFINx provides partitioning functions that use PT-SCOTCH, ParMETIS [56] or KaHiP [88], with
lambda captures used to specify option parameters for the partitioning libraries. From Python, users can create a cell
partitioning function in Python and pass the function to the create_mesh function. In the same vein, users can pass
re-ordering functions for user-controlled re-ordering. If the user wishes to maintain the input cell distribution across
processes a non-callable object can be passed as the partition function to create_mesh.

The function create_mesh is the backbone of fully-distributed and memory-scalable mesh creation. The DOLFINx file
input interfaces in essence read cell and geometry data from parallel file formats, with each read process reading a
chunk of the cell topology and geometry, and then call create_mesh. For file formats that DOLFINx does not natively
support, the user can write code to read the cell and geometry data, and if necessary apply a permutation to the cell
data to conform to the DOLFINx ordering, before calling create_mesh. It also supports programmatic approaches to
distributed mesh generation. For example, distributed meshes can be created in Python using the Gmsh [40] API without
intermediate output to disk:

1 import gmsh

2

3 from dolfinx.io import gmshio
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4

5 gmsh.initialize ()

6

7 model = gmsh.model()

8 sphere = model.occ.addSphere(0, 0, 0, 1, tag=1)

9 model.occ.synchronize ()

10 model.add_physical_group(dim=3, tags=[ sphere ])

11 model.mesh.generate(dim=3)

12

13 # Create a distributed DOLFINx mesh from the Gmsh model/mesh on MPI rank 0, and

14 # any any entity tag data in the Gmsh model

15 msh , celltags , facettags = gmshio.model_to_mesh(model , MPI.COMM_WORLD , rank =0)

In the above snippet, the DOLFINx function model_to_mesh manages the permutation of cell data from the Gmsh order to
the DOLFINx order before calling create_mesh.

In addition to interfaces for creating distributed meshes from user mesh data, DOLFINx provides built-in meshes for
some simple geometric shapes.

6.2 Arranging and accessing mesh data

Mesh entities of all dimensions are owned by one process and can be ghosted on other processes. Each entity has a
local index in the range [0, 𝑛), where 𝑛 is the numbers of entities on the process (owned and ghosts), and a global index
that is unique for each entity across all processes. Owned entities are numbered first, followed by ghosted entities that
are owned by another process. The layout aligns with the IndexMap concept, described in section 4.1. A Topology object
stores for each created entity type an IndexMap that describes how the entities are numbered and distributed. Index map
storage is very light as the global index for owned entities is simply the local position (index) plus a process offset.
Figure 8 shows a mesh distributed across three processes and the index maps for the cells on each process. Similarly,
figure 9 illustrates the distribution of vertices of the mesh and the corresponding index maps. A Geometry object has an
index map to describe the ownership of the geometry DOF map across processes.

Connectivities (incidence relationships) in DOLFINx follow a graph-centric approach and a natural data structure for
storing connectivity data is an adjacency list. We believe that this is such a natural data structure for the DOLFINx mesh
design and it conforms to our data-oriented approach that we do not attempt encapsulate the storage format behind
member functions/accessors. For the (𝑑0, 𝑑1) connectivity (entities of topological neighborhood 𝑑1 that are connected
to entities of topological neighborhood 𝑑0), each node in the adjacency list corresponds to an entity (by local index) of
dimension 𝑑0 and the links (edges) are the connected (incident) entities of dimension 𝑑1.

When executing an operation over entities of a mesh, rather than introducing mesh iterators, we execute over
provided ranges of entities. By exposing connectivity data directly as adjacency lists, which are simply a data array
and an array of offsets, mesh data can be operated on very efficiently and shared without overhead between libraries,
including libraries in different languages. In section 8.3.2 we show an example of how this data-centric design pattern
for meshes allows high-performance user assembly functions to be written in Python. The below snippet illustrates how
vertex-to-cell connectivity data can be computed and then accessed as data and offset arrays for possible use in other
code. An example of where we make frequent use of this approach is preparing unstructured mesh data for execution
of experimental code on GPUs.

1 mesh::Mesh mesh = mesh:: create_mesh (...);

2 int tdim = mesh.topology ()->dim();



18 Baratta, Dean, Dokken, Habera, Hale, Richardson, Rognes, Scroggs, Sime and Wells

10
11

12
13

14

15

16

0

17

1

18

21

2

19

22

3

20

4

23

5

24

6
25

7

26

8
27 9

28

29

30
31

31

29

14

10

9
8

7

6

5
4
3

2
1

0

Process 0

Local
index

Global
index

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 14
12 29
13 31

Locally owned

Ghosts

22

25
27

7
5

0

20
19

18
17

16

15

14

13
12
11

10

Process 1

Local
index

Global
index

0 10
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
10 20
11 0
12 5
13 7
14 27
15 25
16 22

Locally owned

Ghosts

8
9

20
19

16

31
30

29

28

27

26

25

24
23

22
21

Process 2

Local
index

Global
index

0 21
1 22
2 23
3 24
4 25
5 26
6 27
7 28
8 29
9 30
10 31
11 16
12 19
13 20
14 9
15 8

Locally owned

Ghosts
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3 mesh.topology ->create_connectivity (0, tdim); // Connectivity vertices -> cells

4 auto c = mesh.topology ->connectivity (0, tdim);

5

6 // Access underlying connectivity data

7 std::span <const std::int32_t > c_data = c->array();

8 std::span <const std::int32_t > c_offsets = c->c_offsets ();

9

10 // Copy data to GPU for operations on the device

11 ...

From Python, the adjacency list arrays are presented as NumPy arrays. Geometry data can be accessed in the same
fashion. In fact, when executing a finite element kernel over cells the only data required is (i) the range of cells to
execute over, (ii) the mesh geometry DOFs (logically two-dimensional array) and (iii) the geometry DOF map (logically
two-dimensional array) that for each cell points to the geometry DOFs in the geometry array.

