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ABSTRACT: A novel statistical procedure has been devel-
oped to optimize the parameters of nonbonded force fields of
metal ions in soft matter. The criterion for the optimization
is the minimization of the deviations from ab initio forces and
energies calculated for model systems. The method exploits
the combination of the linear ridge regression and the cross-
validation techniques with the differential evolution algorithm.
Wide freedom in the choice of the functional form of the force
fields is allowed since both linear and nonlinear parameters can
be optimized. In order to maximize the information content of
the data employed in the fitting procedure, the composition of the training set is entrusted to a combinatorial optimization
algorithm which maximizes the dissimilarity of the included instances. The methodology has been validated using the force field
parametrization of five metal ions (Zn2+, Ni2+, Mg2+, Ca2+, and Na+) in water as test cases.

1. INTRODUCTION

A proper sampling of the phase space of large systems (up to a
million of atoms) is currently achievable by employing classical
Molecular Mechanics (MM) computer methods such as Molec-
ular Dynamics (MD) and Monte Carlo (MC) simulations.1

These techniques are commonly based on molecular force fields
(FF), whose simple energy functions enable the predictions of
structural and thermodynamic properties at a computational cost
which is significantly lower if compared to quantum mechanics
(QM) and hybrid QM/MM computations. The accuracy of
FF-based methods strictly depends on the quality of the cor-
responding parameters, which are optimized in order to
reproduce experimental and/or QM data. The selection of the
appropriate FF for a particular chemical investigation is crucial
since this choice strictly affects the reliability of the obtained
results. Several FFs are nowadays available, each one specifically
trained on a chemical domain of interest. Such domains can be
large (as in the case of the Universal Force Field2) or limited to
particular classes such as biological systems and small organic
compounds as in the case of the FFs developed in the field of
biomolecular simulations.3−7 In some cases, users may need to
modify the entire FF or reparametrize only some terms such as
the potential of flexible dihedrals, which largely affect molecular
conformations. This issue is particularly important when spec-
troscopic calculations have to be performed, as in these cases
specificity is preferred over transferability. Different software
tools were recently distributed with the aim of developing
intramolecular FF using QM energies, gradients, and Hessian

matrix, computed on optimized structures, as reference data.8−11

Among them, the ForceBalance method12 deserves a special
mention, since it provides a scheme to avoid overfitting based on
a regularization procedure. Other efforts are generally directed to
the refinement or the computation ex novo of atomic charges,13,14

often resorting to the inclusion of virtual sites (VS) to mimic
somehow polarizability effects.7,15 In this scenario, the classical
modeling of metal ions is still maybe regarded as a stand-alone
issue. Ions parameters for biomolecular FFs have been his-
torically developed in water solution, as done by Stote and
Karplus16 and, more recently, Jensen and Jorgensen,17 and sub-
sequently transferred within metalloprotein catalitic site.18 Major
challenges are related to the proper treatment of non-negligible
QM effects, which are hard to include within classical descrip-
tions.19 In this context, the limits of the simple electrostatic plus
Lennard-Jones (LJ) model emerge, and a transition to more
flexible, multiparameters potential (e.g., by means of polarization)
becomes necessary.20−22 Therefore, the availability of techniques
capable of optimizing FFs of any functional form can be crucial.
The purpose of this work is the presentation of a general

procedure to generate nonbonded FFs of metal ions without
altering the functional form and the parameters of the FF of the
other atoms of the system, so that they could be easily integrated
into consolidated MM packages. To achieve this goal a novel
fitting procedure, called linear ridge regression differential
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evolution (LRR-DE), is proposed. It exploits a combination of
machine learning techniques, that in recent years are increasingly
finding applications in computational chemistry.23−26 More speci-
fically, the LRR-DE procedure is inspired by the work of Suykens
et al.,27 in which the hyperparameters of the least-squares support
vector machine (LSSVM) classifier28 are optimized minimizing
the leave-one-out cross-validation error by means of the coupled
simulated annealing (CSA) algorithm.29 In order to adapt such
an approach to the parametrization of analytical forms, in this
procedure LSSVM is replaced by the linear ridge regression
technique and CSA by differential evolution,30,31 a metaheuristic
optimization algorithm which is effective in the exploration
of high dimensionality search spaces. Therefore, LRR-DE uses
linear ridge regression to optimize the linear parameters of a
tunable model and differential evolution to optimize the non-
linear parameters, minimizing the leave-one-out cross-validation
(LOOCV) error. In the most general form of the methodology
ab initio forces and energies of sampled configurations are used
as reference output, leading to a multiobjective optimization
problem. Some of the features which characterize the proposed
method, such as a regularized multiobjective cost function, aimed
to prevent overfitting, and the ability to optimize either linear and
nonlinear parameters, are already implemented in the Force-
Balance tool. However, significant novelties can be outlined.
The combination of algebraic techniques and metaheuristics
employed in LRR-DE, using the LOOCV error as criterion to
optimize the nonlinear parameters, enforces the protection from
the overfitting and increases the efficiency in finding the global
minimum in the parameters space. Moreover, the weights which
tune the contribution of the single objective functions are pre-
determined in ForceBalance. In contrast, the proposed protocol
introduces the optimization of the weights so as to obtain the
most balanced compromise solution. A further innovative ele-
ment introduced in this work is the sampling procedure, based on
the combinatorial optimization of the training set in order to
maximize the dissimilarity of the instances and thus the coverage
of the conformational space. This technique, which ensures the
maximization over the interpolative domain, is complementary
or alternative to iterative sampling approaches proposed by other
authors.12,32 A high level flowchart of the algorithm is shown
in Figure 1. The paper is organized as follows. In section 2 the
LRR-DE procedure is illustrated, while the sampling method-
ology is presented in Section 3. Section 4 presents the validation
of the methodology, using the parametrization of the FFs of five
metal ions (Zn2+, Ni2+, Mg2+, Ca2+ andNa+) in water as test cases.

2. METHOD
2.1. Current Status of Parametrization Procedures of

Nonbonded Metal Ions Force Fields. The generation of
metal ions FFs has been extensively discussed by Li andMerz in a
recent review.33 Methods for parametrizing nonbonded FFs of
metal ions are based primarily on the reproduction of experi-
mental thermodynamic and structural quantities. In the pioneer-
ing work of Aqvist,34 the parametrization of 12-6 Lennard-Jones
potentials of a set of ions was performed using the hydration free
energies as a reference and the FEP method35 to calculate the
MM estimates. Babu and Lim36 used the same method exploiting
the relative HFEs with respect to the Cd2+ value to generate the
FFs of 24 divalent metal ions. Joung and Cheatham37 param-
etrized 12-6 Lennard-Jones potentials of monovalent ions
employing as reference HFE, crystal lattice energies, and crystal
lattice constants. Li, Merz, and co-workers38−40 developed the
parameters of over 50 metal ions reproducing HFE, ion-oxygen

distances (IOD), and coordination numbers (CN). In general,
the methods that employ experimental references suffer from
two difficulties: (i) The availability of data is usually limited to a
reduced number of solvents, sometimes only to water. (ii) The
exploration of the parameter space, usually performed through a
grid search, requires a molecular dynamics or Monte Carlo
simulation for each trial solution, making the process inefficient
and applicable only to simple functional forms. Both problems
can be solved using QM data as target values in the fitting.
However, only a very small number of methods based on QM
references has been developed. The more significant ones are the
works of Floris et al.41 and Wu at al.22 The method proposed by
Floris et al. optimizes the ion−water potential reproducing
ab initio energies calculated for [M(H2O)n]

q+, where the number
of the explicit water molecules (n) is one or two, and the rest
of the solvent is described by the Polarizable Continuum Model
(PCM).42 Therefore, the performances of the method are
dependent on the quality of the solvent description. Moreover,
the application of PCMprecludes the possibility of parametrizing
the FFs in heterogeneous environments. These limitations have
been overcome in the recent application of the force-matching
method by Wu et al. to parametrize the short−long effective
functions (SLEF) model in protein environment. In theWu et al.
methodology a squared deviations cost function defined with
respect to a sample of QM/MM references is minimized using a
local optimizer. The procedure here presented maintains the
desirable properties of the Wu et al. approach and introduces
further advances in order to generate a transferable nonbonded
pairwise force field to model metal ions interactions in metallo-
proteins. In fact, the multiobjective optimization allows a tight
control on the performances of the model. The application of a
regularized cost function and the tuning of the hyperparam-
eters through the leave-one-out cross-validation protect from
overfitting. The combination of algebraic and metaheuristic

Figure 1. High level flowchart of the proposed algorithm.
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optimization ensures the efficient detection of the global mini-
mum of the cost function in the parameter space.
2.2. The Linear Ridge Regression Differential Evolution

Procedure. Given a data set {xl, yl}, where xl is the l-th input
vector, and yl is the corresponding output value, an interpolative
general model can be built as a linear combination of the func-
tions φ(x, θ), called predictors or descriptors in the language of
statistical learning

∑ θφ= xy C ( , )
j

N

j j jest

functions

(1)

where {C} and {θ} are the linear and nonlinear parameters of the
model, respectively. In the linear ridge regression technique,43−47

the optimal linear parameters are obtained minimizing the reg-
ularized cost function
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where M is the size of the data set, and λ is the regularization
parameter. The introduction of the regularization term prevents
the overfitting penalizing high values of the linear parameters.
In order to evaluate properly the regularization term, all the descrip-
tors are scaled with respect to the relative standard deviations

