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Abstract-  In this paper the authors use the nonlinear hereditary theory of Boltzmann to describe the elastoviscous 

behavior of glass fiber composites and introduce them to the dynamic mechanical analysis (DMA). In order to 

well describe the experimental data concerning the creep and stress relaxation in large time interval and large 

strains, they used a sum of singular kernels and introduce the nonlinear Ogden Equation in the integral 

hereditary theory. One has obtained the loss factor by cycling of composites as a function of the strain amplitude 

and frequency for two imposed regimes – sinusoidal and pulsation loads. Experimental results for epoxy fiber 

composite with 30% glass fibers (GFC) [1] illustrate the applicability of the proposed approach.  
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I. INTRODUCTION  

      Glass fiber composites are increasingly used in modern industry [1-4]. Glass fiber composites are elastoviscous 

solids. In the case of enhanced strains, they possess nonlinear behaviors. Their creep is also nonlinear according to the 

applied stresses [5,6]. The last non-linearity can be observed excluding the time from the creep curves (the so-called 

isochrones). Thus, glass fiber composites require identification and description of these nonlinearities. Here was used 

epoxy matrix composite with 30% glass fibers volume fraction [3].The more important parameter to describe the 

vibration behavior of glass fiber composites is the so-called loss factor [1,2]. In the general nonlinear viscoelastic case 

this factor can be defined as the ratio of the dissipated and the stored energy. These energies are related to the constitutive 

mechanical stress-strain equation. It is well known that the Boltzmann hereditary theory using integral equations of 

Volterra [6-10] can well describe the creep and stress relaxation of different viscoelastic solids. In this study we propose 

an analytical approach to describe the loss factor of glass fiber composites as a function of the imposed strain amplitude 

and frequency using as constitutive relations nonlinear integral equations. 

 

II. GENERAL FRAMEWORK 

       In the case of Assuming similarity of the isochrones stress relaxation curves, let introduce the following nonlinear 

integral Equation to describe the mechanical behavior of such a solid [6-9] 

𝜎(𝑡) = 𝜙(𝜀(𝑡)) − ∫ 𝑅(𝑡, 𝜏)𝜙(𝜀(𝜏))𝑑𝜏
𝑡

0
  .   (1) 

Here 𝜎(𝑡) is the stress as a function of time t, 𝜀(𝑡) is the imposed strain, 𝑅(𝑡, 𝜏) is the relaxation kernel, which can be 

found from stress relaxation tests, 𝜙(𝜀(𝑡)) is the instantaneous stress-strain curve. To well describe this curve one can 

apply the Ogden relation [11] 

 

𝜙(𝜀) = ∑ 𝜇𝑖(𝜆(𝜀)𝜅𝑖−1 − 𝜆(𝜀)−
𝜅𝑖
2

−13
𝑖=1 ),     (2) 

 

here  𝜇1, 𝜇2, 𝜇3, 𝜅1, 𝜅2, 𝜅3 are parameters obtained from instantaneous stress-strain test and the stretch   is related with 

the engineering strain as follows 𝜆(𝜀) = 1 + 𝜀. 

     The solution of Equation (1) can be represented as follows [6-9] 

 

𝜙(𝜀(𝑡)) = 𝜎(𝑡)  + ∫ 𝐾(𝑡, 𝜏)𝜎(𝜏))𝑑𝜏
𝑡

0
.   (3) 

 

     To obtain the strain creep curve (nonlinear creep) one should use the inverse function  𝜓(𝜀(𝑡)) = 𝜙−1(𝜀(𝑡)). The 

above-mentioned integral equations of Volterra have been longtime employed to describe the viscoelastic behavior of 

polymers, glass fiber composites and other materials [6-8]. Due to the extremely high strain (stress) rate at the beginning 

in creep (relaxation) conditions one needs to introduce singular kernels. In order to increase the creep or stress relaxation 
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time interval and thus well describe the experimental data from the beginning to the end in the case of large time interval, 

we have proposed in our previous work [9] to involve in the hereditary theory a sum of singular kernels as follows  