6.3 Cell orientation encoding

A distinguishing feature of DOLFINx is support for high-order finite element spaces on general unstructured meshes
without any special ordering of cells. A key feature that enables support for high-order elements on general unstructured
meshes is the computation, for each cell, of local entity orientation relative to a reference orientation. A DOLFINx
mesh topology algorithm encodes this information into one unsigned 32-bit integer for each cell. The need for this
information is covered later in section 8.4.

6.4 Refinement

DOLFINx supports scalable refinement (local and uniform) of distributed meshes of simplex cells. It uses the algorithm
presented in [80], and the algorithm uses local neighborhood communication patterns which leads to a scalable
implementation.

7 FUNCTION SPACES, INTERPOLATION AND FORMS

A fundamental feature of any finite element library is its capacity to assemble matrices and vectors over finite element
function space(s). In this section we consider the DOLFINx implementation of a discrete function space on a mesh, the
definition of forms on function spaces and the assembly of forms over meshes.

7.1 Degree-of-freedom maps

A DOF map specifies which global DOF numbers are associated with the local DOFs on each cell. To create a DOF map,
we require information about the topology of the mesh and the layout of DOFs on each cell, from which DOLFINx
creates a distributed DOF map. The element-specific layout of DOFs on each cell is provided by Basix and stored in
an ElementDofLayout in DOLFINx. An ElementDofLayout associates each local DOF of an element with either a vertex, an
edge, a face, or the cell. Mesh topology is used to ensure that local DOFs associated with mesh entities that are shared
by multiple cells are all assigned the same global DOF number. The geometry of the mesh is not required, as only the
connectivity between cells has an impact on the DOF numbering. An instance of the DofMap class stores a vector of
global DOF numbers and provides methods that return this information as an adjacency list. These data may be queried
to discover global DOF numbers associated with each cell.
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7.2 Function spaces and finite element functions

Mimicking the mathematical structure of a function space, DOLFINx function spaces bring together a mesh (the domain),
an element (the local space) and a DOF map (required global regularity). In the simplest case, a function space is created
from a mesh and a finite element type, e.g. for a continuous Lagrange element of degree 2, and space can be created by:

1 msh = mesh.create_mesh (...)

2 V = fem.functionspace(msh , ("Lagrange", 2))

A strength is the capability to create function spaces on mixed elements. The below illustrates the creation of a mixed
finite element space composed of Raviart–Thomas and discontinuous Lagrange spaces.

1 msh = mesh.create_mesh (...)

2 E0 = basix.ufl.element("Raviart -Thomas", msh.basix_cell (), 3)

3 E1 = basix.ufl.element("DG", msh.basix_cell (), 2)

4 E = basix.ufl.mixed_element ([E0, E1])

5 V = fem.functionspace(msh , E)

Mixed elements can be nested arbitrarily, with functions spaces constructed from the nested elements. In the above
example, the degree-of-freedom map is constructed from data associated with the elements. It is also possible to
construct a function space with a user-provided DOF map.

A number of operations on function spaces are supported, including extracting subspaces (views) and collapsing
subspaces (creating a new space from a view). One of the most powerful features is interpolation into and between
spaces, which is presented in section 7.3.

Given a DOLFINx model of a function space, finite element functions can be created on a space. A Function is an object
that holds a function space and the DOFs coefficients associated with the function. The below snippet demonstrates the
creation of Function objects on a function space with different scalar types for the coefficient values.

1 V = fem.functionspace (...)

2 u0 = fem.Function(V, dtype=np.float64)

3 u1 = fem.Function(V, dtype=np.complex128)

Analogous to function spaces, sub-functions (views) can be extracted and ‘collapsed’, and interpolated to and from.

7.3 Interpolation

DOLFINx supports the optimal interpolation of user-provided expressions into finite element spaces. This builds on the
Basix structure for defining finite elements through the definition of the dual basis.

Basix provides sufficient information to evaluate the functionals in an element’s dual basis L. When creating an
element, Basix uses the implementation of the dual basis to compute a dual matrix 𝑙𝑖 (𝑝 𝑗 ) ∈ R𝑛×𝑛 , where {𝑝0, . . . , 𝑝𝑛−1}
is a basis of P (in Basix, we always use an orthonormal basis here). The dual matrix can then be inverted to find the
coefficients that define the primal basis {𝜙0, . . . , 𝜙𝑛−1}. The same information can be used to apply the functionals to a
given expression to compute the coefficients of an interpolation of the expression in the finite element space.

Let 𝑓 be an expression that we want to interpolate into a finite element space. The interpolant of 𝑓 is denoted by
𝑓 ∈ P and is defined by

𝑓 (𝒙) =
𝑛−1∑︁
𝑖=0

𝑙𝑖 (𝑓 )𝜙𝑖 (𝒙).

The coefficients can be computed by applying the functionals in the dual basis L to the expression 𝑓 . As an implemen-
tation of an element in Basix includes information for evaluating the dual basis, DOLFINx can perform interpolation by
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using this information on a cell. This interpolation can be performed for any Basix element; there is no requirement for
the dual space to only include point evaluation functionals.

The below snippet illustrates the interpolation of the expression 𝑓 = sin π𝑥 sin π𝑦 into a continuous Lagrange space
of degree 3. It also highlights the functional design, the user provides the mathematical expression to apply to the data
(coordinate data in this case). The vectorized evaluation avoids performance issues that can affect interpreted languages,
and it also permits the library to make decisions on how many points should be evaluated each time.

1 msh = create_unit_square(MPI.COMM_WORLD , 12, 12, cell_type=CellType.quadrilateral)

2 V = functionspace(msh , ("Lagrange", 3))

3 u = Function(V)

4 u.interpolate(lambda x: np.sin(np.pi * x[0]) * np.sin(np.pi * x[1]))

7.3.1 Point evaluations versus integral moment definitions of the dual basis. The approach to interpolation used in
DOLFINx is particularly powerful for elements with integral moment functionals, which are used to define a number of
finite elements, including N1 [77], Nédélec second kind (N2) [78], RT [83], serendipity [7], and Brezzi–Douglas–Marini
(BDM) [19] elements among others.

