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Abstract 

Urban expansion in Arctic environments presents unique challenges and opportunities for 
sustainable development, environmental management, and adaptation to the impacts of climate 
change. The special characteristics of these regions, including extreme climatic conditions and limited 
infrastructure, require customized approaches for monitoring and planning urban growth. The aim 
of the present study is the multi-temporal mapping of urban changes, through Impervious Surface 
Areas (ISA), in an Arctic setting characterized by high structural density, over the past decade. This 
endeavor is implemented by the application of Machine Learning classification methods in 
conjunction with Sentinel satellite imagery, while the execution of this methodology is carried out in 
Google Earth Engine (GEE) cloud platform. The results of this study map with high accuracy ISA 
changes in Tromso area from 1993 to 2023. These findings hold the promise of enhancing our 
comprehension of the dynamics behind urban expansion, the primary factors associated with urban 
sprawl and their interaction with the challenges posed by climate change in Arctic environments. 
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1. INTRODUCTION  

Impervious Surface Areas (ISA) refer to artificial land surface elements that prevent water infiltration 
into soil, including structures like buildings, paved roads, driveways, sidewalks, parking lots, and 
rooftops (Weng, 2007; Popa et al., 2023). The ISA holds a primary source of valuable insights into 
environmental, ecological, and hydrological facets within the domain of urban planning. Over the 
past five decades, there has been a rapid global expansion of ISA, amounting to approximately 0.62 
million square kilometers from 1972 to 2019 (Huang et al., 2021). This trend is closely related to the 
United Nations’ report (2018) on urbanization trends revealing that 55% of the world's population, 
surpassing half, resided in urban areas in 2017 and this proportion is expected to increase to 68% by 
2050. Simultaneously, human activities, including energy exploitation and urban development, have 
significantly contributed to ISA proliferation in the Arctic region (Lifshits et al., 2021; Nguyen et al., 
2021; Usman et al., 2022). These tendencies reveal the direct correlation of ISAs with the 
anthropogenic influence and constitute the focal point for further studies that comprehensively 
explore the interplay of these two factors. 

Given the importance of ISA, there is a need for systematic monitoring and mapping of those areas. 
A considerable body of ISA mapping research has delved into the use of Earth Observation (EO). EO 
offers significant advantages in monitoring ISA as it offers time and cost-efficient systematic images 
where they can be used to map globally the ISA expansion. Landsat archive has been a cornerstone 
EO mission in ISA mapping, given its status as the most extensive and consistent medium resolution 
EO data source (Chaudhuri et al., 2017; Schug et al., 2018; Cao et al., 2020; Xu et al., 2022). Apart 



Landsat, various studies have leveraged Sentinel imagery, encompassing both the optical instrument 
Sentinel-2 (Feng and Fan, 2021; Kumar et al., 2020) and Synthetic Aperture Radar (SAR) images from 
Sentinel-1 (Shrestha et al., 2021; Wu et al., 2023). Additionally, several studies have extracted ISA 
from diverse SAR images, including ALOS/PALSAR images (Attarchi, 2020), TerraSAR-X images (Zhang 
et al., 2016), and ENVISAT Advanced Synthetic Aperture Radar (Zhang et al., 2014). A significant 
portion of the research has been dedicated to identifying and mapping ISAs through high-resolution 
images, such as IKONOS (Lu and Weng, 2008; Olufayo Adetoro, 2022), WorldView (Olufayo Adetoro, 
2022), SPOT-5 (Xu, 2013), and GF-2 (Wang et al., 2022). Notably, only a limited number of studies 
have explored the application of hyperspectral imagery in ISA extraction, employing data like 
Hyperion (Tang and Xu, 2017; Liu and Gu, 2017), GF-5 (Liu et al., 2020), or EnMAP imagery (Feng and 
Wang, 2018). With the abundance of the existing EO datasets, challenges have risen in processing. 
Those challenges are being addressed using cloud-based platforms like Google Earth Engine (GEE) 
offering a cost-effective and computationally efficient means to process large-scale EO data. 
Although the use of such cloud platforms is rapidly increasing, their use in ISA mapping is still rather 
limited, as evidenced from the amount of published literature.  

