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Introduction

Research on modern computational quantum chemistry relies on a diverse set of
computational packages to carry out calculations. The complexity of the workflows
usually requires intercommunication between the aforementioned tools. The
communication is usually carried out through shell scripts that try to automate input/
output actions like: launching computations in a cluster, reading the resulting output,
and feeding a subset of numerical results to another program. Such ad hoc scripts are
difficult to maintain and extend, requiring a significant programming expertise to work
with them. It is thus desirable to have a set of general and extensible tools that allows
to perform complex simulations on heterogeneous hardware platforms.

Aims

The goal of our project is to create a modular and extensible software called gmworks
to automate the following tasks using Python:

Input generation (Templates and Plams).

Dependencies management (Noodles).

Efficient data storage(HDF5).

Job failure detection and recovery.
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Case Study

Excited states molecular dynamics are carried out using the fewest switches surface
hopping algorithm (FSSH)!, together with the classical path trajectory approximation,
using the PYXAID package?. In this approach the Schrodinger time-dependent equation
is expanded in a set of N adiabatic states:

N
(R, 1) =) ci(t)di(R(t)) (1)
i=1
Where the time-dependent coefficient are expressed in the following way:
de; () al
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Where the nonadiabatic coupling matrix o;; is given by
1

Being S;(t) the overlap matrix between two consecutive time steps.

Solutions of this equation provides the time-evolution of both electron and holes and
serves as a powerful tool to analyze photophysical processes that occur in the pico- and
subpico- timescales like electron injection between a donor and an acceptor, charge
trapping induced by defects, etc.
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Case Study Workflow
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Step 3

The excited states molecular dynamics simulations are performed in three steps:

1. Carrying out an ab initio or classical molecular dynamic simulation in the ground
state.

2.  Constructing the right-side of equation (2) at each time step t of the pre-computed
molecular dynamics trajectory from step 1 by retrieving the energies E; of the
adiabatic states and the nonadiabatic coupling matrix o; from an electronic structure
calculations based on, for example, density functional theory (DFT). These terms can
be calculated using a computational chemistry code like CP2K, ADF, etc.

3. Solving equation (2) at each time step using the PYXAID? code.
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Conclusions

A General software infrastructure have been developed to carry out complex
simulations.

The Software has been successfully tested on the simulation of nonadiabatic
molecular dynamics of quantum



