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Chapter 1

Hybrid prognostics approach based on a

behavioral model

1.1 Basics of the model

1.1.1 Recall of the model

In this section is presented a quick recall of the model used for the hyrbid prognostics approach.
More details and a complete description can be found in [1] and D6.1.

The input of this model is the current which is normalized as current density to be decom-
posed in alternative and continuous parts. These two current densities are the input of the
static and dynamic models. The outputs of these models are recomposed in voltage per cell to

finally be de normalized in voltage.

Tageing — Static
Model

I—-| Normalization H Decomposition Joc

D‘K Dynamic

— 4 Model

Tageing

UDC

U
Recomposing }—"-{ De normalizing }—» u

UA C

Figure 1.1: Scheme of the model

The aim of the dynamic part of the model is to link voltage variations with the current vari-
ation around a static operating point. This part of the model is based on an electrical equiva-
lency. Indeed, the physical phenomena are represented by an impedance (Figure 1.2).
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Figure 1.2: Electrical equivalency impedance of the dynamic model

The static part is based on a development of the Butler Volmer law with a difference made
between the electrodes (eq. (1.1)) :

CE R T i JDC)_L. : Ipc
Upc=E,—R,,-Ipc b, asmh(z.joa b aSlnh(Z-j0C~(1—i.’Z—f)) (1.2)
The time is included in the model (Figure 1.1). The process realized is described on the
figure 1.3.
Thanks to a characterization (composed of EISs and one polarization curve), the values of
the parameters can be obtained for the time considered (Figure 1.3) with the updating proce-
dure. It is realized on all the characterization learnt. Then exponential models are obtained

with an identification thanks to the parameters values.

\ Time exponential function
for each parameters
-

Jooer Pocr Ko, Cacar
Cacor Ly R By Joo T

Set of parameters valid at
the times considered

/\ Updating procedure
- realized on these
ﬁ ° Y b characterizations

at different time

Figure 1.3: Process for initializing the ageing model

Tests and performance evaluation of prognostic approaches 6/69



* %
* o
& o
(”lmo

N SApPHIRE ., @

The parameters chosen for evolving with the time are modeled by an exponential function
(eq. (1.2)).

Param(t) = a.eP (1.2)

Both parameters («, ) are identified by a fitting with of the expression (eq. (1.2)) and the
values obtained from the experimentation.

1.1.2 Constraints on the parameters

We had to compose with the actual knowledge of the PEMFC’s ageing, which were not com-
plete enough. Indeed, the ageing of the physical phenomenon represented by the parameters
aren’t known well enough for a specific modeling.

On the previous deliverable (D6.1), it was shown that some parameters don’t have a clear
tendency with the time. It makes the identification of the exponential functions difficult with
high error. In order to face this issue, two types of analysis were accomplished.

e Aparameters sensibility analysis was realized, it allowed to evaluate the influence of each
parameters on the model (developed on the D6.1).

e A statistical analysis was realized: with five set of data (single cell or stack) the updat-
ing procedure was realized three different ways. With three different algorithms for the
regressions, the updating procedure was done on all the characterizations available on
the set of data. Thus, fifteen tendencies were observed for each parameters (increasing,
constant or decreasing). The comparison of these tendencies allowed to see if there is
a redundancy or not. We considered that when a parameter presents a majority of the
same tendency it can be imposed this way.

With these two studies it was possible to make hypothesis on some parameters, and so im-
pose them constant, increasing or decreasing in the algorithm. The choices made are reported
on the table 1.1.

Tests and performance evaluation of prognostic approaches 7/69
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| Parameter | Choice |
Cica Regressed on the first carac. then fixed
Clee Regressed on the first then fixed
bo, Free of constraints
Jooe Regressed on the first then fixed
koe Free of constraints
L Regressed on the first then fixed
R, Free of constraints
Ro. Regressed on the first then imposed increasing
T oc Regressed on the first then imposed increasing
b, Free of constraints
Joa Regressed on the first then fixed
b, Regressed on the first then imposed decreasing
Joe Free of constraints
JLe Regressed on the first then fixed

Table 1.1: Constraints on the parameters’ evolutions with time

1.2 Evaluation of the simulations’ performances

In order to evaluate and compare the simulations, errors’ calculations are used. They are de-
fined as described under.

e The RMSE (Root-Mean-Square Error) is a value representing the standard deviation be-
tween two values.

1
Number of points’

Z (Measure — Estimation)? (1.3)

Points

RMSE = \J

e The MAPE (Mean Absolute Percentage Error) is an error value measuring the precision
of an estimation.

MAPE = Meanp,;,,, (| 100. (Measure — Estimation) |)

1.
Measure (1.4)

 The determination coefficient (R2) is an indicator judging of the quality of a regression.
It is between zero and one, with the best option being one, and calibrate the adequacy
between the model and the data.

R2 -1 Y poinss(Measure — Estimation)?