Various image processing techniques have been employed in ISA mapping utilizing EO datasets, 
broadly categorized into index methods, classification methods, and spectral mixture analysis (SMA) 
(Feng et al., 2019; Pandey et al., 2019). Index methods, which involve creating an index based on 
spectral distinctions between impervious surfaces and other land features, have garnered attention 
for their computational straightforwardness. Zha et al. (2003) devised the Normalized Difference 
Built-up Index (NDBI) through the utilization of near-infrared and shortwave-infrared bands. In a 
similar vein, Xu (2008) introduced the Index-based Built-up Index (IBI), amalgamating NDBI, Soil 
Adjusted Vegetation Index (SAVI), and the modified Normalized Difference Water Index (mNDWI). 
Xu (2010) also formulated the Normalized Difference Impervious Surface Index (NDISI) based on 
mNDWI, near-infrared, and shortwave-infrared bands. The Combinational Built-up Index (CBI) was 
innovated by integrating NDWI, SAVI, and PC1, the first principal component (Sun et al., 2016), while 
the Normalized Difference Impervious Index (NDII) was established by combining visible and thermal 
bands (Wang et al., 2015). Fang et al. (2019) introduced the Ratio-based Impervious Surface Index 
(RISI), a novel index for extracting Impervious Surface Areas (ISAs) from Landsat imagery, 
incorporating the coastal band (B1) and the Normalized Difference Vegetation Index (NDVI). Tian et 
al. (2018) developed the Perpendicular Impervious Surface Index (PISI) using the Blue and near-
infrared bands of Landsat 8 data for mapping ISAs.  

Regarding classification methods, pixel division into impervious and non-impervious categories based 
on spectral signatures is a common approach (Fang et al., 2019). Support Vector Machine (SVM) 
stands out as one of the frequently employed methods for ISA extraction, with studies affirming its 
effectiveness (Feng et al., 2021). Shi et al. (2017) utilized SVM to map ISAs from 1987 to 2016 using 
Landsat time series, yielding accurate results. Other studies also demonstrated the efficiency of SVM 
classifier in ISA mapping (Cheng et al., 2011; Elatawneh et al., 2012; Petropoulos et al., 2012a; 
Petropoulos et al., 2012b; Okujeni et al., 2013; Whyte et al., 2018; Cass et al., 2019; Mugiraneza et 
al., 2020; Fragou et al., 2020;). Additionally, Random Forest (RF) is recognized as a suitable method 
(Shrestha, 2021; Liu et al., 2020), and Kumar et al. (2020) compared SVM, RF, and Neural Network 
(NN) classification techniques, identifying NNs as the most accurate method for extracting built-up 
ISAs using high-resolution satellite data. Huang et al. (2018) demonstrated the effective use of deep 
learning methods for ISA extraction, leveraging high-resolution WorldView and Pleiades images. 
Notably, various studies have applied deep learning methods to map ISAs using moderate-resolution 
images such as Landsat (Dawson et al., 2019; Parekh et al., 2021; Xu et al., 2022). The Object-Based 



Image Analysis (OBIA) approach has also found extensive application in ISA extraction, particularly 
with high-resolution images (Hu and Weng, 2011; Petropoulos et al., 2012c; Sebari and He, 2013; 
Zhang et al., 2013).  

The present study aims at mapping ISA in the Tromso region and to analyze the changes in these 
surfaces over the past three decades. Additionally, it seeks to explore the potential correlation of 
these changes with variations in the local population since 1990. 

2. DATA AND METHODOLOGY 

2.1. STUDY AREA 

Situated north of the Arctic Circle, the island-city of Tromso is the most populated city in northern 
Norway (De Melo Cartaxo et al., 2021). With a thriving population of 77.544 (Statistics Norway, 2022), 
this affluent Arctic capital is linked to the mainland by the Tromso Bridge and Tromsoysund Tunnel, 
while also being connected to Kvaloya Island via the Sandnessund Bridge. Tromso, belonging to 
Troms County, holds historical significance as a vital economic force in Norway, dating back centuries. 
Before obtaining city status in 1794, it served as the gateway to the Arctic, functioning as a crucial 
meeting and starting point for renowned Arctic explorations. The Norwegian Sea, enveloping the city 
and stretching beyond its limits, constitutes a marginal sea within the Arctic Ocean, teeming with 
abundant resources. Presently, the Norwegian Sea maintains its importance as a key avenue for 
transport and communication. Through its natural resources, it continues to foster profitable 
industries, contributing to a thriving local economy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1. Study area map (Landsat 9 image, 20/06/2023) 