The following integral moment functionals are used to define a degree 𝑝 N1 element on a tetrahedron:

• on each edge, moments of the tangential components against a basis of the set of degree 𝑝 − 1 polynomials on
an interval;

• (if 𝑝 > 1) on each face, moments of the tangential components against a basis of the set of degree 𝑝 − 2
polynomials on a triangle;

• (if 𝑝 > 2) on the interior of the cell, moments of each component against a basis of the set of degree 𝑝 − 3
polynomials on a tetrahedron.

In a lowest degree N1 element, there is one functional associated with each edge that is evaluated by integrating the
product of the tangential component of the input function against a constant. In this case, the element can be properly
defined (in the sense of unisolvency) by associating one functional with each edge that is evaluated by finding the
tangential component of the input function at the midpoint of the edge. For higher-degree elements, evaluation of
the functionals is more complex but the implementation in DOLFINx is straightforward. For example, the function
𝒈(𝑥,𝑦, 𝑧) = (sin(8𝑥), 2𝑦 cos(3𝑧), 𝑥) is interpolated in a degree 3 N1 space using:

1 nedelec = dolfinx.fem.FunctionSpace(msh , ("N1curl", 3))

2 g_h = dolfinx.fem.Function(nedelec)

3 g_h.interpolate(lambda x: np.array([np.sin(8*x[0]), 2**x[1]*np.cos(3*x[2]), x[0]]))

For higher degree N1 elements, replacing the integral functionals with a set of point evaluations leads to sub-optimal
interpolation errors. We demonstrate this by defining a point evaluation-based N1 element (using Basix’s custom
element interface, see section 5.2). The left-hand plot in figure 10 shows the interpolation error when the expression 𝒈 is
interpolated using (i) the standard integral moment element (see the above snippet) and (ii) the point evaluation element,
for different element degrees. The issues with the point evaluation variant is more pronounced in the right-hand plot in
figure 10, where the interpolation error is shown for a degree 3 N1 element as we decrease the cell size ℎ. The point
evaluation elements converge at the sub-optimal rate of O(ℎ2), while the integral moment version achieves the expected
O(ℎ3) rate. This sub-optimal interpolation order is observed in a number of implementations of N1 elements that use
point evaluations, e.g., FInite element Automatic Tabulator (FIAT) [57, 73] and MFEM [4, 31]. Because DOLFINx can
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Fig. 10. The interpolation error when the function 𝒈 (𝑥, 𝑦, 𝑧 ) = (sin(8𝑥 ), 2𝑦 cos(3𝑧 ), 𝑥 ) is interpolated into a space of N1 elements
on a tetrahedron defined using either point evaluation or integral moment functionals. The left plot shows the errors as we increase 𝑝
on a mesh of the unit cube with 750 cells. The right plot shows the errors for a degree 3 element as we decrease ℎ, where the dashed
lines show O(ℎ2 ) and O(ℎ3 ) convergence.

interpolate functions into elements defined using any type of functional in the dual basis we avoid the disadvantages of
point evaluation definitions without any added user complexity.

7.3.2 Expressions. Expressions in the DOLFINx context are symbolic UFL expressions that act on finite element
functions (as defined in [3, section 3.2]) that, supported by FFCx code generation, can be computed. For example, let
𝑓 ∈ P1 be a continuous linear Lagrange finite element function. Consider the case where we wish to compute its
discrete gradient as a discontinuous vector-valued degree 0 Lagrange finite element function, 𝒈̃ ∈ [P0]2, i.e.,

𝒈̃(𝒙) = ∇𝑓 =

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝝍𝑖 (𝒙)𝑙𝑖 (∇𝜙 𝑗 ) 𝑓𝑗 . (3)

Here 𝑙𝑖 are the𝑚 elements of the dual basis of [P0]2 with associated vector-valued basis functions 𝝍𝑖 , 𝜙 𝑗 are the 𝑛 basis
functions associated with P1 and 𝑓𝑗 are the coefficients of 𝑓 . Computing 𝒈̃ (or equivalently, its coefficients 𝑔𝑖 ) involves
the evaluation of the derivatives of the basis functions 𝜙𝑖 at functionals in the dual basis of 𝒈̃, their contraction with
the coefficients of 𝑓 , and finally insertion into the global vector of coefficients 𝒈. FFCx can generate a local expression
kernel that performs the first two operations, and DOLFINx provides the necessary routines to perform the insertion.
A common operation in simulation post-processing is to compute derived quantities, such as stress or strain from a
computed displacement field. Figure 11 illustrates the code that, given a computed displacement field uh defines an
Expression for evaluating the von Mises stress at the interpolation points for a discontinuous Lagrange element.

7.3.3 Interpolation between elements. Fast interpolation between different finite element spaces, including to/from
elements with moment functionals, is also supported in DOLFINx. This is useful in a range of applications, including
for visualization. For example, 𝐻 (div)- and 𝐻 (curl)-conforming finite element spaces can be visualized exactly by
interpolating into a sufficiently rich discontinuous Lagrange space prior to visualization.
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1 def sigma(v):

2 """An expression for the stress given a displacement field v."""

3 def eps(v): return sym(grad(v))

4 return 2.0 * mu * eps(v) + lmbda * tr(eps(v)) * Identity(len(v))

5

6

7 # Define deviatoric and von Mises stress as UFL expressions

8 sigma_dev = sigma(uh) - (1 / 3) * tr(sigma(uh)) * Identity(len(uh))

9 sigma_vm = sqrt ((3 / 2) * inner(sigma_dev , sigma_dev))

10

11 # Interpolate von Mises stress into a finite element space

12 W = fem.FunctionSpace(msh , ("Discontinuous Lagrange", 0))

13 interpolation_points = W.element.interpolation_points ()

14 sigma_vm_expr = fem.Expression(sigma_vm , interpolation_points)

15 sigma_vm_h = fem.Function(W)

16 sigma_vm_h.interpolate(sigma_vm_expr)

Fig. 11. Interpolating a UFL expression of von Mises stress of a continuous vector-valued finite element solution into another
discontinuous vector-valued finite element space. For brevity, we omit the solution of the linear elasticity problem.