θ
θ

θ θ
φ

φ

φ φ
̃ =

∑ −
x

x

x x
( , )

( , )

( ( , ) ( , ))
j l j

j l j

M l
M

j l j j l j
1 2

(3)

The minimization of the cost function (eq 2), in the scaled
form, can be performed analytically solving the system of linear
equations
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and the solutions are given by the normal equation

λ̃ = + −C H H I H yM( 2 ) ( )T T1
(5)

where H is theM × Nfunctions matrix of the scaled descriptors, I is
the Nfunctions × Nfunctions identity matrix, and y is the vector of the
output.
The evaluation of eq 5 can be performed if the values of λ and

{θ} parameters have been previously established; therefore, they
are considered as hyperparameters. In order to obtain the opti-
mal values of the hyperparameters, the criterion here employed is
the minimization of the cross-validation error.
2.2.1. Cross-Validation. Cross-validation (CV)47 is a resam-

pling method applied in statistical learning for the model assess-
ment and model selection. In order to estimate the accuracy of a
regressionmodel on observations not included in the training set,
a test set of instances should be available. However, this is usually
not the case. CV overcomes this obstacle executing multiple
fittings of subsets of the training set and evaluating the errors on
the remaining data. In the k-fold CV, the data set is randomly split
into k equally sized subsets. Each of these subsets is used in turn
as a test set, while the remaining k − 1 are used for the training.
Therefore, kmodels are built, and each one provides a validation
error averaging the deviations of the predictions with respect to
the data point of the corresponding test set. The cross-valida-
tion error is computed as the mean of the k validation errors.

An illustrative scheme of the cross-validation technique is shown
in Figure 2.

When k is equal to the number of the instances of the data set,
the case is called leave-one-out cross-validation (LOOCV).
LOOCV provides an approximated unbiased prediction of the
expected test error, because the training sets of the subsets are
almost identical to the general training set. In statistical learning,
the minimization of the LOOCV error is a standard criterion to
optimize the hyperparameters of the model. The LOOCV error
is computed as

∑ θλ θ λ= − − x
M

y yLOOCV ( , { })
1

( ( , , { }))
l

M

l
l

lerror est
( ) 2

(6)

yest
(−l)(xi, λ,{θ}) is the prediction for the l-th instance, using the
model trained with all the data except the l-th instance. Eq 6
represents the mean squared error (MSE); the mean absolute
error (MAE) can be equally used, nevertheless the MSE is more
sensitive to the outliers; therefore, it is a better choice to reduce
the occurrence of large errors of the model. Calculating this
estimate can be computationally demanding because it requires
repeating the resolution of eq 5M times. However, for the linear
ridge regression method the following relationship holds48
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where yest(xl, λ,{θ}) is the prediction of the model trained with
the complete data set for the l-th instance, and hl is the leverage
defined as
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Formula 7 reduces of a factor M the computational cost of
the estimate of LOOCVerror, nevertheless an efficient method is

Figure 2. Cross-validation scheme. Reprinted from ref 23. Copyright
2013 American Chemical Society.
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necessary to sample the hyperparameters space: each evaluation
of LOOCVerror in fact involves the calculation of the elements of
theHmatrix (unless {θ} = ) and the solution of the normal eq 5.
2.2.2. Optimization of the Hyperparameters by Means of

Differential Evolution. The minimization of LOOCVerror (eq 7)
with respect to the hyperparameters λ and {θ} is a nonconvex
optimization; therefore, a metaheuristic algorithm is necessary to
search for the global minimum of the objective function.
To accomplish this task, the procedure here presented exploits
the evolutionary algorithm known as differential evolution (DE),
in the basic version DE/rand/1/bin. DE has been proved to be
very competitive in benchmarks tests49 and in real world applica-
tions50 compared to other global optimization algorithms. More-
over it offers the great advantage of providing stable perform-
ances varying the parameters on which it depends. This tech-
nique has been already applied to the optimization of hyper-
parameters for a support vector machine classifier51 providing
better results than grid search and particle swarm optimization
algorithms. Recently, DE has been identified as a convenient
global optimizer also in computational chemistry.52,53

DE is a population-based derivative-free algorithm that con-
sists of three main steps: mutation, crossover, and selection. After
a set {ρi} of N trial solution vectors defined in the domain of the
objective function is randomly initialized, the three steps of the
algorithm proceed iteratively on each vector ρi (called target
vector) of the population until a tolerance criterion is satisfied.
In the mutation step, a donor vector is created through the
differential mutation operation

ρ ρ ρ= + −v F( )i p q r (9)

where F is a parameter of the algorithm called dif ferential weight,
and the indices p, q, and r are chosen randomly with the con-
dition p ≠ q ≠ r ≠ i. This implies that the size of the population
must be larger than four units.
In the crossover step, the donor vector exchanges its com-

ponents with ρi. According to the binomial scheme, the crossover
is performed following the rule

ρ
=

≤ =⎪

⎪

⎧
⎨
⎩

u
v U j jif (0, 1) Cr or

otherwisei j
i j i j rand

i j
,

, ,

, (10)

where U(0, 1)i,j is a random number selected from a uniform
distribution in the range [0,1], jrand ∈ [1,D] (D being the
dimension of the vectors) is a random integer, and Cr is a param-
eter of the algorithm called crossover rate. In all the applications
conducted in this work, F and Cr have been set to 0.7 and 0.85,
respectively, as result from calibrations on some test cases.
In the selection step, the objective function is evaluated in ui.

If the new vector yields a lower or equal value than ρi, it will
replace the target vector in the next generation.
When the termination condition is satisfied, the best solution

provides the optimal hyperparameters.
2.2.3. Properties of LRR-DE. The LRR-DE procedure is a

method capable of reproducing data by optimizing the param-
eters, both linear and nonlinear, of a model chosen by the user.
The application of the regularization and cross-validation pro-
tects the optimization from overfitting. The DE algorithm guar-
antees high efficiency in the search of the optimal hyperparameters.
These features make LRR-DE suitable to optimize the parameters
of physical models with respect to experimental or ab initio data.
As a simple illustrative example, the LRR-DE method is applied

to the fitting of the potential energy curve of the Zn2+···H2O

interaction, calculated at the MP2/aug-cc-pVTZ level, as a
function of the only variable d, the interatomic distance between
the zinc ion and the oxygen atom. A training set of 16 points is
employed to build models of increasing complexity. The results
are collected in Table 1, and the analytical expressions of the

models are shown in Table 2. In Figure 3 the graphical repre-
sentations of two cases are shown.

The simplest considered model, 12-3, includes a repulsive d−12

term analogous to that of the Lennard-Jones potential and an
attractive d−3 term to account for the charge-dipole interac-
tion. The performance of this model is poor, as can be seen by
observing Figure 3(a). The reduction of the error is drastic if
the d−12 term is substituted by an exponential repulsion. Even
better results can be obtained employing a buffered d−12 term to
describe the repulsion. Both the exponential and buffered d−12

terms have a nonlinear parameter. Further terms, even without
an immediate physical interpretation, can be added to the models
to reduce the errors. For instance, in the 12b-3-G and 12b-3b-G
models a Gaussian function is included, resulting in a significant
performance improvement. This simple univariate example high-
lights the crucial role of the descriptor selection in the outcome of
the fitting. In general, the choice of the functional form of the
model can be made evaluating the performances in the repro-
duction of the quantities of reference in relation to the particular
operational needs. It is worth noting that LRR-DE does not
use constraints in the optimization of the linear coefficients.
Therefore, the sign of each term, which indicates if it describes a
repulsion or an attraction, emerges spontaneously from the
optimization, and it is not imposed by the user. However, the j-th
linear parameter can be fixed to a constant value, K, performing
the fitting of the other parameters with respect to the output
subtracted of the contribution of the j-th descriptor (yl−Kφj(xl)).
This possibility has been exploited in the validation tests to

Table 1. Mean Squared Errors (MSE), in (kcal/mol)2, for Five
Models Optimized To Reproduce the MP2/aug-cc-pVTZ
Potential Energy Curve of the Zn2+···H2O Interactiona

model
linear

parameters
nonlinear
parameters

MSE
(LOOCV)

MSE
(test)

12-3 2 0 719.040 768.565
Exp-3 2 1 3.530 3.526
12b-3 2 1 0.525 0.434
12b-3-G 3 3 0.079 0.068
12b-3b-G 3 4 0.001 0.002

aThe test errors are calculated with respect to 100 points not included
in the training set.

Table 2. Analytical Expressions of the Models Tested in the
Fitting of the Potential Energy Curve of the Zn2+···H2O
Interaction
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generate force fields with the electrostatic component defined by
the formal charge of the ions. Tighter control can be exerted on
the nonlinear parameters by defining the lower and upper limits
of the search domain.
2.3. Single-Objective Application of the LRR-DE

Procedure: The Force-Matching Approach.The application
of the LRR-DE procedure to the generation of force fields of
metal ions can be performed using as target output one or more
types of reference quantities, calculated with ab initiomethods or
obtained by the experiments. In this section the single-objective
case is illustrated, in which only one type of reference data is used,
namely the ab initio forces on themetal ion. This approach recalls
the force-matching method32,54,55 with the important differences
that here the cost function is regularized and the hyperparam-
aters are tuned to minimize the cross-validation error.
Assuming that the potential of the metal ion is the result of the

sum of pairwise potentials with respect to all the other atoms

∑ θ=
−

−R C RV V( ) ({ }, { }, )M l
i

N

M i l

1atoms

(11)

where Rl is the l-th configuration of the system, if VM−i is
expressed as a linear combination of functions v
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j j l

functions
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the k-th component of the molecular mechanics model of force
exerted on the metal (FM,k

MM(Rl)) as a result of interactions with all
other atoms is given by
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where Dij is a characteristic parameter of the i-th atom, assuming
that the combination rule for the j-th function is multiplicative.