- 1.5
Zpoims (Measure — Moyennep,;,,;,(Mesure))? (1.5)
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1.3 Data used

Three set of data are used in the following development. They are described in the following.

e The Exp. 1 is a set of data proposed by FCLAB in the D2.1. This long duration test was
realized during around 10004 at FCLAB facilities. The solicitation is a ripple current com-
posed of a DC component of 70A with a triangular dynamic addition (+/ — 10% of 70A
at SkHz). During this experiment, a complete characterization is realized once a week.
They are composed of a polarization curve and three EIS at three different operating
points (0.70A4/cm?, 0.45A/cm? and 0.2A/cm?). The current and the voltage are moni-
tored during the whole test. The fuel cell is a five cell stack with a 100cm? active area.

e The Exp. 2 is an experiment realized in the frame of SAPPHIRE by ZSW and lasts 2155A.
The mission profile is based on a daily profile for a stationary micro co-generation system
(Figure 1.4). The stack used, furnished by ZSW, is a five cell stack with an active area of
100cm?. It is called a rainbow stack as the membranes are different between the cells.
Face to the hypothesis of the homogeneity of the behavior inside the stack, we will con-
sider each cell independently. A characterization is also realized once a week, it is com-
posed of a polarization curve and three EIS (at 0.154/cm?, 0.25A/cm? and 0.35A/cm?).
The solicitation and the voltages of the cells are also monitored. The two first charac-
terizations cannot be used here as some EIS are missing and it makes the results not
comparable.

0.35 N

0.3 N

0.25 i

Current (A)

0.051 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

| | | | | | | | |
0123456 7 8 9101112131415161718192021222324
Time (h)

Figure 1.4: Co-generation profile

e The Exp. 3 was realized during SAPPHIRE by FCLAB. On a stack of the same kind as Exp.
2, the experiment lasts 800A4. The solicitation is based on the same profile, with the
amplitude doubled and 10 cycles per day. Only two characterizations were measured, at
the start and at the end of the experiment. It is composed of a polarization curve and 3
EIS at 0.3A/cm?, 0.5A/cm? and 0.7A/cm?>.
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1.4 Prediction and performance evaluation

Tests were performed on the two firsts data set in order to assess the capability of prognostics
approaches to estimate the state of health (SoH) of the fuel cell and predict its is behavior.

For this evaluation, each set of data is treated as following.

e The updating procedure is realized on all the characterizations available. The quality of it
is discussed.

e The necessary learning set is studied then. The main objective being the prediction of the
behavior, the errors’ results at the end of the prediction is used for comparing the learning set
sizes. These errors are more developed in the last study, but used here for choosing the best
compromise learning / accuracy. This step allows the choice of the number of characterization
learnt.

e Then the identification of the exponential models can be realized based on the values of
the parameters obtained with the learning set chosen. The quality of these is evaluated.

¢ Finally, the quality of the prediction is specified. For this, the prediction of polarization
curves and voltage is studied.

1.4.1 Prediction for Exp. 1
Updating procedure

The updating procedure is realized for all of the characterizations. The parameters are identi-
fied in order for the model to fit as best as possible to the characterizations’ data. The tables 1.2
and 1.3 reports the mean errors between the model and the data on all the characterizations
for the polarization curves and EIS.

Mean error

RMSE (V) | 4.91E73
R? 0.996

Table 1.2: Mean errors on the polarization curve fitting

| Imaginary part | Real part |

RMSE 3.09E3 2.74E73
R? 0.99 0.9993

Table 1.3: Mean errors of the Nyquist plans’ fitting

The model is able to fit the data with a great accuracy.

Amount of characterizations to learn

The prediction of the behavior (voltage with ageing) being our principal goal, we are trying to
find the best balance between quality of prediction and amount of characterizations learnt.

Tests and performance evaluation of prognostic approaches 10/69
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The ageing of the parameters being modeled by exponential functions with two sub-parameters
(eq. (1.2)), the minimum learnt is two characterizations.

Seven simulation are realized, as there are 7 possibilities for the learning set. Indeed, the
amount of characterization used (and so learnt) is between 2 and 8.

We are anticipating slightly the study detailed in the section 1.4.1, as the prediction of the
voltage allows to compare the results.

The error between the prediction and the measure of the stack’s voltage is calculated . It
was done at the end of the prediction, so between 900/ and 1016A.

The following step are realized for each line of the table 1.4 :

¢ the available characterizations are listed in the first column;
¢ the updating procedure are realized on them [1];

e the obtained parameters’ values are used in order to realize an identification for the ex-
ponential models (eq. (1.2));

¢ these functions are used in the global model (Figures 1.1 and 1.3);
e the global model is simulated under the solicitation measured during the experiment;

e the errors at the end of the test (between 9002 and 1016#4) are calculated and reported
on the last columns.

Characterizations learnt | MAPE (%) | RMSE (V) |
0h et 35h (2) 21,9 0.68
Oh, 35h et 1824 (3) .92 0.03
Oh, 35h, 182h et 3431 (4) 0.96 0.03
Oh, 35h, 182h, 343h et 515h (5) 0.96 0.03
Oh, 35h, 182h, 343h, 515h et 6664 (6) 1 0.03
Oh, 35h, 182h, 343h, 515h, 666h et 830h (7) 1.3 0.04
Oh, 35h, 182h, 343h, 515h, 666h, 830h et 1016A (8) 1.3 0.04

Table 1.4: Errors between the simulated and measured voltage between 900/ and 10164

The table 1.4 allows comparing the quality of the prediction depending of the learning, and
so to analyze the improvement brought by the increase of the learning set. The more precise
description of the quality of the prediction is done later on the section 1.4.1. Indeed, it is not
possible to describe the results of each test, we choose to present only the option with the
best compromise size of learning set / quality of the voltage’s prediction.

The evolution of the errors with the increasing of the learning set size is surprising. We
could have expected the error to decrease with the increase of the learning set. However, it is
not that simple on this data set. With only two characterizations, the results are catastrophic,
it is logical as any error on the measures or on the regressions have a direct impact.