 

𝑅(𝑡) = ∑ 𝑅𝑖(𝑡),   𝑁
𝑛=1                with                  𝑅𝑖(𝑡) = 𝐴𝑖

𝑒−𝛽𝑖𝑡

𝑡𝛼𝑖
.    (5) 

 

In this case the resolving kernel is [6-8] 

 

𝐾𝑖(𝑡) =
𝑒−𝛽𝑖𝑡

𝑡
∑ 𝐴𝑖𝛤(𝛼𝑖)𝑛∞

𝑛=1 𝑡𝛼𝑖𝑛/𝛤(𝛼𝑖𝑛)  .    (5a) 

 

Here 𝛤(𝛼) is the gamma function.  

     In the case of sinusoidal loading, we introduce the imposed strain as follows  

        

𝜀𝑖𝑚𝑝(𝑡) = 𝜀𝑜 𝑒𝑥𝑝( 𝑖𝜔𝑡)           .      (6a) 

    

    In this case the stress response has the form 

 

𝜎(𝑡) = 𝜎𝑜 𝑒𝑥𝑝( 𝑖(𝜔𝑡 + 𝜙))   .          (6b) 

 

    In the case of imposed positive sinusoidal strains (pulsations), we have 

 

𝜀𝑖𝑚𝑝(𝑡) = 𝜀𝑜 + 𝜀𝑜 𝑠𝑖𝑛( 𝜔𝑡 − 𝜋/2)    .  (6c) 

 

In this case the stress response can be obtained using Equations (1, 2) and (6c). 

     In Equations 6  𝜙  is the phase angle shift, 𝜀𝑜 , 𝜎𝑜  are the imposed strain and stress amplitude  and 𝜔 is the angular 

frequency related with the imposed period  T as follows  

 

𝑇 = 2𝜋/𝜔.            (7) 

 

     On the other hand, to the stored and the dissipated energy per cycle in the more general case (nonlinearity) as a 

function of the strain amplitude 𝜀𝑜 and the angular frequency   in the case of pulsations, we can respectively write 

[10] 

 

𝑈(𝜀𝑜) = ∫ 𝜎𝑑𝜀 = ∫ 𝜎(𝑡, 𝜀𝑜)𝜀̇(𝑡, 𝜀𝑜)𝑑𝑡
(𝑛−1)𝑇+𝑇

2⁄

(𝑛−1)𝑇
,                 𝐷(𝜀𝑜) = ∮ 𝜎𝑑𝜀 = ∫ 𝜎(𝑡, 𝜀𝑜)𝜀̇(𝑡, 𝜀𝑜)𝑑𝑡

𝑛𝑇

(𝑛−1)𝑇
.                   (8) 

 

𝑈(𝜔) = ∫ 𝜎𝑑𝜀 = ∫ 𝜎(𝑡, 𝜔)𝜀̇(𝑡, 𝜔)𝑑𝑡
(2𝑛−1)𝜋/𝜔

2(𝑛−1)𝜋/𝜔
,                    𝐷(𝜔) = ∮ 𝜎𝑑𝜀 = ∫ 𝜎(𝑡, 𝜔)𝜀̇(𝑡, 𝜔)𝑑𝑡

2𝑛𝜋/𝜔

2(𝑛−1)𝜋/𝜔
.              (9) 

Here n = 1, 2…N, where N is the final cycle number.  

     It is evident that these energies are cycle number dependent. But this dependence is not strong. To derive the lower 

and upper limits in Equation 9 we have used Equation 7. 

     In the case of imposed sinusoidal load, we need to change the upper limits for the stored energy as follows:   (n-1)T 

+T/4   and         (2n-1.5)π/ω  respectively. 