The model of the force field corresponds to eq 1 if the fol-
lowing identity is set

∑θ
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(15)

then the LRR-DE procedure can be applied if the target output
is set equal to the ab initio forces, FM,k

QM, and the scaled values of
the descriptors are assigned to the elements of the H matrix,
according to eq 3.

2.4. Generalization to the Multiobjective Fitting. The
multiobjective optimization of the parameters exploits simulta-
neously different types of reference output, for example the
ab initio forces on the metal ion, the forces on the nearest
neighbor atoms from the metal ion, the contribution to the total
energy due to the force field to optimize, different levels of the
theory for the calculations, and systems of different composition.
The simplest way to approach a multiobjective optimization
problem is the reduction to a single-objective one building a
weighted cost function. In this case eq 2 becomes
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where wb is the scaled weight of the b-th set of targets, of sizeMb,
calculated as
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′
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,
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In eq 17, wb′ are the effective weights, subject to constraints
wb′ ∈ [0, 1] and ∑b

Nbwb′ = 1. The definition of their values is the
topic of the subsection 2.4.1.
The minimization of the weighted cost function with respect

to the linear parameters is given by a normal equation that
includes the weights

λ̃ = + −C H WH I H WyM( 2 ) ( )T T1
(18)

Figure 3. Graphical representation of the potential energy curves of the models 12-3 (blue line, a) and 12b-3 (blue lines, b), compared with the target
data (red line), namely the MP2/aug-cc-pVTZ energies (red lines) for the Zn2+···H2O interaction. The blue circles are the points included in the
training set.
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being W is the diagonal matrix containing the wb values. In this
caseM =∑b

NbMb. Eqs 7 and 8 must be modified as follows to take
into account the weights

∑ ∑λ θ
λ θ
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In order to be used as reference data in the LRR-DE pro-
cedure, a quantity has to be expressed as a linear combination of
the v functions or of their derivatives. In the case of the forces on
other atoms, this condition is satisfied by setting

∑= −
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and the unscaled elements of the H matrix
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where FA,k
QM is the ab initio k-component of the force on the atom

A for the l-th configuration, and fAi,k is the k-component of the
force on the atom A due to the i-th atom calculated with the force
field kept constant in the fitting process.
The ab initio references for the contribution of the force field of

the metal ion to the total energy of the system can be calculated
as the difference

= − −R Ry E E E( ) ( )l l ltot
QM

env
QM

M
QM

(23)

where Eenv
QM(Rl) is the energy of the Rl configuration without

the metal ion, and EM
QM is the energy of the isolated metal ion.

The unscaled elements of the H matrix in this case are

∑ θ=
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(24)

The global H matrix, in the multiobjective fitting, is then the
result of the concatenation of two or more matrices, each one
relating to a specific quantity of reference.
2.4.1. Optimization of the Weights in the Multiobjective

Fitting. In multiobjective optimization, the utopia point,56OF°, is
defined as the vector of the single objective functions in which
each component, OFb°, corresponds to the global minimum in

its relative space with respect to the variables to be optimized.
In practice the utopia point is generally unattainable, and
two common approaches are adopted to address the problem:
(i) identify the set of Pareto solutions,57 leaving to the decision
maker the choice on which to use, and (ii) locate a compromise
solution58 minimizing the distance from the utopia point. Both
alternatives involve some degree of arbitrariness. Here, as a
criterion for obtaining the optimal weights, the second approach
is adopted, using the Chebyshev metrics in a normalized space59

as a method for calculating the distance from the utopia point:

θ
θ

=
− °

− °
C w

C w
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OF OF
OF OF
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b
b b

b b

norm
max

(25)

The application of the Chebyshev distance involves the use of
the minimax criterion:

θ=w OF C wmin{max{ ( , ; )}}opt
norm

(26)

It implies that the maximum component of the vector
OFnorm(C, θ; w) is minimized with respect to the weights. This
choice aims at achieving themost balanced compromise solution.
The result of the minimization depends on the choice of the
OFb

max, that corresponds to the worst acceptable value for the b-th
objective function. The optimization of eq 26 is performed using
the simulated annealing algorithm.60 The proposed variations for
the weights are executed by applying an adaptive heuristics that
reduces the number of the function evaluations and exploits the
monotone relationship between wb and OFb

norm.
Figure 4 shows a summary scheme of the LRR-DE procedure.

Three levels of optimization are performed in nested cycles: at
the lowest one the fast algebraic solution of eq 18, at the inter-
mediate level the metaheuristic tuning of the hyperparameters,
and at the highest level the optimization of the weights of the
multiobjective cost function.

3. GRASP SAMPLING
In order to build the training set for the fitting, a set of repre-
sentative configurations of the environment of the metal must be
selected. The sampling must be performed carefully to obtain a
general and balanced model maintaining the size of the training
set such as the computational cost of the technique is affordable.
Assuming to have a criterion for deciding if a set of con-

figurations is better than another, the selection of the best
training set would be a NP-hard problem of combinatorial opti-
mization. Therefore, the sampling issue can be separated in three

Figure 4. Flowchart of the LRR-DE procedure.
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distinct problems: (i) generate the candidate configurations to be
included in the training set, (ii) propose a model to determine
the fitness of a training set, and (iii) identify an approximated
procedure to solve the combinatorial problem of maximization of
the fitness. In Appendix A, a solution to each of these problems is
proposed. In particular, the application of the greedy randomized
adaptive search procedure61 (GRASP) is exploited for the third step.
For this reason, the whole procedure is called GRASP sampling.

4. VALIDATION

The algorithm has been validated by applying it to the param-
etrization of the force fields of five metal ions in water: Zn2+, Ni2+,
Mg2+, Ca2+, and Na+. The TIP3P model62 has been used to
describe the water molecules.
Particular attention has been addressed in the case of the zinc

ion, which has been used as reference for the calibration of the
method. QM/MM calculations on large spherical clusters and
pure QM calculations on clusters of lower size have been initially
considered as references. Although the first type of calculation
reproduces more closely the actual situation in which common
FFs are used, it involves two disadvantages: (i) a bias is introduced
by the MM part of the calculation, and (ii) the number of atoms
involved is very large, increasing the computational cost of the
fitting. Therefore, in this work, pure QM calculations on small
clusters have been chosen as references, verifying that the size of
the model systems was sufficiently large through a systematic
study with a variable number of water molecules (see the next
section). As a level of theory, the B3LYP functional in com-
bination with the cc-pVDZ basis set has been selected.
A large basin of candidate configurations has been generated

using parallel tempering, and a set of 160 elements has been
extracted through the GRASP sampling procedure. The appro-
priate size of the training set (Ntrain) has been identified by
performing a statistical convergence test, applying the LRR-DE
method to the fitting of the forces and the energies for the clu-
ster [Zn(H2O)128]

2+ case. Starting from a training set of 8 ele-
ments and incrementing the size progressively, the three linear
parameters of the 12-6-1 FF have been optimized with respect to
the QM references. For each size of the training set, 256 inde-

pendent training sets have been generated selecting randomly
Ntrain configurations, without repetition, from the total of 160
available and using the remaining 160 −Ntrain configurations as a
test set. The averages of the resulting mean squared errors are
shown in Figure 5. The graphs confirm that the LOOCV error
(red lines) constitutes a better estimate of the test error (green
lines) with respect to the training set errors (blue line). In fact,
the LOOCV errors and test errors converge to the same value
when the size of the training set is greater than 60. The values of
the test errors decrease rapidly when the training set size is small
and converge to a constant value when Ntrain is greater than
100 instances. Therefore, in all the following fittings training sets
of 120 elements have been employed, so as to provide sufficient
generality to the obtained models.