7.4 Forms

Finite element variational forms can be represented using UFL. UFL is now a well-established FEniCS library; we present
the definition of finite element forms here briefly for completeness. UFL forms have already appeared in figure 1. The
bilinear form for Helmholtz equation (1) is expressed in UFL as:

1 V = fem.functionspace (...)

2 u, v = ufl.TestFunction(V), ufl.TrialFunction(V),

3 k = 4 * np.pi

4 a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx - k**2 * ufl.inner(u, v) * ufl.dx

As this stage, a is an abstract representation of the Helmholtz bilinear form, and needs to compiled by FFCx to provide a
concrete representation that can be used in computations. The creation of a concrete representation of the form in
DOLFINx is handled explicitly, giving the user control over when JIT compilation is triggered and the parameters that
affect the generated code. For example, the below snippet shows how two concrete instantiations of a finite element
form can be created from the same abstract definition, with the first using a real type and the second a complex type.

1 a0 = fem.form(a, dtype=np.float32)

2 a1 = fem.form(a, dtype=np.complex64)

The main differences between an abstract UFL form and a concrete DOLFINx form are that the DOLFINx form is
equipped with a finite element kernel function for evaluating the form on a cell (or a cell entity), whereas a UFL does
not have an associated kernel function but can be further manipulated symbolically as a UFL object. The two concepts
are very deliberately separated in DOLFINx as there is no unique kernel function implementation for a given UFL form.
Explicit control over when form computation is triggered avoids mutable states that can make programs harder to
reason with and introduce opaque memory resource demands, and explicit control makes it easier to manage the use of
system resources, for example when triggering UFL form preprocessing and compilation.

We wish to stress that DOLFINx is designed to also be used following a more traditional approach where, in place of
generated code, a user can develop element kernel functions directly. This distinguishes DOLFINx from its predecessor,
DOLFIN. Some short examples on how user kernels can be used in DOLFINx are presented in the following section.



DOLFINx: The next generation FEniCS problem solving environment 25

8 ASSEMBLY

Central to any finite element library is the assembly process to assemble a finite element form into a scalar, vector or
matrix, depending on the form’s rank. What largely defines a specific finite element problem type is the local kernel
that is executed over cell entities of a particular type, most commonly cells, with the output of the kernel suitably
accumulated into a scalar, vector or matrix.

Performance of a finite element solver depends heavily on the performance of the local kernel, and the local kernel
is what differs most between computations for different PDEs with different element types. Local kernels are often
created by users for a specific problem of interest. The DOLFIN library eased the burden of kernel creation by using a
domain-specific language (UFL) and a code generator (FFC). This approach can be highly effective for a wide range of
cases. However, DOLFIN could not easily support cases that fell outside of the abstractions of UFL and requiring code
generation can be a significant burden when exploring the properties and performance of new numerical methods or
implementations.

We demonstrate in this section how the data-oriented and functional design of DOLFINx retains the attractive
features of DOLFIN and overcomes its limitation via support for a range of high performance kernel creation approaches;
generated kernels (C++ or Python); JIT compiled Numba kernels (Python); and hand-coded, compiled kernels with a C
interface (C++ or Python). Additionally, these approaches can be combined. Novel is the support for custom complete,
performant and parallel assembly functions in Python using Numba.

8.1 Local kernel interface

Local kernels that are executed by the DOLFINx assembly functions have the following C signature, as defined in
Unified Form-assembly code for FEniCSx (UFCx) [14]:

1 void kernel(T* restrict A,

2 const T* restrict w,

3 const T* restrict c,

4 const T2* restrict coordinate_dofs ,

5 const int* restrict entity_local_index ,

6 const uint8_t* restrict quadrature_permutation);

where T is the data type (e.g. float, double, float, float _Complex or double _Complex), T2 is the geometry data type (e.g. float or
double) and A is the local element tensor (as an in/out argument). The array w contains the coefficients attached to the form.
This coefficient array is a list of finite element coefficient values for the given cell, ordered as (𝑐0, . . . , 𝑐𝑁𝑐

, 𝑑0, · · · , 𝑑𝑁𝑑
, . . . ),

where 𝑐𝑖 are the coefficients of a function 𝑐 in a finite element space with 𝑁𝑐 DOFs per cell, and 𝑑𝑖 are from a space
with 𝑁𝑑 DOFs per cell. The array c contains constants attached to the form, holding constants (of any rank) that are
constant over a subdomain. The array coordinate_dofs holds the physical coordinate degrees-of-freedom for a cell. The
local index (relative to the cell) of the sub-entity that the kernel is executed over is pointed to by entity_local_index, and
quadrature_permutation points to an integer that encodes how the sub-entity should be permuted to ensure the orientation
on two neighboring cells agree. Generated or hand-coded kernels that conform to this interface can exploit the built-in
assembly functions. The simplicity of the kernel interface eases possible integration into other finite element solvers,
e.g. [72].
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8.2 Assembling generated kernels

Any form that can be expressed in UFL can be assembled over a mesh into a tensor with DOLFINx. Given a UFL form,
FFCx generates code kernels in C that are executed over cells by the assembler. From C++, the generated code can
be compiled into a program. From Python, the a UFL form is JIT compiled using CFFI [86] and passed to a DOLFINx
assembly function. The below snippet demonstrates the assembly of a mass operator into a DOLFINx native distributed
sparse matrix using single-precision complex floating point numbers.