Tests and performance evaluation of prognostic approaches 11/69
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When three characterizations are used, the results present the minimal errors. With more
than four used, the errors obtained are almost stable. Up to six, the prediction’s quality de-
crease. However, with more than three characterizations learnt, the errors’ variations are fi-
nally low.

If a brutal change on the ageing of the stack would have happened, adding characterizations
would bring the change needed in the exponential models.

In the end, we can use only three characterizations for the prediction of the Exp. 1 de-
scribed in the following.

Exponential functions identification

The direct implication of the chosen amount of characterizations learnt is the identification of
the exponential functions. This part is not a major concern, but it can still be interesting.

The values of the fixed parameters are reported in the table 1.5.

Parameters\ Obtained values \

Cica 0.033  [F/cm?]
Cuce 0.032  [F/cm?]
E, 1 [V]
Joa 0271 [A/cm?]
Jooe 025  [A/cm?]
Jre 1.78  [A/cm?]
L 1.65E~®  [H.cm?]

Table 1.5: Fixed parameters’ values

The values of the other parameters obtained at 0/, 35/ and 1824 are used for the exponen-
tial models identifications. Starting this last time, the global model works without considering
any other data.

Tests and performance evaluation of prognostic approaches 12/69
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Figure 1.5: Evolution of the parameters with the exponential function obtained on the three
first values for Exp. 1

Even though we are only using three characterizations, the complete set of data is known.
We can then compare the estimations of the parameters with the values obtained at the up-
dating procedure step. For the parameters’ values we talk about “estimation” as the values,
on which the functions are based, are not a measurement but already an estimation.

The figure 1.5 shows the obtained functions for the parameters as well as all the points.

Mainly, the tendencies of the time functions are coherent with the values. For b, the
tendency is followed but the estimation is slightly different; as well as for b, and R,,,. For some
others, the estimations are further from the first values. b. and k. present a step that cannot
be anticipated with the amount of data taken into account. These two parameters seems how-
ever to compensate each other. The cathodic exchange current density hasn’t a clear evolution
with the time.

Tests and performance evaluation of prognostic approaches 13/69
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| Parameter | MAPE (%) |

bo, 4.4
ko 8.6
R, 34
b, 315
b, 1.5
jOc 22

Table 1.6: MAPE calculated between the parametric values obtained at the updating procedure
and the ones obtained with the exponential functions

A certain gap is exposed between the estimation of the values with the exponential func-
tions and with the updating procedure (Table 1.6).

The identification of the parameters’ models is done thanks to values. However, these val-
ues are not for sure the real values that each parameter have during the experiment. Indeed,
the results on the updating procedure can be a mathematical solution with a loss of the physical
meaning.

The proposed approach being hybrid, this divergence is not an issue. Indeed, the true con-
cern is the following part: the prediction of the behavior.

Behavior prediction

The characterizations learnt are still the three firsts. Here our goal is the validate the prediction
abilities of the proposed approach.

The error between the measure and the simulation of the voltage at the end of the predic-
tion (between 9004 and 1016#A), is 0.92% (MAPE) and 0.03V (RMSE) (Table 1.4) : a very good
result. This can be confirmed by a look at the figure 1.6. On this figure, we can see the output
of the model and the real stack under the same solicitation at the period of this calculation
(between 9004 and 1016A).

The behavior prediction is very satisfying on this end of the experiment. In the traditional
consideration of the RUL’s prediction, the tolerance on the prediction’s error is lowering with
the time. Thus, a good prediction at the end of the simulation is very important.

With less than a percent of error at the end of the prediction, the prediction, presented on
figure 1.7, is completely accurate with the errors being 1.05% (MAPE) and 0.08V (RMSE) on
the totality.

Tests and performance evaluation of prognostic approaches 14/69
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Figure 1.6: Prediction (with 3 characterizations learnt) and measure at the end of the experi-
ment
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With the static model, we are able to compare the prediction of polarization curves with
the measured ones. The figure 1.8 presents this comparison at the eighth one.
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Figure 1.8: Prediction of the eighth polarization curve 10164

| Courbe de polarisation | MAPE (%) | R> |

4 (343h) 0.25 0.998
5 (515h) 0.3 0.999
6 (666h) 0.35 0.999
7 (830h) 0.76 0.995
8 (1016h) 0.99 0.992

Table 1.7: Error between the measured and simulated(i.e. predicted) polarization curves

For all the polarization curves available, the prediction is accurate (Tableau 1.7). For the
fourth, at 3434, the MAPE error is 0.25% with an adjustment coefficient of 0.998. For the last
one, at 10164, the MAPE error is 0.99% with an adjustment coefficient of 0.992.

Even tough the errors on the predictions grow with the time, their values are still demon-
strating an accurate prediction with an adjustment coefficient included between 0.99 and 1.

Finally the use of the model for the prediction with this set of data is particularly satisfying.
The mean error on the total prediction is around 1% and even lower at the end. The learning
set is composed of only three characterizations. The prediction starts at 182/ for a prediction
of around 10004. So even tough the data used are more consequent, the prediction can be
started really early.

1.4.2 Prediction for Exp. 2

The use of only one set of data is not enough for demonstrating the ability of the approach to
predict the behavior. Thus we propose the same analysis that was presented for the Exp. 1 to
the Exp. 2.

In the following, are evaluated in order:

¢ the quality of the updating procedure realized on the usable characterizations;

Tests and performance evaluation of prognostic approaches 17/69
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e the amount of characterizations for the best compromise prediction / learning;
¢ the estimation of the parameters with the exponential functions;
e the quality of the behavior’s and polarization curves’ predictions.