4.1. Systematic Comparative Study of Binary Poten-
tials. In order to calibrate the methodology, the optimization of
the parameters of 12 binary pairwise models (see Table 3) has
been performed using as reference systems the [Zn(H2O)n]

2+

clusters with n equal to 6, 16, 32, 64, and 128 water molecules.
The models consist of a repulsive term, activated only for the
zinc−oxygen interaction, and the Coulomb potential. The clusters
are built extracting the n closest water molecules to the zinc ion for
each of the 160 sampled configurations (see Figure 6). The
results have been compared to Li et al.38 (Li, hereafter) and
Hartree−Fock (HF) estimates. In standard conditions of tem-
perature and pressure, the coordination number of the zinc ion in
bulk water is six,63 and the mean number of molecules included
in the first and second spheres of coordination is about 30
(see Figure S1 in the Supporting Information). Therefore, the
smallest cluster considered corresponds to the extraction of
the first sphere of coordination, the [Zn(H2O)16]

2+ cluster is
representative of the first shell of coordination and part of the
second one, and the larger clusters include all the molecules of
the first two coordination spheres and beyond. For the largest
clusters, [Zn(H2O)128]

2+, the average distance of the furthest
oxygen is 9.6 Å. The parametrization of the force fields has been
executed in single-objective mode with the forces on the zinc ion
as output references for each cluster, in two-objective mode,
contemplating simultaneously forces on the zinc ion and energies
of the same cluster, and in four-objective mode, considering

Figure 5. Mean of 256 tests of the MSE for the training set (blue line), leave-one-out cross-validation (red line), and test set (green line), increasing
progressively the size of the training set. The model 12-6-1 has been used to perform the fitting. In each test the elements of the training set are selected
randomly from the 160 configurations, and the remaining are used as a test set.
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all the possible couplings of forces and energies for two types of
clusters. In all cases, the resulting force fields have been tested on
the QM forces on zinc ion, the energies (yl in eq 23) and the
forces on the nearest oxygen and hydrogen atoms for all the
clusters, so as to evaluate their capacity in predicting quantities
unused in the fitting. The complete results of this study are
reported in the Supporting Information. As a significant case, the
12b-1 FF data are shown in Tables 4, 5, 6, and 7, and analyzed
below.
Table 4 reports the MAEs obtained training the 12b-1 force

field with the single-objective fitting. The LRR-DE procedure is a
method capable of reproducing data of the fitted quantities for
the considered model, achieving errors about four times lower
than the standard Li force field. It can be better appreciated by
observing Figure 7, where the comparison between the QM
forces and those predicted by the model for a test set of 40
instances not included in the training set is shown. As con-
sequence of Newton’s third law, also the errors of the forces on
the oxygen atoms are drastically reduced with respect to the Li
estimates. In addition, from the data it emerges that the forces in
clusters of different size than the one used in the training can be
reproduced with good accuracy. On the other hand, the force
fields trained on the forces produce high errors in the prediction
of the energies, indicating that these models are not sufficiently

general. In order to overcome this drawback, the transition to a
multiobjective fitting is necessary. Table 5 reports the results for
the two-objective fittings, considering simultaneously the forces
and the energies for a given cluster. The inclusion of the energies
in the output references achieves a remarkable reduction of the
MAEs for this quantity at the price of a moderate yet acceptable
increase in error on the forces. Even more general force fields can
be generated if the fitting is performed on data of clusters of two
different sizes (Tables 6 and 7). In fact, the MAEs resulting from
the four-objective fitting are considerably lower than the errors
produced by Li for both the forces and the energies. From the
tables it can be noticed that the deviations of the HF forces from
the B3LYP references are lower than those provided by model
12b-1, which however reproduces the energies more accurately.
Therefore, as a general recipe for the production of the force
fields tested in the molecular dynamics applications four-objec-
tive fittings have been exploited, employing as system references
the clusters [M(H2O)32]

n+ and [M(H2O)128]
n+ (4-o(32H2O/

128H2O) hereafter). The multiobjective fittings produce larger
errors in the prediction of the forces on oxygen atoms with
respect to the single-objective ones. However, they remain con-
siderably lower if compared with Li. For this reason the forces on
the coordinating atoms have not been included as output
references in the systematic study.
Table 8 shows the comparison of the performances of the

12 potentials considered in the systematic study for the
4-o(32H2O/128H2O) fitting. Except for the case 6-1, that
produces larger errors, all the potentials provide comparable
results in the reproduction of the energies. Conversely, the errors
for the forces are more dependent on the repulsive part of the
potential employed. More specifically, the use of a repulsive term
dependent on a nonlinear parameter guarantees better perform-
ances. Notable is the modest result of the 12-1 model, that
exploits the repulsive term of the Lennard-Jones potential; only
the r−14 term produces a worse agreement with the QM forces.
The proposal of a novel functional form for the force fields of

the metal ions goes beyond the scope of this work; however, the
systematic comparative study provides the following useful
indications in this regard: (i) the optimal charge to reproduce the
forces on the metal ion is lower than the formal charge (Table 4),
(ii) in the single-objective fitting, the optimal charge for the
smallest cluster is lower with respect to the clusters of larger size
(Table 4), (iii) the introduction of the energies in the references
has the effect to increase the value of the optimal charge over the
formal charge (Tables 5, 6, and 7), and (iv) the use of a repulsive
term including a nonlinear parameter is necessary to achieve
good performances in the reproduction of the forces (Table 8).
Tables 4, 5, 6, and 7 are all related to the data of the model 12b-1;
however, the behavior described in the points (i), (ii), and (iii) is
common to all the tested potentials (Supporting Information).
From a physical point of view, these results can be justified by the
effects of the charge transfer from the ion to the coordinating
water molecules and of the nonpoint-like structure of the ion.
Both effects are expected to vanish at large distances, where
a Coulomb potential generated by the formal point charge describes
adequately the ion interactions. Therefore, a generic three-terms
force field for metal ions that implements the indications emerged
from the systematic comparative study has the form

θ= + +V V
q

r

f r g r

r
( )

( ) ( )
tot rep

F dump flex

(27)

Table 3. Analytical Expressions of the Two-Terms Models
Tested in the Systematic Comparative Study

model analytical expression no. of nonlinear parameters
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Figure 6.Representative structures of the extracted clusters containing 6
(a), 16 (b), 32 (c), 64 (d), and 128 (e) water molecules.
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where Vrep(θ) is the repulsive part of the potential, qF is the
formal charge of the ion, f(r)dump is a dumping function which

goes to zero beyond the first coordination shell of the ion, and
g(r)flex is a function that provides the necessary flexibility to meet

Table 4. Mean Absolute Errors (kJ/mol for the Energies, E, and kJ/(mol nm) for the Forces, F) in the Prediction of the Quantities
Indicated in the First Column, Using as Training Set the Data Indicated in the First Row and the 12b-1 Modela

training set

test set F(Zn, 6H2O) F(Zn, 16H2O) F(Zn, 32H2O) F(Zn, 64H2O) F(Zn, 128H2O) Li et al. HF

E(6H2O) 761.97 530.02 551.62 559.56 576.14 116.71 153.47
E(16H2O) 949.67 650.46 691.86 703.52 726.39 68.36 146.89
E(32H2O) 998.71 669.10 719.59 732.93 758.65 74.38 136.58
E(64H2O) 1060.05 702.01 761.09 776.03 804.42 69.96 129.74
E(128H2O) 1083.49 706.46 771.29 787.29 817.46 77.10 113.38
F(Zn, 6H2O) 92.95 117.31 113.81 111.44 111.08 627.34 65.13
F(Zn, 16H2O) 191.20 175.86 177.88 178.36 179.11 604.13 71.97
F(Zn, 32H2O) 168.91 160.55 159.70 159.41 159.70 603.82 74.96
F(Zn, 64H2O) 167.94 162.12 161.04 160.58 160.79 605.57 73.59
F(Zn, 128H2O) 165.53 160.95 159.46 158.92 158.96 604.22 73.81
F(6O, 6H2O) 312.62 284.89 269.23 261.93 252.14 1650.26 767.28
F(6O, 16H2O) 302.87 357.11 338.21 329.26 316.50 1727.30 808.86
F(6O, 32H2O) 286.98 370.51 349.89 340.15 325.87 1752.40 807.00
F(6O, 64H2O) 285.65 363.77 343.25 333.63 319.68 1745.70 808.01
F(6O, 128H2O) 285.94 362.59 342.19 332.58 318.42 1744.27 808.02
F(12H, 6H2O) 259.02 301.66 285.63 282.95 278.63 356.05 527.17
F(12H, 16H2O) 298.62 347.19 329.60 326.57 403.66 403.66 617.26
F(12H, 32H2O) 293.34 348.17 329.14 325.80 408.32 408.32 630.00
F(12H, 64H2O) 296.21 349.11 330.48 327.21 407.67 407.67 629.47
F(12H, 128H2O) 296.36 349.04 330.52 327.29 322.08 407.36 629.30
optimized charge 1.529 1.787 1.709 1.694 1.670

aThe values of the errors for the same data set used in the training process are marked in bold. F(6O, nH2O) are the forces on the six oxygen atoms
closest to the zinc ion for the cluster with n water molecules. F(12H, nH2O) are the forces on the 12 hydrogen atoms closest to the zinc ion for the
cluster with n water molecules.