1 V = fem.functionspace (...)

2 u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

3 a = ufl.inner(u, v) * ufl.dx

4 a = fem.form(a, dtype=np.complex64) # Compile the bilinear form into a concrete instance

5 A = fem.assemble_matrix(a)

6 A.scatter_reverse ()

The syntax is broadly similar to DOLFIN, given that both use UFL to express forms. Noteworthy differences are on line 4,
where the form compilation is now triggered explicitly and the floating point type can be specified, and the manual
reverse-scatter on line 6. Form compilation is explicit to discourage user code that introduces repeated pre-processing
of a UFL form, which can have a non-negligible cost, to allow different implementations to be generated from a
common UFL definition, e.g., np.float32 and np.complex64 versions, and to provide fine-grained control over resources by
controlling when JIT compilation is triggered. We avoid hidden caching or dynamic attaching of data to objects, e.g. the
sparse matrix is not attached to the form a, as this can introduce opaque, and sometimes unnecessary, increases in
memory usage and makes the preservation of consistent behavior more difficult to achieve. Except in the very highest
level interfaces, DOLFINx does not hide parallel communication steps. Attempting to hide communication steps in
many cases introduces more communication operations than are required as the library cannot anticipate how a user
will next use an object.

The C++ interface code for the same operation is very similar, as shown by the following snippet:

1 auto V = std:: make_shared <fem:: FunctionSpace <float > >(.....);

2 fem::Form a = fem:: create_form <float , float >(* form_mass , {V, V}, {}, {}, {}));

3 la:: SparsityPattern sp = fem:: create_sparsity_pattern(a);

4 sp.finalize ();

5 la::MatrixCSR <float > A(sp);

6 fem:: assemble_matrix(A.mat_add_values (), a, {});

7 A.scatter_rev ();

In this case, form_mass is a pointer to UFCx-compliant form struct generated by FFCx and which provides an assembly
kernel function.

For a wide range of examples of the DOLFINx interface and functionality for automatically assembling finite element
forms, we refer to the documentation and demo programs.

8.3 Custom kernels and assemblers

From C++, DOLFINx can be used as a library with user-developed element kernel functions passed to a DOLFINx
assembler, following the function-oriented approach, or users can program complete assemblers. Unlike DOLFIN,
DOLFINx supports both traditional development approaches and the code generation paradigm. More challenging is
supporting fast, user-developed kernels from Python. This section is dedicated to how DOLFINx enables fast custom
kernels and assemblers from Python.
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For custom operations, DOLFINx allows users to (1) supply a custom kernel to the built-in assembly functions, (2)
use their own assembly functions with generated kernels, or (3) provide their own kernel and assembler. Within a
single application, these three approaches can be combined as appropriate. From Python, both kernels and assemblers
can be written using Numba [62], which just-in-time compiles Python/NumPy code to machine code using LLVM [64].
Alternatively, CFFI can be used to compile C functions that can be used in Python and in the DOLFINx core. For all
cases, the functionality is enabled by the data- and function-oriented design of DOLFINx.

For the purposes of exposition, the presented examples are deliberately simple and are also acheivable within the
code generation abstractions in section 8.2.

8.3.1 Kernels. We first consider the creation of an element matrix kernel using Numba. The high-level workflow for
this case is shown in figure 5. Consider the assembly of element mass matrices 𝐴 := (𝑎𝑖 𝑗 ) ∈ R3×3 on affine triangles 𝑅
using degree 1 Lagrange basis functions. The local matrix entries are given by

𝑎𝑖 𝑗 =

∫
𝑅

𝜑𝑖 · 𝜑 𝑗 d𝑥 = |det 𝐽 |
∫
𝑅̂

𝜑𝑖 · 𝜑 𝑗 d𝑥 = |det 𝐽 | 𝑚̂𝑖 𝑗 . (4)

The matrix 𝑀̂ := (𝑚̂𝑖 𝑗 ) ∈ R3×3 is a mass matrix on the reference triangle 𝑅. Once the matrix M̂ is computed (as M_hat)
the Numba code in figure 12 defines a kernel that computes A on a given cell. In figure 12, c_signature in the decorator
has type numba.types (details omitted) and is a Numba object that defines a C interface for the function which conforms
to the kernel interface defined in section 8.1. The memory address (pointer) to the Numba compiled function can then
be passed to the Form initializer, creating a form object that is equipped with our custom cell kernel function, illustrated
by the below code extract:

1 cells = np.arange(msh.topology.index_map(msh.topology.dim).size_local , dtype=np.int32)

2 integrals = {dolfinx.fem.IntegralType.cell: [(-1, tabulate_A.address , cells), ]}

3 coefficients_A , constants_A = [], []

4 a = dolfinx.fem.Form(formtype ([V._cpp_object , V._cpp_object],

5 integrals , coefficients_A , constants_A , False))

In the above example, tabulate_tensor_A.address (which is of type int) is internally cast to a std::functionwith the required
kernel signature, and can be passed to the assembler. Should the custom kernel require additional data, this can be
passed to the form initializer as constants or coefficients, or the kernel function can capture data from outside of its
scope.

The expressive symbolic power of UFL and the code generation capabilities of FFCx can be combined with custom
kernels. A user can compile UFL forms with the FFCx JIT compiler, and can call the compiled kernels from within a
custom Numba kernel. This can be useful for implementing operations where one may wish to modify the standard
kernel output, e.g. to apply static condensation. Figure 13 shows an example of calling a FFCx generated kernel from
within a Numba kernel. The compiled kernel ufcx_kernel computes an element matrix (the weighted mass matrix in the
full example in the supplementary material). In this case, the matrix computed by ufcx_kernel could be modified before
being passed to the assembler.