The two experiment are completely different, from the stack, the solicitations, and labora-
tory. This would allow to confirm that the approach is robust and efficient.

Updating procedure

Here we are trying to validate the accuracy of the updating procedure. This procedure allows
to determine a value for each parameters at a precise time, with a characterization.

On the Exp. 2, the two first characterizations are not homogeneous; for the first one, the
polarization curve is missing and for the second, the EIS at 0.154/cm?2. This issue prevents us
from realizing the updating procedure on one hand, and on other hand, as the characterization
is not the same, the perturbations it induces are not comparable.

The first characterization we can use is the one 620h. The following are realized at 8004,
984h, 1130h, 1298h, 1465h, 1635k, 1800k, 1968k and 2010A.

The updating procedure is then realized on all these characterizations. The regressions are
realized and their mean errors are reported on tables 1.8 for the polarization curves and 1.9 for
the EIS. These errors expose good results. However, in order to be able to have a good fitting,
we had to lift the constraint on T.. We can then make the hypothesis than this parameter

represent a phenomenon that can make it increase and decrease with the ageing time in a non
monotonic way..

Mean error

RMSE | 2.25E2
R? 0.986

Table 1.8: Mean errors obtained on the polarization curves’ regressions (except the first two)

| Imaginary part | Real part |
RMSE 4,82E3 3,17E73
R? 0.989 0.9995

Table 1.9: Mean errors on the Nyquist plans’ regressions for the imaginary and real parts (ex-
cept the first two)

The updating procedure allows again to have a good fitting between the data and the sim-
ulations.

Tests and performance evaluation of prognostic approaches 18/69
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Amount of characterizations to learn

The exponential models are identified with the amount of characterizations considered. They
are then used for defining the time evolution of the parameters in order to simulate the global
model. The error between the simulation and the measurement is used for comparison but
studied more extensively in the section 1.4.2.

The table 1.10 presents the results of the error at the end of the experiment in function of
the number of characterization learnt.

| Characterizations learnt | MAPE (%) | RMSE |

2 (620h and 800A) 6.6 0.057
3 (... and 984h) 3.9 0.037
4 (... and 1130h) 4.4 0.039
5(... and 1298%) 3.9 0.037
6 (... and 1465h) 3.9 0.038
7 (... and 1635h) 4.1 0.039
8 (... and 1800A) 3.9 0.038
9 (... and 1968h) 4 0.038
10 (... and 2010%) 4 0.038

Table 1.10: Error on the voltage prediction at the end of the simulation (between 20004 and
2120h)

The errors don’t change a lot, and no clear tendency appears. It is however clear that only
two characterizations are not enough for the identification of the exponential models.

For this experiment, the amount of characterizations bringing the best compromise is three.
Itis finally the same conclusion than for the Exp. 1: we can suppose that three characterizations
will be enough for a good prediction.

For the following, three characterizations are used for the learning set.

Exponential functions identification

The parametric values obtained are used for the identification of the exponential models. They
will be used in the global model as the time evolution of the parameters.

Only three characterizations are used for the learning phase but the other are still available
and allow to compare with the simulations results.

The parameters’s estimation shows the same features as earlier. For the majority of them,
the tendency is coherent but with different values (Figure 1.9). Indeed, as we can see in the
table 1.11, the error between the estimations of the parametric values obtained with the ex-
ponential functions and with the updating procedure can be qualified as considerable.
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| Parameters | MAPE (%) |

boe 31
ko 79
R, 18
b, 58
b, 3.7
jOc 42

Table 1.11: MAPE errors calculated between the parametric values estimations for the regres-
sion and the estimation

The exchange current density at the cathode j. is one more time the parameter the most
difficult to fit. Its tendency goes the other way at the half of the experiment, it cannot be

anticipated.

The table 1.12 report the values of the fixed parameters. They are finally close to the ones
obtained with Exp. 1. However, j,, and jooc are inferior here, it is balanced with b, and b,,

that are superior.

Parameter\ Values obtained \

Cica 0.036  [F/cm?]
Cice 0.022  [F/cm?]
E, 1 [V]
Joa 0.042 [A/cm?]
Jooe LE®  [A/cm?]
JLe 1.16  [A/cm?]
L 3.29E-7  [H.cm?]

Table 1.12: Fixed parameters’ values
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Figure 1.9: Time evolution with the exponential fitting for the Exp. 2

Behavior prediction

The exponential functions presented on the last section are used in the global model. They
represent the evolution of the parameters’ values with the time.

Expose the results on a figure is not easy. Indeed, the solicitation is a cycle per 24k and
the prediction is realized for 1100A. As the prediction starts after the last characterization used
that happened at 9844. So it is not possible to present a figure with the complete prediction.

The figure 1.10 offers the plot of the simulation and the measure at the end of the predic-
tion.
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Figure 1.10: Measure and prediction at the end of the prediction (between 20002 and 21604)

As we can see, the cell’s voltage was measured as zero for some points. It prevents us
from calculating the MAPE error on the complete prediction which has a RMSE of 0.12V. The
calculation of the error was realized at the end of the prediction, between 2000/ and 2120/ in
order to avoid the zeros. The MAPE on this period is 3.9% and the RMSE is 0.037V.