Table 5. Mean Absolute Errors (kJ/mol for the Energies, E, and kJ/(mol nm) for the Forces, F) in the Prediction of the Quantities
Indicated in the First Column, Using as Training Set the Data Indicated in the First Row and the 12b-1 Modela

training set

test set 2-o(6H2O) 2-o(16H2O) 2-o(32H2O) 2-o(64H2O) 2-o(128H2O) Li et al. HF

E(6H2O) 23.39 32.42 55.39 72.37 96.84 116.71 153.47
E(16H2O) 49.05 40.46 53.40 67.63 92.18 68.36 146.89
E(32H2O) 88.38 55.27 41.09 45.45 60.94 74.38 136.58
E(64H2O) 120.15 76.97 44.57 42.50 50.37 69.96 129.74
E(128H2O) 159.29 108.18 61.61 49.05 43.38 77.10 113.38
F(Zn, 6H2O) 191.19 185.30 179.20 176.33 173.07 627.34 65.13
F(Zn, 16H2O) 211.04 206.28 202.59 200.78 198.25 604.13 71.97
F(Zn, 32H2O) 209.46 201.74 196.89 195.42 192.96 603.82 74.96
F(Zn, 64H2O) 205.33 198.76 194.40 192.81 190.19 605.57 73.59
F(Zn, 128H2O) 203.45 198.02 193.99 192.08 189.89 604.22 73.81
F(6O, 6H2O) 980.81 963.04 921.68 891.74 855.18 1650.26 767.28
F(6O, 16H2O) 1060.42 1042.81 1001.63 971.78 935.36 1727.30 808.86
F(6O, 32H2O) 1084.55 1066.84 1025.49 995.56 959.06 1752.40 807.00
F(6O, 64H2O) 1077.10 1059.38 1018.04 988.11 951.59 1745.70 808.01
F(6O, 128H2O) 1075.69 1058.00 1016.69 986.76 950.18 1744.27 808.02
F(12H, 6H2O) 480.17 462.79 447.00 443.84 439.29 356.05 527.17
F(12H, 16H2O) 527.06 509.90 494.26 491.13 486.62 403.66 617.26
F(12H, 32H2O) 535.97 518.37 502.29 499.07 494.43 408.32 630.00
F(12H, 64H2O) 533.35 515.96 500.16 497.00 492.44 407.67 629.47
F(12H, 128H2O) 532.67 515.32 499.51 496.35 491.78 407.36 629.30
optimized charge 2.385 2.335 2.288 2.279 2.266

aThe values of the errors for the same data set used in the training process are marked in bold. The notation 2-o(nH2O) indicates that a two-
objective optimization has been performed, using as references the energies and the forces for the cluster with n water molecules. F(6O, nH2O) are
the forces on the six oxygen atoms closest to the zinc ion for the cluster with n water molecules. F(12H, nH2O) are the forces on the 12 hydrogen
atoms closest to the zinc ion for the cluster with n water molecules.
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Table 6. Mean Absolute Errors (kJ/mol for the Energies, E, and kJ/(mol nm) for the Forces, F) in the Prediction of the Quantities
Indicated in the First Column, Using as Training Set the Data Indicated in the First Row and the 12b-1 Modela

training set

test set
4-o(6H2O/
16H2O)

4-o(6H2O/
32H2O)

4-o(6H2O/
64H2O)

4-o(6H2O/
128H2O)

4-o(16H2O/
32H2O) Li et al. HF

E(6H2O) 25.61 28.53 29.24 30.89 35.95 116.71 153.47
E(16H2O) 41.35 44.18 46.61 52.51 44.60 68.36 146.89
E(32H2O) 58.82 42.31 41.40 43.98 42.66 74.38 136.58
E(64H2O) 78.20 47.29 44.14 44.39 50.92 69.96 129.74
E(128H2O) 107.01 61.87 53.79 45.98 71.39 77.10 113.38
F(Zn, 6H2O) 185.57 186.28 188.44 192.61 181.84 627.34 65.13
F(Zn, 16H2O) 208.47 210.93 212.95 216.36 205.24 604.13 71.97
F(Zn, 32H2O) 203.07 203.76 205.45 208.34 198.47 603.82 74.96
F(Zn, 64H2O) 199.92 200.09 202.17 205.84 196.22 605.57 73.59
F(Zn, 128H2O) 199.22 200.70 202.97 206.32 196.13 604.22 73.81
F(6O, 6H2O) 993.07 1006.81 1012.74 1023.06 967.19 1650.26 767.28
F(6O, 16H2O) 1072.67 1086.38 1092.28 1102.56 1046.95 1727.30 808.86
F(6O, 32H2O) 1096.83 1110.57 1116.51 1126.82 1070.99 1752.40 807.00
F(6O, 64H2O) 1089.38 1103.12 1109.05 1119.37 1063.54 1745.70 808.01
F(6O, 128H2O) 1087.95 1101.68 1107.61 1117.93 1062.14 1744.27 808.02
F(12H, 6H2O) 450.33 420.78 412.58 400.61 439.72 356.05 527.17
F(12H, 16H2O) 497.57 468.27 460.14 448.28 487.05 403.66 617.26
F(12H, 32H2O) 505.69 475.54 467.16 454.89 494.87 408.32 630.00
F(12H, 64H2O) 503.49 473.78 465.48 453.39 492.87 407.67 629.47
F(12H, 128H2O) 502.86 473.12 464.85 452.82 492.22 407.36 629.30
optimized charge 2.298 2.210 2.185 2.148 2.267

aThe values of the errors for the same data set used in the training process are marked in bold. The notation 4-o(nH2O/mH2O) indicates that a four-
objective optimization has been performed, using the energies and the forces for the clusters with n and m water molecules. F(6O, nH2O) are the
forces on the six oxygen atoms closest to the zinc ion for the cluster with n water molecules. F(12H, nH2O) are the forces on the 12 hydrogen atoms
closest to the zinc ion for the cluster with n water molecules.

Table 7. Mean Absolute Errors (kJ/mol for the Energies, E, and kJ/(mol nm) for the Forces, F) in the Prediction of the Quantities
Indicated in the First Column, Using as Training Set the Data Indicated in the First Row and the 12b-1 Modela

training set

test set
4-o(16H2O/
64H2O)

4-o(16H2O/
128H2O)

4-o(32H2O/
64H2O)

4-o(32H2O/
128H2O)

4-o(64H2O/
128H2O) Li et al. HF

E(6H2O) 33.15 32.69 56.33 51.59 75.72 116.71 153.47

E(16H2O) 46.97 51.79 58.16 63.37 75.96 68.36 146.89

E(32H2O) 41.29 42.82 42.31 46.23 51.19 74.38 136.58

E(64H2O) 44.95 43.36 42.59 43.80 45.09 69.96 129.74

E(128H2O) 57.99 47.83 53.13 45.43 44.09 77.10 113.38

F(Zn, 6H2O) 183.09 187.52 177.81 178.21 174.69 627.34 65.13

F(Zn, 16H2O) 207.22 210.86 202.25 203.36 200.09 604.13 71.97

F(Zn, 32H2O) 199.97 202.71 195.81 195.77 193.75 603.82 74.96

F(Zn, 64H2O) 197.27 200.33 193.65 193.69 191.55 605.57 73.59

F(Zn, 128H2O) 197.39 200.87 193.18 193.63 191.03 604.22 73.81

F(6O, 6H2O) 987.41 1007.83 922.47 942.65 890.63 1650.26 767.28

F(6O, 16H2O) 1067.08 1087.40 1002.41 1022.52 970.67 1727.30 808.86

F(6O, 32H2O) 1091.20 1111.59 1026.27 1046.45 994.44 1752.40 807.00

F(6O, 64H2O) 1083.75 1104.14 1018.82 1039.01 986.99 1745.70 808.01

F(6O, 128H2O) 1082.31 1102.69 1017.48 1037.63 985.64 1744.27 808.02

F(12H, 6H2O) 424.58 409.41 438.89 422.85 435.14 356.05 527.17

F(12H, 16H2O) 472.03 457.00 486.22 470.31 482.50 403.66 617.26

F(12H, 32H2O) 479.41 463.91 494.02 477.65 490.20 408.32 630.00

F(12H, 64H2O) 477.62 462.27 492.03 475.87 488.27 407.67 629.47

F(12H, 128H2O) 476.95 461.66 491.38 475.21 487.61 407.36 629.30

optimized charge 2.221 2.175 2.264 2.216 2.253

aThe values of the errors for the same data set used in the training process are marked in bold. The notation 4-o(nH2O/mH2O) indicates that a four-
objective optimization has been performed, using the energies and the forces for the clusters with n and m water molecules. F(6O, nH2O) are the
forces on the six oxygen atoms closest to the zinc ion for the cluster with n water molecules. F(12H, nH2O) are the forces on the 12 hydrogen atoms
closest to the zinc ion for the cluster with n water molecules.
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simultaneously the points (i), (ii), and (iii). An explicit form for
the potential of eq 27 is

θ
=

−
+ + −θ θ θ− − −

V
C

r

q

r
C

e e
r( )

(1 )r r

tot
1

1
12

F
2

( )2 3 4
2
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The third term of this FF, here labeled as 12b-1F-E1Gr, recalls
the physical meaning pursued by the model proposed by Wu
et al.22 to describe zinc charge interactions in metalloenzymes
catalytic sites. In this context, the employment of such functional
form has only illustrative purposes to highlight the potentiality of

the LRR-DE method in the optimization of models of general
functional forms. Therefore, the 12b-1F-E1Gr FF has been tested
and compared to the 12-6-1 (Lennard-Jones combined with
Coulomb potential, optimizing the charge value) and 12-6-1F
(Lennard-Jones combined with Coulomb potential, with the
charge of the ion set equal to the formal charge) FFs only in
terms of structural properties.