8.3.2 Assemblers. The data-oriented approach followed by DOLFINx makes it possible to write complete and efficient
assembly functions in other languages, including from Python. The data underpinning key objects, including meshes
and DOF maps, can be accessed as plain data types and shared across language interfaces without copy, and parallel
execution normally requires not special consideration. Figure 14 presents a complete assembly function, using Numba,
for the mass matrix using degree 1 Lagrange basis on a triangle. Mesh data is passed in as non-owning NumPy array
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1 @numba.cfunc(c_signature , nopython=True)

2 def tabulate_A(A_, w_, c_, coords_ , entity_local_index , quadrature_permutation=None):

3 # Wrap pointers as a Numpy arrays

4 A = numba.carray(A_, (dim , dim))

5 coordinate_dofs = numba.carray(coords_ , (3, 3))

6

7 x0, y0 = coordinate_dofs [0, :2]

8 x1, y1 = coordinate_dofs [1, :2]

9 x2, y2 = coordinate_dofs [2, :2]

10

11 # Compute Jacobian determinant and fill the output array with

12 # precomputed mass matrix scaled by the Jacobian

13 detJ = abs((x0 - x1) * (y2 - y1) - (y0 - y1) * (x2 - x1))

14 A[:] = detJ * M_hat

Fig. 12. A Numba function that captures the already-computed element mass matrix on the reference cell, M_hat, computed outside
of the function body, to compute the element mass matrix on a physical cell.

1 @numba.cfunc(c_signature , nopython=True)

2 def tabulate_A_wrapped(A_, w_, c_, coords_ , entity_local_index , quadrature_permutation=None):

3 A = numba.carray(A_, (dim , dim))

4

5 # Allocate new Numpy array where temporary tabulation is stored

6 M = np.zeros_like(A)

7

8 w = numba.carray(w_, (dim , ))

9 c = numba.carray(c_, (1, ))

10

11 # Call the compiled kernel (from_buffer is required to extract the

12 # underlying data pointer)

13 ufcx_kernel(ffi.from_buffer(M), ffi.from_buffer(w),

14 ffi.from_buffer(c), coords_ , entity_local_index ,

15 quadrature_permutation)

16

17 # At this point , custom manipulations could be applied to A

18 A[:] = M

Fig. 13. A Numba kernel that calls a FFCx generated kernel (ufcx_kernel).

views into the DOLFINx C++ mesh data structures. set_vals (details omitted) is defined using Python ctypes to wrap the
PETSc matrix insertion call at the C binary level. Consequently, Numba assemblers execute entirely using compiled
code and with the Python Global Intepreter Lock (GIL) released.

8.4 Degree-of-freedom permutations and transformations

For high-degree elements, neighboring cells must agree on the orientation of their shared sub-entities. For meshes of
simplex (i.e. interval, triangle or tetrahedron) cells, this can be achieved by a suitable, local ordering of the vertices of
each cell. An ordering approach can also be used for quadrilateral and hexahedral cells, but the ordering operation is
not local to each cell and an ordering that guarantees a common orientation of shared sub-entities is not possible for all
hexahedral cell meshes [1, 51].

To achieve consistent sub-entity orientations in DOLFINx, we use a method of DOF permutations and transfor-
mations [94]. DOF permutations and transformations determine how the local basis functions and DOFs should be
adjusted to account for differences in the orientations of cell sub-entities on the reference cell and the physical mesh.
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1 @numba.njit

2 def area(x0, x1, x2) -> float:

3 """ Compute the area of a 2D triangle from its vertices."""

4 a = (x1[0] - x2[0]) **2 + (x1[1] - x2[1]) **2

5 b = (x0[0] - x2[0]) **2 + (x0[1] - x2[1]) **2

6 c = (x0[0] - x1[0]) **2 + (x0[1] - x1[1]) **2

7 return math.sqrt(2 * (a * b + a * c + b * c) - (a**2 + b**2 + c**2)) / 4.0

8

9

10 @numba.njit

11 def assemble(A, mesh , dofmap , num_cells , set_vals , mode):

12 """ Assemble P1 mass matrix over a mesh into the PETSc matrix A."""

13 # Extract mesh topology and geometry

14 v, x = mesh

15

16 # Quadrature points and weights

17 q = np.array ([[0.5 , 0.0], [0.5, 0.5], [0.0, 0.5]], dtype=np.double)

18 weights = np.full(3, 1.0 / 3.0, dtype=np.double)

19

20 N = np.empty(3, dtype=np.double)

21 A_local = np.empty((3, 3), dtype=np.double)

22

23 # Iterate over cells

24 for cell in range(num_cells):

25 cell_area = area(x[v[cell , 0]], x[v[cell , 1]], x[v[cell , 2]])

26

27 # Loop over quadrature points

28 A_local [:] = 0.0

29 for j in range(q.shape [0]):

30 N[0], N[1], N[2] = 1.0 - q[j, 0] - q[j, 1], q[j, 0], q[j, 1]

31 for row in range (3):

32 for col in range (3):

33 A_local[row , col] += weights[j] * cell_area * N[row] * N[col]

34

35 rows = cols = dofmap[cell , :]

36 set_vals(A, 3, rows.ctypes , 3, cols.ctypes , A_local.ctypes , mode)

Fig. 14. A Numba function that assembles a mass matrix on a mesh.

DOLFINx orients an entities in the physical mesh by identifying which of its vertices has the lowest topological index,
then identifying which vertex that is connected by an edge to this lowest index vertex has the lower index. For example,
a quadrilateral is oriented by first identifying the vertex which has the lowest index in the mesh topology, then looking
at the two edges connected to this vertex and identifying which of the vertices at the other end of these edges has the
lower index number in the mesh topology. DOF permutations and transformations are applied when the vertices used
to orient a physical cell do not match those used on the reference cell. This method allow us to use arbitrary degree
finite elements on meshes of any cell type.