 

Tromso's subarctic climate is marked by substantial snowfall and chilly winds throughout its extended 
winters, which endure for approximately six months. Polar nights, extending from late November to 
mid-January, contribute to prolonged darkness. Additionally, precipitation in the form of rain is not 
uncommon, frequently resulting in the formation of icy and slippery road surfaces, thereby posing 
hazardous driving conditions. Tromso's subarctic climate is marked by substantial snowfall and cold 
winds throughout its extended winters, which endure for approximately six months. Polar nights, 
extending from late November to mid-January, contribute to prolonged darkness. Additionally, 
precipitation in the form of rain is not uncommon, frequently resulting in the formation of icy and 
slippery road surfaces, thereby posing hazardous driving conditions. 

 

2.2. DATASET DESCRIPTION  
The present research utilizes Landsat imagery to conduct multitemporal monitoring of ISA in Tromso. 
Landsat, characterized by its moderate spatial resolution, offers extensive coverage of data over large 
areas. Specifically, Landsat 5 Thematic Mapper (TM) and Landsat 9 Operated Land Imager (OLI), 
Collection 2 Surface reflectance products were employed in this study. All the selected for this study 
images (Table 2.1), were acquired on anniversary dates, during summer months, to minimize the 
presence of significant cloud cover and ensure that the identified changes are not caused by any 
natural or other factor.   

Table 2.1. Landsat images acquired in the study 

Date Satellite Dataset 

23/08/1993 Landsat 5 LANDSAT/LT05/C02/T1_L2/LT05_199011_19930829 

13/08/2007 Landsat 5 LANDSAT/LT05/C02/T1_L2/LT05_198011_20070813 

30/06/2023 Landsat 9 LANDSAT/LC09/C02/T1_L2/LC09_198011_20230630 

 

Three specific dates were chosen, starting from 1993 and ending in 2023. The original intention was 
to acquire the third image precisely at the midpoint of this period, specifically during the summer of 
2008. However, due to the lack of Landsat data with a cloud coverage percentage conducive to image 
processing, an image from the corresponding months of 2007 was chosen instead.  

Furthermore, to be created a correlation pattern between changes in ISAs and alterations in social 
factors, demographic data for the broader Tromso region were utilized, sourced from the Statistical 
Service of Norway. Specifically, population data from 1990 to 2022 were obtained.  

2.3. METHODOLOGY DESCRIPTION  
The SVM method is used in this study to detect changes in ISA from 1993 to 2023. The entire following 
process has been implemented in Google Earth Engine (GEE) cloud platform, as shown in Figure 2.2.  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.1. DATA PRE-PROCESSING  
Landsat images were selected directly from GEE platform, according to their cloud cover percentage 
(less than 30%). Due to the geographical characteristics of the study area, acquiring images with cloud 
cover below 10% posed a considerable challenge. As the images obtained were already geometrically 
and atmospherically corrected, no additional processing was required. The first step was to bound 
the study area, using a polygon and apply the Normalized Difference Water Index (NDWI) to mask 
out all water bodies. The subsequent step involved QA pixel masking to eliminate clouds, cloud 
shadows, and unused pixels from the images. The final step of the pre-processing procedure entailed 
applying a scale factor of 0.0000275 and the offset of -0.2 standardizing all values on a conceptual 
scale ranging from 0 to 1.  

 

 2.3.2. CLASSIFICATION AND CHANGE DETECTION  
Along the lines of other studies like Huang et al. (2021) and Liu et al. (2023), it is also implemented 
herein binary classification which included the classes of Impervious and Non-Impervious, as the 
primary goal was to exclusively extract ISA. Before applying SVM classifier to the three images, the 
first step was the generation of train – validation datasets. Three different datasets were created, 
each corresponding to a specific date, by stratified sampling, mainly based on the false – color 

Figure 2.2. Methodology flowchart 



composite (NIR, RED, GREEN bands) which better points out the ISA (Li et al., 2013) and SWIR bands.  
The dataset’s points number follows the rule of 10N to100N, where N is the number of bands used 
for the analysis. For both Landsat 5 images (6 bands) and Landsat 9 images (7 bands), almost 350 
points were carefully selected, per class. Subsequently, the datasets were split into training and 
validation samples. 75% of the total points were allocated for training the classifier, with the 
remaining 25% used for validation. The SVM machine learning classifier was trained and performed 
for all dates by default parameters. 