4.2. Parameters Optimization andMolecular Dynamics
Simulations. The 12-6-1, 12-6-1F, and 12b-1−1EGr force fields
have been trained using the 4-o(32H2O/128H2O) fitting for the
cases of the Zn2+ ion in water and tested in MD simulations.
Properties derivable from MD have been also compared with
Babu and Lim parameters,36 as well as the already cited Li: per-
formances of these two sets of parameters have been re-evaluated
in this paper by applying the same computational protocol
reported in the corresponding original work (see Figure 8).
Uniform values have been assigned to the weights of the
objective functions, and they have been optimized according to
the procedure explained in subsection 2.4.1 only if unsatisfactory
errors for a QM reference have been observed. Table 9 reports
the mean absolute errors of the three-terms models with respect
to QM references of the zinc-water clusters. The larger flexibility
of the 12b-1F-E1Gr force field allows for reducing the errors, in
particular in the reproduction of the forces. The accuracy of the
12-6-1 forces is significantly higher than the 12-6-1F ones. This
behavior is a consequence of the fact that the LRR-DE optimiza-
tion provides a negative parameter for the r−6 term when the
charge is a free parameter. Thus, the r−6 term contributes in
describing the repulsion, and as a consequence, the QM forces
are reproduced with the 6-1 quality (Table 8). Both 12-6-1F and
12-6-1 FFs overcome the performance provided by Li. The same
trend is observed in the results of theMD simulations. In fact, the
radial distribution function (g(r)) between zinc ion and water
oxygen obtained with the 12-6-1F model presents a slightly better
agreement with the EXAFS data64 than the Li prediction (see
Figure 10). A more consistent improvement is achieved with
the 12-6-1 and 12b-1F-E1Gr potentials, as can be appreciated

Figure 7. Graphical comparison of the prediction of 12b-1 model (blue
points) and Li (red points) predictions of the forces on the zinc ion in
the [Zn(H2O)128]

2+ cluster with respect to the B3LYP/cc-pVDZ
reference for a test set of 40 configurations.

Table 8. Mean Absolute Errors (kJ/mol for the Energies, E, and kJ/(mol nm) for the Forces, F) in the Prediction of the Quantities
Indicated in the First Column, for the Model Indicated in the First Row Trained Using the Four-Objective Fitting 4-o(32H2O/
128H2O)

test set 14-1 12-1 10-1 8-1 6-1 14b-1 12b-1 10b-1 8b-1 6b-1 Exp-1 Exp2-1

E(6H2O) 62.93 47.92 31.47 46.79 150.95 49.85 51.59 53.88 57.08 61.65 38.96 34.45

E(16H2O) 48.96 47.97 49.55 61.90 105.31 62.61 63.37 64.39 65.81 67.84 57.77 55.63

E(32H2O) 47.78 46.17 45.04 46.24 57.78 46.00 46.23 46.56 47.03 47.80 44.67 44.12

E(64H2O) 50.95 49.08 46.69 44.29 43.61 43.77 43.80 43.85 43.94 44.12 43.61 43.59

E(128H2O) 50.35 48.36 46.45 45.72 53.72 45.28 45.43 45.63 45.95 46.51 44.52 44.26

F(Zn, 6H2O) 327.64 274.35 223.32 185.69 198.66 177.43 178.21 179.42 181.62 186.26 174.29 174.07

F(Zn, 16H2O) 327.38 282.93 241.33 208.37 212.90 203.20 203.36 203.76 204.68 206.98 203.66 204.60

F(Zn, 32H2O) 321.05 274.73 231.99 200.83 206.63 195.50 195.77 196.27 197.44 199.95 196.09 197.21

F(Zn, 64H2O) 322.22 275.33 231.20 198.14 202.86 193.49 193.69 194.08 194.84 197.11 194.02 195.35

F(Zn, 128H2O) 321.93 274.64 230.37 198.69 201.52 193.50 193.63 193.96 194.89 197.42 194.27 195.60

F(6O, 6H2O) 1326.13 1231.41 1117.21 984.41 876.50 938.52 942.65 948.91 959.33 979.15 920.07 916.11

F(6O, 16H2O) 1404.42 1309.95 1196.19 1064.08 956.60 1018.41 1022.52 1028.76 1039.13 1058.86 1000.02 996.08

F(6O, 32H2O) 1429.27 1334.73 1220.76 1088.18 980.36 1042.32 1046.45 1052.71 1063.12 1082.94 1023.88 1019.93

F(6O, 64H2O) 1422.20 1327.51 1213.41 1080.74 972.86 1034.88 1039.01 1045.27 1055.68 1075.50 1016.42 1012.47

F(6O, 128H2O) 1420.76 1326.11 1211.99 1079.30 971.52 1033.51 1037.63 1043.89 1054.28 1074.06 1015.08 1011.13

F(12H, 6H2O) 351.11 362.23 381.43 419.41 512.29 421.22 422.85 425.12 428.55 434.59 411.19 406.56

F(12H, 16H2O) 398.68 409.88 429.15 466.91 558.59 468.70 470.31 472.56 475.96 481.95 458.77 454.18

F(12H, 32H2O) 403.08 414.87 435.00 474.14 568.32 475.99 477.65 479.96 483.47 489.63 465.74 461.00

F(12H, 64H2O) 402.56 414.09 433.86 472.39 565.41 474.23 475.87 478.17 481.63 487.71 464.08 459.40

F(12H, 128H2O) 402.28 413.73 433.40 471.74 564.75 473.57 475.21 477.50 480.97 487.05 463.45 458.80
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in Figure 10. Broadly speaking, the ion-oxygen distance is well
reproduced by the employed models, and their performances are
better than polarizable models,65,66 which predict lower values
when compared to the experimental ones. As the flexibility of the
FF is improved, the height of the peak diminishes while its width
increases, thus becoming comparable with results provided by
ab initio investigations,66,67 as well as with the experimental
EXAFS data. Moreover, it is worth noticing that the g(r) peak
obtained with the 12-6-1 model (where only three parameters -
i.e., Lennard-Jones parameters and the electrostatic charge - are
optimized) is in line with the one predicted by even more flex-
ible models, such as the one proposed by Chillemi et al.,64

where 9 parameters are optimized. As regarding the hydration free
energy (HFE), the prediction provided by the 12-6-1 model is
considerably more accurate than the estimates of 12-6-1F and Li.
In particular, the deviation between the experimental reference
and the 12-6-1 estimate is lower than 5 kJ/mol, while for 12-6-1F
and Li is larger than 100 kJ/mol. Taking into account the param-
eters generated by Babu for the zinc ion, the LRR-DE 12-6-1F

model offers a slightly worse reproduction (of 0.01 Å) of the IOD
value. However, an opposite behavior is observed in the repro-
duction of HFE, where the performance of Babu FF is poor, with
a deviation from the experimental value of roughly 175 kJ/mol.
The whole protocol already used for zinc ion has been

extended to the optimization of the FF models for Ni2+, Mg2+,
Ca2+, and Na+ ions in bulk water. In the cases of Ca2+ and Na+,
forces on coordinating oxygens have been included in the train-
ing, thus performing a six-objective fitting. Such measure turned
out to be necessary, since errors on these quantities were larger
than expected. Table 10 collects the estimates of the position of
the first peak of the radial distribution function, the HFE, and the
coordination number of the ion for the five considered systems.
The optimized 12-6-1F on nickel divalent cation overcomes

the performances of Li and Babu in terms of HFE estimation.
Compared to the 12-6-1F force field, Babu offers a better agree-
ment with the experimental IOD value (of 0.01 Å). As regard-
ing the 12-6-1 model, the experimental HFE is exceeded by
102.72 kJ/mol; however, the prediction of the ion-oxygen
distance (IOD) is improved 0.9 Å with respect to the Li21 data.
The experimental IOD is reproduced even better by the 12b-1F-
E1Gr model, and the experimental ion−water oxygen radial
distribution function64 is reproduced with quite good accuracy
(see Figure S2 in the Supporting Information).
For the magnesium ion, the peak of the g(r) provided by the

MD simulation with the 12-6-1F model has a deviation larger
than 0.02 Å from the experimental data with respect to the Li
prediction. The g(r) is correctly reproduced by Babu parameters.
On the other hand, 12-6-1F gives a reduction of the error of about
35 and 108 kJ/mol in theHFE estimate with respect to the Li and
Babu force fields, respectively. As for the zinc case, also for the
magnesium ion, the 12-6-1 model produces a large improvement
in theHFE prediction. Among all the considered FFs, the 12b-1F-
E1Gr model provides the best agreement with the experimental
data for the g(r) peak position. The 12-6-1 and 12b-1F-E1Gr FFs
give estimates in good agreement with the state-of-art pairwise
potentials68 and polarizable models.66 Moreover, a satisfactory

Figure 8. Radial distribution functions between zinc ion and water
oxygens, using the 12-6-1F, 12-6-1, 12b-1F-E1Gr (left panel) and Li38

and Babu36 models (right). In both panels, the comparison with the
experimental profile64 is provided.