Consider a Lagrange element. Orientation differences for edges and faces can be accounted for by permuting the
DOF numbering. For example, if the direction of an edge on the reference cell disagrees with the direction of an edge
that it corresponds to in the physical mesh, the difference may be resolved by reversing the order of the global DOF
numbers assigned to each local DOF on that edge. Now consider a more general case, for example N1 elements [77] of
degree greater than one on a tetrahedron, for which the definition of the DOFs on each face includes dot products with
respect to tangent vectors on the face. The face tangent vectors on adjacent cells must be consistently aligned. In this
case, a DOF permutation is not adequate and a more general transformation is required [94].
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Function name Operation

pre_apply_dof_transformation MA

pre_apply_transpose_dof_transformation MTA

pre_apply_inverse_dof_transformation M−1A

pre_apply_inverse_transpose_dof_transformation M−TA

post_apply_dof_transformation AM

post_apply_transpose_dof_transformation AMT

post_apply_inverse_dof_transformation AM−1

post_apply_inverse_tranpose_dof_transformation AM−T

Fig. 15. Summary of Basix DOF transformation functions that apply a transformation operator in-place to A.

8.4.1 Transformation operators. The value of a scalar finite element function 𝑓ℎ at some point within a cell can
computed as

𝑓ℎ = 𝒄T𝝓 = 𝒄̃T𝝓̃, (5)

where 𝒄 is a vector of DOFs (restricted to the cell), 𝝓 holds the basis functions, all relative to the physical cell ordering,
and 𝒄̃ and 𝝓̃ are the equivalents following the reference cell ordering. We encode a transformation in a matrix M such
that

𝝓 = M𝝓̃ .

Inserting this into (5) leads to 𝒄T𝝓 = 𝒄TM𝝓̃ = (MT𝒄)T𝝓̃ = 𝒄̃T𝝓̃, therefore vectors of DOFs transform according to

𝒄̃ = MT𝒄 .

While M is often orthogonal, this not the case for all elements (see [94, section 4.1.4]). It follows straightforwardly that
for an element matrix Ã ∈ C𝑚×𝑛 following the reference cell ordering that the matrix for the physical cell ordering is
A = M1ÃMT

2 , whereM1 andM2 are the transformations associated with the test and trial function elements, respectively.

8.4.2 Transformation and permutation functions. Basix provides functions to apply the transformations from the
preceding section to data in-place. If the transformation is a permutation only, the Basix function permute_dofs applies
theM operation to a vector, and unpermute_dofs applies the inverse transformation (M−𝑇 , since all permutation operators
are orthogonal). In practice, the permute functions are not called during assembly over cells, but when constructing
a DOF map. For elements that require a more general transformation, transformations must be applied to cell-wise
data, e.g. to restricted DOF arrays, local right-hand side vectors and element matrices. The Basix-provided functions for
applying the transformationM in-place are listed in figure 15.

The Basix permute and transform functions take as arguments the data to permute/transform and a 32-bit unsigned
integer that encodes the orientation of each cell sub-entity relative to the reference cell. Internally, Basix computes
(small) permutation or (small) transformation matrix operators for each cell sub-entity; one for each edge to apply the
effect of reversing an edge direction, and two for each face for applying the effect of rotations and reflections. The
transformations are then applied in-place for permutations following [38] and for matrix products following [35].

For custom elements implemented using Basix, as presented in section 5.2, Basix determines the required transfor-
mations automatically.
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8.4.3 Transformations for interpolation. When interpolating a function 𝑓 ∈ 𝑉 into a finite element space 𝑉ℎ , we get
from Basix the points on the reference cell where 𝑓 needs to be evaluated for interpolation, push these points forward
to the physical cells and then evaluate 𝑓 . The values of 𝑓 at evaluation points are then pulled back to the reference cell,
and we apply an element interpolation matrix to get the local coefficients 𝒄̃ on 𝑉ℎ for each cell. Since 𝒄 = M−T 𝒄̃ , we
apply the function pre_apply_inverse_transpose_dof_transformation to compute 𝒄 . The same approach can be used when
interpolating between different finite spaces.

8.4.4 Transformations for custom kernels and assemblers in Python. For custom kernels or assemblers developed in
Python using Numba and which require degree-of-freedom transformations that are not just permutations and therefore
must be applied during assembly, the submodule basix.numba_helpers provides the functions pre_apply_dof_transformation

and post_apply_dof_transpose_transformation for efficient application of transformations.

9 LINEAR ALGEBRA

There exists a rich range of linear algebra libraries providing data structures and solvers, e.g. PETSc, Trilinos [99]
and Eigen [42]. Our experience is that third-party linear algebra libraries are best supported not through wrappers,
but non-intrusively and allowing users direct access to the complete interface of the 3rd-party library. Our advocated
approach lends itself to sustainability, maintainability and extensibility, with users able to introduce new linear algebra
backends and use all features of the backend without modification of the DOLFINx library. We will show examples of
how the functional and data-oriented interfaces support a non-intrusive design.

9.1 Vectors/arrays

DOLFINx provides a distributed vector (array) class (Vector) that builds on the IndexMap and Scatterer functionality
described in section 4. The class is templated over the scalar type and a container type (typically a std::vector);
templating over the container type allows control of where the vector data is placed in memory. Vectors are an example
where performance dictates the storage layout, with the linear memory model (contiguous) the only reasonable choice.
Therefore, we do not encapsulate the storage. To interface with linear algebra libraries, the DOLFINx Vector data can
be wrapped by other libraries, e.g. by PETSc (C++ and Python) or NumPy (Python). DOLFINx assemblers for vectors
assemble into memory wrapped by a std::span, which allows direct and no-copy assembly in to any data structure that
conforms to the requirements of std::span; examples include DOLFINx Vectors, NumPy arrays, plain C-style arrays and
many other array-like data structures.

9.2 Matrices and solvers

DOLFINx also provides a distributed CSR matrix class (MatrixCSR), which is also templated over the scalar type and the
internal storage container type. The underlying CSR data arrays can be accessed, allowing memory to be shared with
other libraries, e.g. to create SciPy sparse matrices that share data.

In general, sparse matrix data structures are considerably more complex than vectors, with a wide range of storage
formats, interfaces and implementations. Two main issues are (i) initializing a sparse matrix and (ii) inserting into a
sparse matrix. For formats that require a priori knowledge of the sparsity pattern, given a bilinear form a, the below
code illustrates how a matrix sparsity pattern can be constructed.