The final phase of the entire process involved implementing Change Detection (CD) in GEE platform 
and calculating the areas undergoing change. Post classification comparison has been employed as 
the most effective change detection method as the data were individually classified and normalized. 
This approach diminishes disparities between the dates, rendering it a robust method (Sun et al., 
2009; Vivekananda et al., 2021). The ISA alterations were mapped chronologically, into pairs (i) from 
1993 to 2007, (ii) from 2007 to 2023 and (iii) from 1993 to 2023. For all these dates, only changes 
from Non-ISA to ISA were calculated, the changed area was quantified in km2, based on the pixel size, 
and was turned into percentage of change, relative to the total size of the study area. The layers were 
visualized using the ArcGIS Pro software, and the outcomes are presented in Section 3. 

2.3.3. VALIDATION APROACH  
The evaluation of ISA was conducted through a comprehensive analysis of various statistical indices 
(Congalton, 1991), including Cohen’s Kappa (Kc), overall accuracy (OA), user’s accuracy (UA) and 
producer’s accuracy (PA).  Kappa serves as a measure of agreement between the reference data and 
the classification, relative to the probability of agreement between the reference data and a random 
classifier. Overall accuracy quantifies the likelihood of a pixel being accurately classified by the 
thematic map. The user’s accuracy identifies pixels that, though not genuinely belonging to a 
reference class, are incorrectly assigned to other ground truth classes while producer’s accuracy 
carefully examines the pixels omitted from their reference class. Kappa (Kc) is a dimensionless metric 
ranging from 0 to 1, while the remaining statistical metrics are expressed as percentages (%). The 
values of OA, PA, UA as well as kappa coefficient were also automatically calculated in GEE platform, 
by using the validation samples that were created.  

3. RESULTS  
The results of the SVM classifier are shown in Figures 3.1, 3.2, 3.3, while the comprehensive summary 
of the statistical results concerning the accuracy assessment of the classification is included in Table 
3.1. It should be noted that the term "null" pertains to pixels that have been excluded from the QA 
masking. The outcomes of the multi-temporal classification reveal a continuous expansion of ISAs 
over the investigated chronological span. To elaborate, a marginal variation in ISA is discerned from 
1993 to 2007, registering at approximately 0.22%. In contrast, a highly accelerated change is 
observed during the temporal interval spanning 2007 to 2023, reaching 4%.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.. Classification results of the Tromso Area using the SVM classifier, 2007. (Pixels removed from QA 
masking are represented as “Null”) 

Figure 3.1. Classification results of the Tromso Area using the SVM classifier, 1993. (Pixels removed from QA 
masking are represented as “Null”) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

In 1993, ISAs covered an area of 6,66 km2 or 17,79% of the total area, spanning nearly the entire 
territory of Tromsο Island. The primary settlement of Tromsο in the east, as well as the airport in the 
western part of the island, are easily discernible. In 2007, ISA occupied an area of 6.74 km2, 
constituting 18.01% of the total area. The urban fabric of Tromsο appears more contiguous, with an 
observable increase in ISA around the airport area. Pixels that have been removed in the northern 
part of the island can be assumed to have been ISA, both from the 1993 classification results and 
from surrounding pixels. Finally, in 2023, a substantial expansion of ISA is observed, covering 10.6 
km2, accounting for approximately 30% of the total area. In this scene, ISA is also identified in the 
eastern part of the study area, delineating the growth of the Tromsdalen settlement. This 
quantitative alteration of ISA is presented in Figure 3.7. 

The accuracy assessment for all classifications was conducted using the confusion (error) matrix, 
which is presented in Table 3.1. It is obvious that the methodology used in the present study leads to 
highly accurate results, according to the following metrics. The OA reached 93,18%, 95,13% and 
90,19% for 1993, 2007 and 2023 respectively, while kappa coefficient was 0,864, 0,903 and 0,802. As 
for the rest of the accuracy metrics, PA took values from 91,2% to 95,71%, percentages that strongly 
indicate a high probability that the classification of each class aligns closely with reality. UA values 
ranged from 88,63% to 95,74% providing the accurate and subjective selection of training samples. 