Table 9. Mean Absolute Errors (kJ/mol for the Energies and kJ/(mol nm) for the Forces) in the Prediction of the Quantities
Indicated in the First Column, for the Model Indicated in the First Row

test set 12-6-1F 12-6-1 12b-1F-E1Gr 12b-1 Li et al. HF

E(6H2O) 49.12 77.48 70.75 51.59 116.71 153.47
E(16H2O) 49.36 74.34 59.45 63.37 68.36 146.89
E(32H2O) 47.73 49.84 41.48 46.23 74.38 136.58
E(64H2O) 51.42 44.35 43.33 43.80 69.96 129.74
E(128H2O) 49.38 47.92 43.81 45.43 77.10 113.38
F(Zn, 6H2O) 280.69 194.72 141.48 178.21 627.34 65.13
F(Zn, 16H2O) 287.11 210.88 184.37 203.36 604.13 71.97
F(Zn, 32H2O) 279.35 204.67 180.99 195.77 603.82 74.96
F(Zn, 64H2O) 280.30 201.49 180.38 193.69 605.57 73.59
F(Zn, 128H2O) 279.54 201.66 179.97 193.63 604.22 73.81
F(6O, 6H2O) 1242.78 1003.25 611.03 942.68 1650.26 767.28
F(6O, 16H2O) 1321.28 1082.85 692.46 1022.52 1727.30 808.86
F(6O, 32H2O) 1346.07 1107.02 714.92 1046.45 1752.40 807.00
F(6O, 64H2O) 1338.86 1099.57 707.54 1039.01 1745.70 808.01
F(6O, 128H2O) 1337.46 1098.12 706.39 1037.63 1744.27 808.02
F(12H, 6H2O) 356.05 451.17 356.05 422.85 356.05 527.17
F(12H, 16H2O) 403.66 498.40 403.66 470.31 403.66 617.26
F(12H, 32H2O) 408.32 506.54 408.32 477.65 408.32 630.00
F(12H, 64H2O) 407.67 504.33 407.67 475.87 407.67 629.47
F(12H, 128H2O) 407.36 503.70 407.36 475.20 407.36 629.30
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comparability with AIMD and QM/MM simulations, which
predict ion-oxygen distance values between 2.08 and 2.13 Å,66 is
observed.
The 12-6-1Fmodel for the calcium ion trained with the LRR-DE

procedure offers better performances than Li and Babu in the
prediction of the peak position as well as in the HFE estimation.
Again, the 12-6-1 force field produces a further increase in
accuracy for the HFE, at the expense of a slightly worse result in
the g(r) peak position. Also the performance of the 12b-1F-E1Gr
model is less satisfactory than in the previous cases. However,
such measures are in line with those coming from a recent AIMD
simulation which provides a metal-ion distance in the first
coordination shell of 2.51 ± 0.07.69

In the case of the sodium ion, LRR-DE performances are com-
pared to the ones offered by Joung and Cheatham parameters.37

The LRR-DE models give an excellent agreement with the
experimental data in the prediction of the peak position of the
radial distribution function. QM/MM simulations conducted on
the hydrated ion present a certain variability in the computed
metal−oxygen distance, ranging from 2.33 to 2.42.70−72 The
HFE calculated with the 12-6-1 and 12-6-1F models produce a
decrease of accuracy of 15 kJ/mol with respect to the Cheatham
estimate. However, it is worth noting that sodium Lennard-Jones
parameters were specifically optimized by Joung and Cheatham
in order to reproduce the HFE value.37

All the computed g(r) profiles for Ni2+, Mg2+, Ca2+, and
Na+ are reported in the Supporting Information (Figure S2).

The second hydration shell (i.e., the second peak in the IOD
profile) is highlighted in Figure S3. No notable difference can be
appreciated in the peak position for the FFs tested. However, on
average, the height of the peak predicted by Babu appears to
be lower. In all cases the coordination numbers of the ions are
consistent with those experimentally observed. Properties
computed with Babu and Li parameters coincide with previous
investigations.38

All the experimental quantities explored in this investigation
are reproduced with good accuracy by all the tested LRR-DE
optimized models even if not directly considered during the
parameter fitting procedure. Therefore, the discussed optimiza-
tion method has been proved to be general, since the considered
structural and thermodynamic properties are reproduced with
comparable accuracy with respect to standard FFs, directly
optimized in order to reproduce such quantities. Since the
presented method is designed to refine only the FF of the metal
ion, the optimized parameters are specific for the description of
the surrounding environment, and the general performances are
affected by the implicit approximations included in this model.
The obtained FFs have not been tested in environments not
considered in the training, and the quality of the performances
are not guaranteed in such cases. Transferable FFs can be gen-
erated using this methodology, if an appropriate sampling which
considers interactions with a wide range of atom types is executed.

4.3. Computational Details. Classical simulations were
performed either under periodic boundary conditions (PBC),

Table 10. Simulated IOD Peak (Å), Free Energy of Hydration (HFE, kJ/mol) and Coordination Number (CN) Values Using the
Developed Parameters for the Considered Force Fieldsa

IOD MAE(IOD) HFE MAE(HFE) CN

Zn2+ Li et al. 1.93 0.16 −1849.33 105.85 6
Babu and Lim 1.98 0.11 −1779.53 175.65 6
12-6-1F 1.97 0.12 −1801.39 153.79 6
12-6-1 2.04 0.05 −1960.62 5.44 6
12b-1F-E1Gr 2.07 0.02 6
Exp. 2.09 ± 0.006 −1955.18 6

Ni2+ Li et al. 1.92 0.14 −1874.01 105.86 6
Babu and Lim 1.98 0.08 −1800.74 179.13 6
12-6-1F 1.97 0.09 −2022.78 42.91 6
12-6-1 2.01 0.05 −2082.59 102.72 6
12b-1F-E1Gr 2.03 0.03 6
Exp. 2.06 ± 0.01 −1979.87 6

*Mg2+ Li et al. 2.03 0.06 −1724.23 105.85 6
Babu and Lim 2.08 0.01 −1651.10 178.98 6
12-6-1F 2.01 0.08 −1759.79 70.29 6
12-6-1 2.03 0.06 −1871.92 41.84 6
12b-1F-E1Gr 2.06 0.03 6
Exp. 2.09 ± 0.004 −1830.08 6

*Ca2+ Li et al. 2.49 0.03 −1399.97 105.01 8
Babu and Lim 2.61 0.15 −1328.19 166.79 8.3
12-6-1F 2.46 0.00 −1431.76 73.22 8
12-6-1 2.53 0.07 −1551.43 46.45 8
12b-1F-E1Gr 2.50 0.04 8
Exp. 2.46 −1504.98 8

Na+ Joung and Cheatham 2.34 0.01 −374.89 10.05 5.87
12-6-1F 2.34 0.01 −389.53 24.69 5.91
12-6-1 2.34 0.01 −389.95 25.11 5.95
12b-1F-E1Gr 2.35 0.00 5.72
Exp. 2.35 ± 0.06 −364.84 5−6

aResults are compared with the ones of Li et al., Babu and Lim, Joung and Cheatham, and experimental data. The mean absolute errors are with
respect to the experimental references.
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using GROMACS 4.6.5,73 or under spherical nonperiodic
boundary conditions (NPBC), using a locally modified version
of the Gaussian code.74 PBC were used for parallel tempering
runs and for simulations using the 12-6-1F and 12-6-1 force fields,
while NPBC were employed for testing the 12b-1F-E1Gr force
field; the latter choice was made to avoid any PBC-induced
spurious effect due to a nonzero system charge75−81 and hence
assess with more precision the outcome of the 12b-1F-E1Gr
model.
Under PBC, the systems were composed of one metal ion,

surrounded by 2178 water molecules, leading to a cubic box of
size 40 Å. The rigid TIP3P model62 has been used to describe the
water molecules. Fastest degrees of freedom were constrained
with the LINCS algorithm.82 In the sampling step, the metal ions
have been modeled using parameters designed by Åqvist34

(Mg2+, Na+), Merz83 (Zn2+), and Li38 (Ni2+, Ca2+). Each system
was minimized using the steepest descent algorithm implemented
in GROMACS using a convergence threshold on the root-mean-
square forces of 1 kJ·mol−1·cm−1. Systemswere slowly heated from
0 to 298K inNVT ensemble for 1 ns and then equilibrated inNPT
conditions for 1 ns to reach uniform density. The final structure
for each system was considered as the starting point for the
parallel tempering simulations. A number of 25 replicas were
employed, covering a temperature range of 100 K, from 298 to
398 K. Temperature distribution of single replicas in the chosen
range was established so as to attempt an exchange rate of 0.25.84

Each replica was equilibrated in the NPT ensemble for 500 ps,
using the stochastic velocity rescale algorithm.85 The time step
was set equal to 2 fs. Production runs were conducted in the
NVT ensemble for 5 ns, for a total simulation time of (5 ns ×
25 replicas) 125 ns. Electrostatic interactions were described
through the PME method, whereas van der Waals interactions
were considered applying a cutoff of 10 Å. Instead, no PME was
employed in the simulations of Babu and Lim parameters:
following their original simulation protocol,36 a large cutoff value
of 2 Å was applied to compute nonbonded interactions. The FFs
generated with the LRR-DE procedure were tested by initially
equilibrating the systems in the NPT ensemble for 500 ps. After
that, production run time was set to 5 ns in the NVT ensemble.
Cutoff values of 19 Å for both LJ and real-space PME were used.
Under NPBC, the systems were composed of a spherical water

box with a radius of 20 Å, including 1111 H2O molecules and a
metal ion at the center of the box; systems were embedded in a
PCM86 spherical cavity of 21.8 Å. Ions were positioned at the
center of the cavity and kept frozen during the simulations. As for
PBC, systems were slowly heated from 0 to 298.15 K in a NVT
ensemble using four discrete steps and the stochastic velocity
rescale algorithm. The time step was increased from 0.25 to 2.0 fs,
and the thermostat coupling constant was set to 1 ps; in produc-
tion runs, configurations were saved every 500 steps. Solvent
density across the spherical box was controlled by means of the
GLOBmethod87 as implemented in a locally modified version of
Gaussian.88

Radial distribution functions were computed either using
standard tools available in GROMACS (PBC) software or using
an in-house written code (NPBC) on the last 1.5 ns of simula-
tion. Free energy of hydration values was computed using the
Bennett acceptance ratio (BAR)89 implemented in GROMACS.
A number of 21 windows were used. Corresponding λ values
were chosen ranging from 0 to 1, in steps of 0.05. Each window
was run for 500 ps. The first 100 ps was considered to equilibrate
the systems and therefore not included in the final HFE com-
putation. All the QM calculations were performed using the

Gaussian 09 package90 at the B3LYP/cc-pVDZ level. Singlet spin-
state has been considered for all the ions except Ni2+, for which the
triplet has been found to be more stable than the singlet spin state
in theQMmodel systems. All the parameters optimizedwith LRR-
DE are provided in the Supporting Information (Tables S1−S3).