The estimation of the polarization curves is also satisfying, as it can be seen of the figure
1.11.
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Figure 1.11: Prediction of the 127" polarization curve (at 2010A)

’ Polarization curve \ MAPE (%) \ R? ‘

6 (1130h) 1.26 0.98
7 (1298h) 1.12 0.98
8 (1465h) 1.17 0.984
9 (1635h) 1.53 0.983
10 (1800h) 1.69 0.982
11 (1968h) 2.39 0.97
12 (2010h) 2.8 0.96

Table 1.13: Error between the measured and predicted polarization curves

The prediction of the polarization curves is slightly deteriorating with the time, as the MAPE
is slightly increasing (Tableau 1.13). These errors are however very low and very honorable.

The use of the Exp. 2 confirms that the prediction model is good. With a learning set of only
three characterizations, the behavior prediction is very satisfying on the complete experiment.

1.4.3 Synthesis of the results

The model has been used for a behavior prediction on two different set of data, obtained on
two different stacks, two different test benches, with different solicitations. The Exp. 1 is
realized under a ripple current at FCLAB and the Exp. 2 with a cycled solicitation at ZSW.

The learning set chosen in both cases is composed of three characterizations for a prediction
of a thousand of hours. It can be considered as a major asset as for the Exp. 1 the prediction
is possible after 1824 only, and for Exp. 2 after 364h. Even though the amount of data for
each characterization is quite important, there is no need for a constant monitoring for a good
prediction. The characterizations realized and used for the learning set have to let appear some
ageing.

The table 1.14 reports the synthesis of the errors’ calculations realized previously:
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e for the voltage prediction:

— for the Exp. 1 between 9004 and 10164;
— for the Exp. 2 between 2000/ and 21204;

o for the prediction of the last polarization curve :

— for the Exp. 1 the 8%;
— for the Exp. 2 the 127",

Learning set | Pola. predictions | Final behavior’s predictions
Exp. 1 182h 0.99% 0.92%
Exp. 2 364h 2.8% 3.9%

Table 1.14: MAPE on the predictions

The prognostics approach appears to give very good results. Nevertheless (and obviously),
best performances are obtained in the case of simplest mission profile (experiment 1). As for
computational complexity is concerned, note also that the simulation time for the characteri-
zation treatment is less than 5 minutes for the first experiment and a bit more than 3 minutes
for the following. Also, the simulation allowing the prediction of the voltage takes 2.2 seconds
for 1000 hours is Exp. 1. Computation time is therefore low compared to the range of the
prediction (PC with 4Go of RAM and a processor of 3.20GHz).

1.5 Algorithm for the system

The proposed prognostics approach is proven as accurate and efficient. The scientific issue is
treated, we now can consider the implementation issue.

1.5.1 Architecture

Thanks to an intern, Aiman Arshad, the algorithm was transferred on Labview. The architecture
chosen is optimized for the user and composed of four “projects” (Laview vocabulary).

These four projects allows the user to realize the majority of the needed steps for the good
use of the model. Indeed, a part is not treated here, the EIS; as the system is not yet equipped
for this measurement.

e The first project aims at estimating the stack’s voltage. The inputs are the current evo-
lution and the time as well as the exponential parameters and the stack characteristics.
This project is simply the transcripts of the global model.
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e The second project aims at estimate a polarization curve with the static model only. For
this goal, the inputs are the currents points and the values of the static parameters.
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. Voltage
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W

Input Project Output

Figure 1.13: Second project synoptic

¢ The third project is the updating procedure. Thanks to a polarization curve, the updating
procedure of the static model is done. When three or more curves have been treated,
the exponential parameters are identified.

e Static
parameters at
t

¢ Exponential

parameters

e Current time

e Polarization
curve

e Stack

parameters

¢ Updating
procedure

* (Exp. Function

identification)

Figure 1.14: Third project synoptic

¢ The last project is the first one with an add-on. The frame of the remaining useful life
is furnished. Under a constant solicitation of 0.35A/cm? the voltage output is studied in
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order to know when it is lower than the threshold: 27,4V. The output of this project is
the time at which the threshold is overtaken, and the last computation time on which
the threshold was no hit yet. A frame for the RUL is then furnished.

¢ Global
model

e RUL

threshold

e Exp.
Parameters

e Stack

parameters

T,<RUL<T

Figure 1.15: Synoptique du quatrieme projet

The main limit here is the EIS’s measurement impossibility . However, an other European
project, D-CODE [2] aims at elaborating a system for EIS measurment at low costs and low di-
mensions. The use of impedance measurements is compatible with an online implementation.

Meanwhile, the absence of impedance measures must be compensated.

1.5.2 Genericity analysis
Problematic and suggestion

On the dynamic side, the parameters cannot be obtained: without EIS we cannot realize the
updating procedure on the dynamic model. The suggestion we offer is to use another set of
data for the prediction. The accuracy of the prognostics approach is assessed by considering
that exponential parameters can be obtained by using an other dataset. In order to validate or
invalidate this possibility, simulations are realized.

A strength of the approach proposed is its adaptability at different stacks. However, the
hypothesis we make with this suggestion is a strong one: the ageing of similar stacks under
similar solicitations are similar.

Validation

In order to confirm if it is possible to combine the measures and results of two different stacks,
the updating procedure is realized on the Exp. 3. The parametric values allow to set the first
exponential sub-parameter. Indeed, it is the value taken by the parameter at the time 0. The
second sub-parameter is fixed using the values obtained for the Exp. 2 (Section 1.4.2).

So, we propose to:

1. realize the updating procedure on the characterization at the time 0 for the Exp. 3;
2. realize the updating procedure and the exponential functions’ identification for the Exp.

2;
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3. create the exponential model for the Exp. 3: in the equation (1.2) that represents the
time evolution of the parameters, fix the ¢ with the 1. and the 2. allows to fix the .