      Damping is generally characterized by the amount of energy dissipated under steady harmonic motion. The most 

common measure of this dissipation is the loss factor, which can be defined as the ratio of the average energy dissipated 

per radian to the peak potential energy during a cycle. Using this way, we can obtain the loss factor as a function of the 

strain amplitude 𝜀𝑜and the angular frequency .  Using Equations 8 and Eq.9 we respectively have [10] 

𝜂(𝜀𝑜) =
𝐷(𝜀𝑜)

2𝜋𝑈(𝜀𝑜)
    

, 
𝜂(𝜔) =

𝐷(𝜔,)

2𝜋𝑈(𝜔)
      

.     (10) 

         

      This approach is valid in the case of imposed strains. If we need to obtain analogical results imposing the stresses, 

we should use Equation 3 with the resolving (creep) kernel - Equation 5a  and using the inversion function of Equation 

2. In this case the imposed sinusoidal stress should be presented in similar way as Equation 6 with imposed stress 

amplitude. 

     To obtain the damage 𝑑 (n)  as a function of the cycle number n we need to define the damage for the n-th cycle as 

in [11] 
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𝑑 = 1 −
𝑈(𝑛)

𝑈𝑖𝑛
         ,     (11) 

                

where  𝑈(𝑛) and 𝑈𝑖𝑛 are the stored energies for the n-th cycle and the initial one. Then the relative damage accumulation 

per cycle is d(n) = [d(n+1)-d(n)]/din . After summation of the relative damage accumulation per cycle we obtain the 

damage as a function of the cycle numbers 

𝐷(𝑁) = ∑ 𝑑(𝑛)
𝑁

𝑛=1
 .         (12) 

When we have strain-controlled test, these energies can be expressed as the energy stored upon loading from zero to 

maximum strain [11] 

𝑈 = ∫ 𝜎𝑑𝜀 
𝜀𝑚𝑎𝑥                   

0
     .        (13) 

      In the case of pulsations for the n-th cycle we can respectively write (see Equations (8)) 

 

𝑈(𝜀𝑜) = ∫ 𝜎𝑑𝜀 = ∫ 𝜎(𝑡, 𝜀𝑜)𝜀̇(𝑡, 𝜀𝑜)𝑑𝑡 =
(𝑛−0.5)𝑇

(𝑛−1)𝑇 ∫ 𝜎(𝑡, 𝜀𝑜)𝜀̇(𝑡, 𝜀𝑜)𝑑𝑡
(2𝑛−1)𝜋/𝜔

(𝑛−1)2𝜋/𝜔
.                      (13a) 

 

     In the case of sinusoidal load we should change the upper integral limit as follows (n-0.75)T  or  (2n-1.5)π/ω.   Here 

n = 1,2…N. In the case of imposed stresses (stress-controlled test) we should use another definition concerning the 

stored energy [11], namely the energy stored upon loading from zero to maximum stress with the same integral limits 

as in Equation 13a 

 

𝑈 = ∫ 𝜎𝑑𝜀
𝜎𝑚𝑎𝑥

0
  .           (13b) 

     Note that in the case of small strains (linear stress-strain relation) these energies coincide [10].  

 

III.   EXPERIMENTAL RESULTS AND COMPARISONS 

 

     For glass fiber composite (GFC) with 30% fiber volume fraction we have obtain the following Ogden parameters 

[12,13] 

        

𝜇1 = 9.93, 𝜇2 = −39.9, 𝜇3 = 1.2, 𝜅1 = 29.95, 𝜅2 = −59.8, 𝜅3 = 5.4  . 

 

     To the hereditary kernel parameters, we have:  

 

𝛼1 = 0.58, 𝛼2 = 0.94, 𝛼3 = 0.31, 𝛽1 = 0.02, 𝛽2 = 0.1, 𝛽3 = 0.005, 𝐴1 = 0.00141, 𝐴2 = 0.015, 𝐴3 = 0.018. 
 