1 fem::Form a(...);

2 la:: SparsityPattern pattern = fem:: create_sparsity_pattern(a);
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3 pattern.finalize ();

4 auto [nonzeros , row_offset] = pattern.graph();

The last line above returns the adjacency list data for non-zero entries; nonzeros holds column indices for non-zero
columns and row_offset points to the start of each row in nonzeros. The SparsityPattern holds index map for the rows and
columns that describe the parallel layout and row/column index block sizes, which can also be accessed. By exposing
the sparsity as an adjacency list, a user can use the data to initialize a (distributed) sparse matrix. A native DOLFINx
sparse matrix can be constructed directly from a sparsity pattern, and for convenience a PETSc matrix factory function
is also provided:

1 la::MatrixCSR <double > A(pattern);

2 Mat B = la::petsc:: create_matrix(pattern);

3

4 // ...

5

6 MatDestroy(B);

Insertion into a sparse matrix is typically via a library function call. A conventional approach to supporting different
matrix backends is to wrap a linear algebra object with a native library class, possibly derived from a base class, to avoid
exposing the specific linear algebra backend directly across a library. This common pattern was followed by DOLFIN.
It can require a substantial amount of additional code and considerable wrapping of functionality of the third-party
library (which is inevitably never comprehensive), and the use of C++ classes can make working across languages more
difficult. In DOLFINx, application of different linear algebra libraries are supported by the functional design of DOLFINx
assemblers, with matrix assemblers accepting a function that inserts local contributions into a (sparse) matrix. DOLFINx
matrix assembly functions require an ‘insertion’ function with the following signature to be passed as an argument:

1 std::function <int(std::span <const std::int32_t >, std::span <const std::int32_t >, std::span <const T>)>

where the first two arguments are the row and column indices of of the matrix to be added, respectively, and the last
argument holds the values to be inserted with T being a scalar type. Anonymous (lambda) functions make the creation
of insertion functions that require captured data straightforward. For example, to assemble into a PETSc matrix, we can
define:

1 fem::Form a(...);

2 Mat A;

3

4 // Initialize PETSc matrix A . . .

5

6 auto add_vals = [A](std::span <const std::int32_t > rows ,

7 std::span <const std::int32_t > cols ,

8 std::span <const PetscScalar > vals)

9 {

10 PetscErrorCode ierr = MatSetValuesLocal(A, rows.size(), rows.data(), cols.size(), cols.data(),

11 vals.data(), ADD_VALUES);

12 return ierr;

13 };

14

15 // Assemble bilinear form 'a' into matrix 'A'

16 fem:: assemble_matrix(add_vals , a, {});
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In the lambda function syntax, [A] copies A (a pointer in this case) from the outer scope into the scope of the lambda
function. The DOLFINx assembly function calls the add_vals function to perform insertion. If, for example, the PETSc
matrix required a different integer pointer type, the lambda function can capture a memory buffer for coping integer
arrays prior to calling the PETSc function. DOLFINx uses this approach for assembly into its native sparse matrix
format, and for convenience provides insertion functions for PETSc matrices. Assembly into other library formats,
e.g. Trilinos or Eigen, is straightforward and in all cases the DOLFINx core library is unaware of the matrix library
interface.

10 CONCLUSIONS

We have presented an overview of the design principles and implementation of the DOLFINx finite element library.
DOLFINx builds on the approach of the earlier FEniCS library DOLFIN, providing an high level of mathematical
abstraction, exploiting code generation techniques for finite element kernels and providing C++ and Python interfaces,
with the Python interface supported by JIT compilation. DOLFINx overcomes the shortcomings and criticisms of the
DOLFIN approach by following new design principles, leading to much greater extensibility and improved performance.
Noteworthy is that DOLFINx is a very compact library, despite the wide range of functionality that it supports, with the
C++ component having fewer than 30 000 lines of code.

11 SUPPLEMENTARY MATERIALS

The source code for the snippets in this paper (MIT license), the source code to the FEniCSx components and a Docker
image containing an environment to run the snippets are available at [13]. The snippets in this paper are compatible
with DOLFINx 0.7.3, Basix 0.7.0, FFCx 0.7.0 and UFL 2023.2.0.
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API application programming interface. 3, 5, 12
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BDM Brezzi–Douglas–Marini. 13, 22

CFFI C Foreign Function Interface. 5, 26, 27
CR Crouzeix–Raviart. 13

DOF degree of freedom. 4, 12, 13, 14, 17, 20, 21, 25, 27, 28, 29, 30
DOLFIN Dynamic Object-oriented Library for FINite element computation. 2, 3, 4, 5, 24, 25, 26, 33
DPC discontinuous polynomial cubical. 12, 13

FFC FEniCS Form Compiler. 2, 25
FFCx FEniCSx Form Compiler. 3, 6, 8, 9, 10, 13, 23, 24, 26, 27, 28
FIAT FInite element Automatic Tabulator. 22

GIL Python Global Intepreter Lock. 28
GL Gauss–Legendre. 12
GLL Gauss–Lobatto–Legendre. 12

HHJ Hellan–Herrmann–Johnson. 13
HPC high performance computer. 6

I/O input/output. 6, 7, 8

JIT just-in-time. 6, 8, 11, 24, 26, 27, 33

MPI Message Passing Interface. 9

N1 Nédélec first kind. 13, 22, 23, 29
N2 Nédélec second kind. 13, 22
NumPy . 5

PDE partial differential equation. 5
PETSc Portable, Extensible Toolkit for Scientific Computation. 7, 28, 32, 33

RT Raviart–Thomas. 13, 22

TNT tiniest tensor. 13, 15

UFCx Unified Form-assembly code for FEniCSx. 25
UFL Unified Form Language. 2, 6, 7, 8, 9, 10, 12, 13, 15, 23, 24, 25, 26, 27
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