Table 3.1. Confusion matrix results 

 
1993 2007 2023  

PA(%) UA(%) PA(%) UA(%) PA(%) UA(%) 

ISA 95,29 91,01 95,55 94,50 93,97 88,63 
Non ISA 91,20 95,40 94,73 95,74 95,71 92,30 

OA 93,18 95,13% 90,19% 

Figure 3.3.. Classification results of the Tromso Area using the SVM classifier, 2023. (Pixels removed from QA 
masking are represented as “Null”) 



kappa 0,864 0,903 0,801 

 

Based on the classification, results presented above, a CD analysis was performed in order to map 
the ISA changes. The change detection analysis was processed in three series (a) 1993 to 2023; (b) 
1993 to 2007; (c) 2007 to 2023 and were selected only changes from non-Impervious to Impervious 
class. In Figures 3.4, 3.5 and 3.6, are demonstrated the results of this analysis based on SVM 
classification.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Change detection results for 1993-2023 period 

Figure 3.5. Change detection results, for 1993-2007 period 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As expected, the highest ISA growth is recorded in 1993-2023 period. ISA growth is detected across 
the whole study area, with a characteristic spread in the eastern part and in the island area of Tromso. 
From these changes, some limited are observed in 1993-2007 period, which are concentrated in the 
western and southwestern part of the island, as mentioned also in classification results. The majority 

Figure 3.6. Change detection results, for 2007-2023 period 
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Figure 3.7. ISA expansion graph, based on SVM classification results. 



of the detected changes are noticed in the 2007-2023 period, where the expansion of ISA throughout 
the whole island and also the eastern part of the study area, is highly marked. 

4. DISCUSSION  
This study implemented SVM classifier with medium spatial resolution imagery from Landsat and 9 
to map ISA and detected changes from 1993 to 2023 in Tromso area, Norway. This method, in 
contrast to the traditional classification and change detection methods, provides a semi supervised 
tool for extracting ISA from Landsat data series, detecting alterations in the imperviousness of the 
surface, and calculating the changed areas simply by selecting the appropriate images and providing 
the training samples. SVM classifier is one of the most efficient and commonly used for land cover 
mapping, as shown by many studies (Cheng et al., 2011; Wei and Blaschke, 2018; Shao et al., 2023). 
Regarding the efficacy of the classifier, the superior overall accuracy achieved can be attributed to its 
capacity for optimally delineating hyperplanes between classes when compared to alternative pixel-
based techniques (Petropoulos et al., 2012). Unlike certain methods that may not easily identify such 
hyperplanes, SVM has the ability to generalize the optimal separating hyperplane to unseen samples 
with minimal errors among various separating hyperplanes. This capability allows SVM to yield the 
most effective class separation in the final classification phase (e.g., Huang et al., 2002).  It is also 
suitable for ISA monitoring, as SVM was originally designed as a binary linear classifier (Shi and Yang, 
2015). This is also confirmed in the present study, where the performance of the classifier is high. 
SVM yielded highly satisfactory results for the implemented study area, as indicated by the statistical 
metrics that were calculated. The findings presented in this study are like those observed in other 
research endeavors that used the SVM technique with multispectral images in remote sensing 
applications (Wang et al., 2018; Liu et al., 2023; Zheng et al., 2023). 

Various factors may be identified as potential sources of error in the technical execution of our case 
study, influencing the performance of the technique. On the one hand in all images, a notable 
removal of pixels has occurred due to the presence of clouds and cloud shadows. These removed 
pixels could potentially differentiate the quantitative results of the classification. On the other hand, 
several studies have demonstrated that there is a strong confusion in the spectral characteristics 
between impervious surfaces and bare soil (Su et al., 2022; Deng et al., 2020). Therefore, it is possible 
that pixels may have been incorrectly classified as ISA when representing bare ground. 

At this point it is pertinent to refer to the correlation between ISAs and the demographic composition 
of the region. As can be derived from the data presented in Figure 4.1 the population dynamics of 
Tromso manifest a continuous upward trajectory from 1990 through 2020, a trajectory that extends 
through the year 2022. This substantiates the pivotal role played by ISAs in urban ecosystems, as the 
escalating extent of these surfaces (Figure 3.7) correlates with the concurrent demographic 
expansion within the purview of the study area.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

This congruence underscores the complex interplay between anthropogenic infrastructure 
development, symbolized by the proliferation of ISAs, and the demographic dynamics shaping the 
urban landscape over the specified temporal span. This conclusion aligns with findings from related 
studies exploring the relationship between urban expansion and demographic trends (Melchiorri et 
al., 2018). 