5. CONCLUSIONS

A novel statistical procedure (called LRR-DE) has been devel-
oped to optimize the parameters of a model so as to reproduce
the general behavior of a system, given a representative data set.
The fundamental feature of the method is the combination of the
linear ridge regression and cross-validation techniques with the
metaheuristic algorithm differential evolution. This machinery
allows for optimizing both linear and nonlinear parameters of a
model of generic functional form. The application of the reg-
ularization and the cross-validation avoids the problem of over-
fitting, if the training set is chosen properly. This aim is achieved
applying the GRASP sampling, a combinatorial technique capa-
ble of maximizing the dissimilarity of the elements of the data
set. A methodology based on LRR-DE has been derived to
parametrize the nonbonded force fields of metal ions, using
ab initio quantities as references. From the calibration phase,
performed on the case of the zinc ion in water, a general protocol
for the fitting has been identified. This involves the use of both
the forces and the energies computed on clusters of different
sizes as references. The application of the multiobjective opti-
mization is optionally activated, and further reference data can be
considered if unsatisfactory errors for a certain type of data have
been obtained. The validation of the methodology has been
performed exploiting the cases of five ions in water, for which
several quantitative results of comparison, both experimental and
computational, are available. The performances of the force fields
trained with LRR-DE have proved to be of comparable or better
quality with respect to standard FFs, as the summary Table 11
attests. The possibility of the LRR-DE procedure to use as refer-
ence QM forces and energies of different systems simultaneously
offers great margins of applicability to the method. In particular,
the method is suitable for the optimization of FF of metal ions in
a heterogeneous environment, such as in the case of protein
cofactors, for which experimental thermodynamic data are
usually unavailable. The procedure can be applied to generate
transferable FFs, if an appropriate sampling which considers
interactions with a wide range of atom types is executed. More-
over, the capacity of the method to tune generic models makes it
the ideal tool for optimizing FF with more sophisticated func-
tional forms than those commonly used in molecular dynamics
programs.

■ APPENDIX

A. GRASP Sampling
A.1. Generation of the Candidate Configurations. In this

work, the generations of the candidate configurations have been
performed with the parallel tempering91−93 technique using a
pre-existing FF. It is suitable for this purpose, because it explores
a large portion of the free-energy landscape of a molecular
system. The configurations are drawn for each replica at regular
intervals of extension comparable to the time scale of the
significant events of the system considered and proceeds up to
obtain a sufficiently large pool of candidates (tens of thousands).
Alternative approaches aimed to the generation of the candidate
configurations can be considered, such as the extraction from a
MD trajectory or a metadynamics sampling, as well as from
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pre-existent databases. Moreover, procedures which iteratively
improve the FF through subsequent sampling and fitting steps
can be used in order to correctly reproduce the physics of the
investigated system, as proposed by previous works.12,32

A.2. The Metal-Centric Dissimilarity Score. Since the aim of
the present work is the optimization of the FF of a specific atom,

the evaluation of the fitness of a possible training set should be
focused on the environment of that atom. More specifically, the
configurations included in the training set should maximize the
representativeness of the situations in proximity of the metal ion.
In order to achieve this goal, a dissimilarity score of a set of con-
figurations focused on the neighborhood of the metal is proposed.
As descriptor of the l-th configuration, the vector dl is used,

whose elements are the Euclidean distances between the metal
and all other atoms. Each i-th component of the vector dl is
transformed applying a Gaussian kernel as follows

σ
= −

⎡
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⎤
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d
exp

2li
li
2

2
(29)

where the parameter σ is a measure of the distance from themetal
which identifies the most significant region to sample.
The Euclidean distance between the l-th and j-th config-

urations in the k-space is

δ = ∥ − ∥k klj l j (30)

δlj is invariant with respect to the translations or rotations of the
system, moreover it satisfies the coincidence axiom (δlj = 0
if and only if l ≡ j) and the symmetry condition (δlj = δjl).
As consequence of the transformation of eq 29, kli − kji is
amplified with respect to dli − dji where the derivative of the
Gaussian function is larger. This occurs in correspondence to
d = σ as shown in Figure 9. For d→ 0 and d≫ σ, conversely the
differences in the k-space vanish; therefore, in those zones the
information is compressed.
The metal-centric dissimilarity score of the set {k}, constituted

by NTS configurations selected among NPT candidates, is defined
as the mean value of the Nloc distances from the Nloc nearest
configurations weighed for an exponential factor, 2Nloc−j:
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(31)

In this formula, the j-th configuration is the j-th nearest one to
the l-th configuration. The exponential weight has two roles:
(i) it assigns more importance to the nearest configuration in the
score, and (ii) it makes the score near independent from the Nloc

Table 11. Mean Absolute Deviations from the Experimental
References for the Position of the First IOD Peak (MAE(IOD
Peak)) and the Hydration Free Energy (MAE(HFE)) for the
Considered Divalent Ionsa

force field MAE(IOD peak) MAE(HFE)

Li et al. 0.10 105.64
Babu and Lim 0.09 177.64
12-6-1F 0.07 85.05
12-6-1 0.06 49.11
12b-1F-E1Gr 0.03

aMAE(IOD peak) is expressed in Å, and MAE(HFE) is expressed in
kJ/mol.

Figure 9. Absolute value of the derivatives of the Gaussian function for
three values of the parameter: σ = 1 (blue line), σ = 2 (red line), σ = 3
(green line).

Figure 10. Radial distribution of the sixth closest atom of oxygen to the zinc ion in the parallel tempering sample (a) for the Zn2+/H2O system and in a
subset of the first one obtained by the combinatorial optimization of a selection of the first one that maximizes eq 31 (b). For the parallel tempering
sample the elements are 20000; in the subset they are 100.
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value. The dissimilarity score is related to the inverse of the local
density of the points in the k-space. If the configurations are
selected in order to maximize the score, for a given value ofNTS, a
stratified sampling of the environment of the metal is obtained.
That is, the distributions of the distances between the metal ion
and the atoms included in the spherical shell centered in d = σ are
flatter than the distributions generated by the parallel tempering
simulations. This aspect can be appreciated by observing the
histograms in Figure 10. The stratification of the sampling
obtained by the combinatorial optimization that maximizes eq 31
is even more evident considering the distribution of the config-
urations in two dimensions. Figure 11 compares three combina-
tions of coordinates describing the configurations in the d-space,
namely the parallel tempering set, a random set extracted by the
first one, and the GRASP sampling.

The maximization of the coverage offered by a stratified
sampling increases the probability of performing the fitting in
interpolation regime instead of extrapolation regime.

A.2.1. The Dimensionality Reduction and Permutational
Symmetry. The number of the atoms of the system of interest is
generally in the order of thousands, nevertheless the dimen-
sionality of the k vector can be reduced without loss of informa-
tion because only a few components have a value different from
zero. This measure assures that the calculation of the dissimilarity
score is affordable in the combinatorial optimization step.
To ensure the permutational invariance of the dissimilarity

score, a further arrangement of the k vector is necessary, namely
all the equivalent atoms are placed in ordered positions with
respect to the distance from the metal ion. In this context, two
atoms of the same element are considered equivalent if they can

Figure 11.Distribution of 20000 configurations obtained by parallel tempering (PT) sampling for the Zn2+/H2O system in two-dimensional projections
(a), (d), (g) and 100 instances selected from the first set by random sampling (b), (e), (h) and combinatorial optimization of the dissimilarity score (c),
(f), (i), respectively. The configurations are described by the distances of atom types from the zinc ion. The couple coordinates in the rows are dO6-
dO12, dO7-dH13, and dO8-H14, respectively. The nomenclature dXn means the distance between the n-th nearest X atom to the zinc ion.
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exchange their positions through a move compatible with the
dynamics of the system generating indistinguishable config-
urations.
A.3. The Combinatorial Optimization of the Training Set.

The maximization of the dissimilarity score (eq 31) with respect
to the candidate configurations is performed exploiting an
adapted form of the greedy randomized adaptive search proce-
dure61 (GRASP). GRASP is a combinatorial optimization method
consisting of two main phases repeated iteratively: construction
and local search. In the first one a greedy randomized adaptive
strategy is employed to build a feasible solution that is refined by
a subsequent local search. The operation is repeated saving the
best solution found.
The construction phase starts selecting randomly one con-

figuration from the candidate set. In order to extract the second
configuration, the Euclidean distances from the first one are
calculated for all the remaining candidates, and a configuration is
selected randomly from the subset of the instances further than
the 99-th percentile. In an analogous way the following Nloc − 2
configurations are chosen. From this point on the construction
phase proceeds iteratively by cumulative addition of a new
element that maximizes the dissimilarity score. The new element
is selected from a list of ordered candidates, {si}, composed
evaluating the dissimilarity score of the set {{Si−1} + si}, where
{Si−1} is the partial solution composed by i − 1 elements. The
selection of the subsequent element is performed according to an
exponential probability distribution that attributes the maximum
value to the first element of the ordered list.
In the local search phase, the solution is modified one element

at a time, and the trial solution is accepted if the dissimilarity
score increases. This operation is performed using three different
strategies: random substitution, proposal of new elements sorted
by distance from the centroids of the partial solution, and local
refinement.
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