     The respective relative stress relaxation curve - Equation 1 is shown in Fig.1. In Figures 2,3 we have plotted the 

imposed strain in the cases of sinusoidal and pulsations regime and the respective stress response according to Equations 

1,2 and Eq. 6a,6c. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

                    Fig.1 Stress relaxation curve                                  Fig.2 Imposed sinusoidal strains and stress response                                                                              

 

 

On Fig.4 we have illustrated the strain-controlled hysteresis loop for our GFC according to Equations 1 and Eq. 6a in 

the case of sinusoidal imposed strains.                                                                                                                                    
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       Fig.3 Imposed strain pulsations and stress response                      Fig.4 Hysteresis loop – sinusoidal imposed 

load                                                                                                                                                                                                        

                            

       In the next Figures 5 and 6 one can see the loss factor as a function of the imposed angular strain amplitude 

corresponding to the first Equation 10. In these figures the angular frequency was 0.2 [rad/s]. The loss factor increases 

continuously with strain amplitude. More intensively in the case of sinusoidal load. The imposed strain lows follow 

Equations 6c and 6a respectively.  

 

 

 

 

 

 

 

 

 

 

  

                       

                      

Fig.5. Loss factor as a function of the strain amplitude (pulsations) 

Fig.6. Loss factor as a function of the strain amplitude (sinusoidal load) 

      

      The loss factor as a function of the strain frequency from the second Equation 10 is illustrated in Fig.7 in the case 

of pulsations and sinusoidal load respectively. As on can see on Fig.7, the loss factor increases with increasing 

frequency, but after 0.04 [rad/s] remains constant.  

      In all the figures the experimental data are plotted with circles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           

                                     Fig.7 Loss factor as a function of the frequency for two regimes 

Fig.8 Loss factor as a function of the strain cycle number  n  for three frequencies (sinusoidal) load 
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      At the beginning the loss factor decrease with cycle numbers, but after the seventh cycle remains constant – see 

Fig.8. This example concerns the sinusoidal load. 

      In Fig.9 one can see the hysteresis loops for 4 cycles.  

      On the next Fig.10 one can see the curve of the damage evolution in the pulsation and sinusoidal loading cases with 

frequency 0.2 [rad/s] and strain amplitude 0.0025, according to Equations 12 and taking into account Equations 11, 6a 

and Eq. 6c.                                                                                           

 

 

 

 

 

 

 

 

 

 

 

 

                          

Fig.9 Hysteresis loops for 4 cycles – imposed pulsations 

Fig.10 Damage evolution in the case of two regimes 

                                                    

     From these figures one can made the conclusion that enhancement in the strain amplitude considerably increase the 

losses, whereas enhancement in frequency slowly increases the losses. On the other hand the sinusoidal regime is harder 

as the pulsation’s one. Thus, the losses in the first mentioned regime are greater as in the second one. 

    In order to impose different strain and stress regimes, we have used here a special dispositive to impose sinusoidal 

imposed strains. The description of this dispositive can be found in [14,15]. 

     Note that the averaged experimental curves are obtained by smoothing data using the Mathcad software averaging 

process in the case of data scattered along a band whose width fluctuates considerably. 

     In this work we have used a glass-fiber composite [3] produced in the URCA of Reims-France.   

 

IV.   CONCLUSIONS 

     Using nonlinear integral Equations with three singular kernels, we have obtained the stress responses, the hysteresis 

loops, the stored and dissipated energies, the loss factors and the damage evolution by cycling in the case of imposed 

strains and stresses.  

     The experimental hysteresis curves agree with the theoretical ones obtained from the stress (strain) responses by 

imposing sinusoidal and pulsation loads  to the strain (stress) laws.  

     The proposed approach to obtain the loss factor of glass fiber composites in the non-linear case using a sum of 

relaxation kernels in the hereditary theory well describe the mechanical behavior by cycling loading.  

     The experimental data confirm this approach. The nonlinear hereditary theory works well due to the great number 

of parameters and the singularity of the kernels. 
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