For the first point, the fitting of the model with the data gives good results (Table 1.15). One
more time, the adjustment coefficients are very close to 1.

| Pola | (EIS) Imaginary part | (EIS) Real part |
RMSE | 7.84E—3 1.11E~2 1.26E~2
R? 0.993 0.961 0.995

Table 1.15: Errors obtained on the updating procedure on the first characterization (Mean for
the EIS)

The quality of the prediction is evaluated on the last 200 hours. On the same way as earlier,
showing the totality of the simulation on one figure is not possible because of the cycles. The
figure 1.16 shows a small portion at the end of the prediction.

With the protocol presented, the voltage’s prediction of the error between 6004 and 8004
is 3.03% for the MAPE, 0.025V for the RMSE with an adjustment coefficient at 0.92. These
results are very satisfying.

The experiments’ cycles being 10 per day the figure 1.16 shows only a short period of time
that doesn’t let see any ageing. However, the calculation of errors allows to demonstrate the
satisfaction of the prediction.
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Figure 1.16: Prediction and measure at the end of the test

Finally, it is possible to combine an initial characterization with the study of an other set of
data in order to obtain a good prediction. The hypothesis done for the online implementation
is coherent.

1.6 Conclusion

The proposed approach is able to propose a good prediction with a short amount of time.
Indeed, for the Exp. 1, three characterizations represent only 1824. However, the charac-
terizations taken for the learning set, have to let ageing appear, this means that these three
characterizations have to be carried out along a sufficient duration, once a week as in the lab-
oratory experiments used for the validation for instance.. On the two data sets, the errors on
the prediction of the polarization curve is under 3% and for the behavior at the end, under 4%.

The implementation on a system is presented, with its hypothesis and architecture. The
hypothesis we had to make because of the lack of EIS is validated. However, this hypothesis is
really strong, and on the deliverable 2.6 it is proven that thanks to an other european project
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[2], and a huge reduction of measured points, that an impedance for this approach can be
measured in less than a minute.

The global approach is validated and its use for a real industrial system is not only demon-
strated possible, but also realized is a shorter version.
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Chapter 2

Multiple model approach

The patent has not been submitted yet. In the development of the algorithm, an intermediate
step was the investigation of the ageing rate through a general constraint for detecting the
ageing rate correctly, which is not part of the patent.

2.1 Investigation of the correct detectability for different age-
ing rates

An important parameter for a prognosis algorithm is the decreasing voltage over time. The so-
called ageing rate. It determines, how fast the fuel cell ages and when the End of Life (EolL) is
reached. A lower ageing rate means a longer life and is a favorable goal to achieve. In addition,
in a well optimized system the ageing rate is a long term effect. Unfortunately, it is also very
difficult to detect in measured data. The following investigation has been done to estimate
the effects of measurement resolution, Signal-to-Noise-Ratio (SNR) and average values on the
correct detection of different ageing rates.

2.1.1 Method

In order to isolate the correct ageing rate, different artificial voltages were generated. The ben-
efit of this approach is that the artificial voltage is well- known and the artificial ageing effect is
the only effect inside the artificial voltage. For that reason, it is possible to investigate system-
atically the influence of the measurement device, and of the system constraints on the correct
detection of the ageing rate. All the generated voltages have a sampling rate of one sample
per second, which was also the acquisition rate of the measurement devices used during the
project.

2.1.2 The artificial voltage signal

The goal was to build a constant decreasing voltage with different ageing rates, starting from7 V
(stack) or 0.7 V (cell) and decreasing for 300 hours. After the generation of such a voltage, the
Matlab function “awgn” was used to add a Gaussian noise with a SNR of 60 dB, 75 dB or 90 dB
to the artificial voltage. The next step was to round the noisy, artificial voltageto 1 mV, 0.1 mV
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or 0.01 mV voltage steps in order to create artificial data with different voltage resolutions.
The procedure was done for ageing ratesof 1, 2,5nV /s, 10nV /s, 20nV /s, 50 nV /s, 100 nV /s,
200 nV /s, 500 nV /s and 1000 nV /s. Figure 2.1 and Figure 2.2 give a brief overview about the
created signals.

Artificial voltages at a voltage resolution = 1 mV and an ageing rate = 500 nV per s
| | | |

——SNR=60dB
—SNR=75dB
——SNR =90 dBj|

24
©
©
a

o
©
©

Artificial voltage [V]

6.985

| i
6.98 5
Time [hrs]

Figure 2.1: An artificially generated voltage for different SNRs.
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6.984
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Figure 2.2: Artificially generated voltages for different ageing rates and voltage resolutions.
Figure 2.1 shows the decrease of the voltage during the first 10 hours for an ageing rate of

500 nV /s and different SNRs. An interesting effect is caused by the voltage resolution and an
increasing SNR. The high SNR causes remarkable plateaus of voltage, which overlap the ageing
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rate. In some intervals, the voltage stays at a constant value, even it is decreasing in the overall
trend. As mentioned above, all generated voltages have the same, basic voltage trend and this
effect is only caused by the discrete voltage steps of 1 mV and a high SNR of 90 dB.

Figure 2.2 shows the voltage decrease over the first 10 hours for voltage resolutions of
1mV,0.1mV, 0.01 mV and ageing rates of 100 nV /s, 200 nV /s, 500 nV /s at 75 dB SNR. The
low voltage resolution of 1 mV and 100 nV /s form again voltage plateaus in some intervals.
The two other artificial voltages with an ageing rate of 200 nV /s, 0.1 mV voltage resolution at
SNR of 75 dB and an ageing rate of 500 nV' /s, 0.01 mV voltage resolution at SNR of 75 dB, do
not form such plateaus.