It is well known that the built-up area of cities cannot be accurately measured based on 
administrative boundaries. The analysis of remote sensing images makes it possible to delineate the 
total land area, the green areas (pervious surface) and the built-up areas (impervious surface). 
However, more sophisticated measurements are required when it comes to measuring urban built-
up density, which includes the entire building area (DiNapoli and Jull 2020). Furthermore, urban 
expansion is not linear, as it takes very different forms in each city. It can take place through the 
redevelopment of built-up areas at much higher densities, by filling in the remaining 'gaps' in already 
built-up areas or through the urban development of areas that were previously not used for urban 
purposes. New urban development can be adjacent to already built-up areas, or it can “leapfrog" 
outside built-up areas and create new urban space. In turn, it can reduce, maintain or increase open 
space in and around the city (Angel et al., 2005). Depending on the city, demographic expansion is 
linked to the urban landscape, but not exclusively to the consolidation of built-up areas, as a larger 
middle class tends to move to the urban fringe, triggering the formation of metropolitan regions or 
larger urban regions (Mahtta et al., 2022). 

Another point worth mentioning is the performance of the Google Earth Engine (GEE) platform in the 
present study. Through GEE, a semi-automated methodology for the processing and analysis of 
Landsat images, coupled with their classification utilizing the machine learning SVM algorithm, was 
developed. The entire procedure was carried out in a cloud environment ensuring fast execution, 
with only the resultant outcomes being downloaded for subsequent visualization within the ArcGIS 
Pro software. The unique capabilities of GEE and other similar cloud-based platforms pave the way 
for new opportunities in ISA mapping in large geographical scales. 

Figure 4.1. Population growth graph, from 1990 to 2022 (data obtained from Statistics Norway 
https://www.ssb.no/en) 
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5. CONCLUSIONS  
The Landsat images proved to be satisfactory for the specific application, as they are freely available 
and already pre-processed. Despite their medium resolution, they achieved high accuracy rates, 
justifying the widespread use of the SVM classifier in land cover mapping applications, specifically for 
ISA. The classification results can be considered successful, with very high accuracy rates of 93.18%, 
95.13%, and 90.19% for each date, respectively. The kappa coefficient values are also highly 
satisfactory, ranging above 0.8 for all dates, confirming the agreement between classification results 
and ground truth values. 

The outcomes of the classifications reveal a notable escalation in ISA, notably conspicuous within the 
2007-2023 period, trend consistently corroborated by the findings of the change detection analyses.  
It is noteworthy that an initial correlation was made between these results, showing an increase in 
ISAs with the population evolution of the study area over time, observing a trend of consistency 
between the two variables. 

Regarding the limitations of the study, they are confined to the absence of cloud-free images, 
resulting in the loss of portions of the study area due to cloud masking. Additionally, the confusion 
of pixel values between ISAs and bare soils poses challenges, as indicated in the literature. 

The implementation of the whole methodology in GEE cloud platform represents a significant 
advancement in innovation. GEE is a robust platform for managing large-scale geospatial datasets, 
enabling seamless integration and analysis of Landsat imagery over extensive temporal and spatial 
scales. By harnessing GEE's cloud-based infrastructure, the computational load associated with 
processing Landsat time series data for ISA mapping is significantly reduced, fostering efficient 
analysis and prompt results. The combination of Landsat's multispectral data with the robust 
capabilities of the SVM classifier within the GEE framework enhances the accuracy and automation 
of ISA extraction while also facilitates change detection analyses by providing an extensive archive of 
Landsat images and proper algorithms for its calculation. This holistic approach, combining GEE, 
Landsat data and SVM classifier, proves pivotal in generating reliable and up-to-date information 
crucial for urban planning, environmental monitoring, and the study of climate change impacts. 

In conclusion, the results of this study constitute a significant contribution to urban planning 
applications adapted to the socio-human factor. Also, the employed methodology has also the 
potential to be used operationally for real time monitoring of ISA while can be adaptive for 
application in diverse study areas, requiring adjustments only in the input parameters for the 
classification process. It can also be applicable to all dataset types available in GEE platform 
constituting a useful tool of analyzing urban environments. It can play a significant role in decision 
making in domes such as urban planning, policy making or natural hazards management.  
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