2.1.3 Investigation procedure

The general solution to investigate slow, almost linear changing trends is a linear fit inside a
determined time interval. As a result, the gradient of the fit represents the ageing rate of a fuel
cell voltage. A perfect signal would provide the correct ageing rate directly, but usually, the re-
guested information lies under uncertainties, which are mainly caused by noise, discretization
and other measurement impacts.

Applying a linear fit with the least square method to data on a determined time interval
gives the average, linear change over time. The size of the time interval/window plays an im-
portant role, because a wider time interval means an improved average gradient and decreases
the effects of noise and discretization. Unfortunately, a wider time interval increases overall
measurement time. In some cases, this additional time is not available. In order to find the
correct ageing rate for a fuel cell, it has to be run at steady state for that time interval. For
that reason, the artificial voltage was investigated for different time windows. In addition, 100
positions inside the artificial voltage were picked randomly and at these positions the different
time windows were investigated. In addition, 100 positions inside the artificial voltage were
picked randomly and at these positions the decided time windows were investigated. The first
approach has been finding the maximum relative error within these 100 positions to obtain
the worst estimation. The second approach is based on the calculation of an average between
the results of all 100 positions and form a mean relative error for each time interval. The re-
sults of this investigation are presented in the next section. It is important to highlight that
the linear fit is already an averaged estimation of the ageing rate. Using several estimations
improves the obtained result. The most unfavorable result is still interesting, because it allows
to get a deeper understanding of the worst result which can be obtained by a single time inter-
val. The relative error has been used as representative error to form a more meaningful and
understandable comparison between different ageing rates. In addition, using an aging rate
with a relative error for a prognosis estimation causes an increasing error propagation over the
estimated horizon.

2.1.4 The investigation of measurement system constraints

Figure 2.3 is an overview of all maximum relative errors, which is presented in percentage re-
lated to the time window of the interval. Especially small ageing rates can cause very big rel-
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ative errors for small windows size. Figure 2.4 shows a zoomed part of Figure 2.3, where the
maximum relative error is limited to 20% of the correct ageing rate. Both figures represent the
result for artificial voltages at 1 mV voltage resolution and SNR at 75 dB, which is considered as
the standard measurement quality of the equipment used during the project. Figure 2.4 shows
that it is even difficult for higher ageing rates (e.g. 100 nV /s) to reach a maximal relative error
below 2% within a 5.5 hours time window. For smaller ageing rates, the highest relative error
is out of the scope. Remarkable is that the error seems to change systematic. This phenomena
is related to the discretization and will be explained later.

Maximal relative error at SNR = 75 dB and voltage resolution = 1 mV
12000

10000 —20nV/is |

70001t S O S Ot SO SN  SUSRSSROS S [ttt 1000 nV/s ||
6000 \

4000

AN

0.5 1 1.5 2 25 3 3.5 4 4.5 5 5.5
Time Window [hrs]

Maximal Relative Error [%]

Figure 2.3: Overview of the maximum relative error.

Figure 2.5 presents the mean, relative error in percentage related to the time window size
(in hours), zooming the same part of Figure 2.4 , it shows the effect of a more average ageing
rate. Every ageing rate can be found with a relative error below 10% within a 3 hours time
window. In addition, the mean relative error is more random, which is caused by the decision
for random positions.

Only at high ageing rates (50 nV /s or more) the mean relative error behaves in a compa-
rable and systematic way as the maximum relative error. Taking a closer look to ageing rate of
20 nV /s it seems to be a transition between the random, noise behavior of the mean relative
error and its systematic behavior.

Figure 2.6, Figure 2.7 and Figure 2.8 show on the left side a test or voltage signal with an
ageing rate of 500 nV /s at different SNRs and voltage resolution related to the time. The left
window does not show the complete signal and gives only an impression of the used signal to
obtain the results on the right side. The right side of these plots represent different results,
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Figure 2.4: Zoomed part of Figure 2.3.
Mean relative error at SNR = 75 dB and voltage resolution = 1 mV
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Figure 2.5: The mean relative error, zoomed to the same part as Figure 2.4.
In Figure 2.6, on the right side, the maximal relative error for different SNR is represented
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in relation to the window time. Remarkable is that the higher SNR, which is usually considered
as better measurement, causes a bigger error than the smaller SNR. In addition, the systematic
behavior can be figured out for a SNR= 90 dB and SNR=75 dB. Only the SNR=60 dB does not
suffer from this systematic behavior.

Test Signal at Age Rate = 500 nV per s and Voltage Discretisation Step Size = 1 mV Maximal Relative Error
0.704 T T 20 T
—— Test signal 60 dB ——60dB
—— Test signal 75 dB —75dB
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Figure 2.6: An artificial voltage signal at different SNR and its maximal, relative error.

Test Signal at Age Rate = 500 nV per s and Voltage Discretisation Step Size = 1 mV Mean Relative Error
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Figure 2.7: An artificial voltage signal at different SNR and its maximal, relative error.
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Figure 2.8: An artificial voltage signal at different SNR and its maximal, relative error.

The reason can be found on the left side. This side shows the part of the different test
signals, which were used to obtain the result. The red trend, SNR=90 dB, forms clear steps
and voltage plateaus, as already noticed in the beginning of this investigation. The time inter-
val includes different parts of these plateaus, which do not represent the correct ageing rate.
The occurring maxima in Figure 2.6, right side, are related to adverse overlapping of the time
windows and the voltage plateaus. The minima are related to favorable overlapping. With
increasing time window, the problem decreases due to the better averaged ageing rate. The
blue trend, SNR=60 dB, does not have such problems, because the bigger noise causes a big-
ger standard deviation. This standard deviation includes more discrete voltage levels. In this
case, it is helpful for finding a more correct ageing rate by using a time window, because more
information for the statistical method of least square is provided.

Figure 2.7 shows the same artificial voltage signal as Figure 2.6, but on the right side, it
presents the mean relative error related to the window size. Compared to Figure 2.6, the mean
relative error is significant smaller than the maximum relative error, but it still suffers from the
same effects. A higher SNR causes a bigger error and the error changes in a systematic way.
A more averaged ageing rate improves the result, but still suffers from the systematic error of
the 1 mV discretization steps.

Figure 2.8 shows on the left side the same voltage signal for different SNR, but with a higher
voltage resolution and on the right side the maximum relative error for different SNR related
to the time window size. Compare to Figure 2.6, the result does not improve for a SNR=60 dB,
which is not surprising, because in Figure 2.6, the artificial voltage provided already a real noisy
behavior and the result includes the benefit of the statistical effect already. The results for
SNR=75 dB and SNR=90 dB are more interesting. In Figure 2.8, they show as well a noisy be-
havior and in the case of a voltage steps equal to 0.1 mV, the higher SNR causes better result
as it would be expected. The reason is that the least square method now forms a better lin-
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ear fit and the ageing rate can be found more precisely. Instead of systematic wrong voltage
plateaus, the Gaussian noise provides additional input for the averaged ageing rate and the
ageing rate can be found below a maximal relative error of 2% within a time window of one
hour for 500 nV /s ageing rate at SNR=75 dB.

2.1.5 conclusion

In order to find and investigate the degradation of a fuel cell, it is necessary to identify the
ageing rate correctly. The investigation above shows that a voltage resolution of 1 mV might
be too small and causes unnecessary sizes of time windows to investigate the ageing rate. It
suffers from systematic error and increasing the SNR only increases this problems. A decreases
in measurement quality or a lower SNR seems to help with this issue in the first place. Unfor-
tunately, the voltage of a fuel cell is one of the best indicators of the fuel cell state: decreasing
the measurement quality makes it more difficult to use the cell or stack voltage as state indi-
cator, which might cause additional costs for additional sensor instead of using the available
information. In addition, lower ageing rates are difficult to detect. Investigating only the stack
voltage instead the cell voltage solves this problem partially, but reduces the opportunities of
detecting fast decreasing cell voltages. Increasing the time window for the averaged ageing
rate and repeating this for several time to have an overall averaged ageing rate, improves the
result but increases the measuring time and does not solve the systematic error, caused by the
voltage resolution.

In the end, it is recommended to use equipment with higher discrete voltage resolution to
improve the correct detection of the ageing rate.

2.1.6 Impact of ageing rates

The project data were measured with a voltage resolution of 1 mV and a SNR higher than 75 dB.
According to the test protocol, fast cycling was used to amplify the ageing of the stacks. For
example, the current density stays only for 2 hours and 15 minutes at 0.35 A/mm? and the
fuel cell stack could hardly reach the steady state. Figure 2.9 shows the difficulty. The Fuel
cell stack cannot reach the steady state fast enough and in the end, there is only a 40 minutes
time window to find a correct ageing rate. Unfortunately, the investigation of the ageing rate
detection shows that this steady state time is too short to find directly a small ageing rate
inside the voltage. Using the stack voltage instead of the cell voltage leads to a higher, absolute
ageing rate, because all ageing rates of the cells are summed up inside the stack voltage. This
decreases the influence of the issue, but during the project, even the ageing rate of the stack
voltage were only 20 nV /s (for the Dantherm Sapphire 2 stack).The investigation shows that
a strategy, using average approaches, is required to find the correct ageing rate. In this case,
within one single constant operation interval, the ageing rate can only be found by chance and
not systematically. On the other hand, there is no other data than the short windowed data.
For that reason, a procedure was developed to find the best estimation of the ageing rate within
the short time window and to weight found ageing rates.
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Figure 2.9: A general time interval of ZWS data at 35 A.

2.1.7 Ageing Rate and Standard Deviation Detection

The following section deals with an approach to value the quality of the linear fit. Due to the
slow decrease of the voltage in comparable conditions, the simplest way to detect it is a linear
fit on a feasible time interval. In the previous section, it has been shown that this time interval
is not available for some current levels and an average approach is required. Therefore the
calculated ageing rates might be poor a estimation of the real ageing rate. A way to test the
quality of the ageing rate is to investigate, how well a fit really represents the data and how
many values are used for the calculation of a fit.

The procedure needs a minimum and maximum window size, which form a search interval.
Inside this interval, several linear fits are done and evaluated. The minimum window size en-
sures to use enough values in order to decrease the impact of noise and outliers on the linear
fit. The maximum window has to be as large as possible to get the best possible amount of
values for finding a well averaged fit. It is not useful to directly apply the maximum possible
window, because effects like oscillation and outliers might influence the result negatively and
only one estimation would be available. Using a window smaller than the short interval gives
several estimations of the ageing rate and provide an averaged, correlated mean ageing rate.
According to the investigation of the ageing rate detection, this kind of average value improves
the ageing rate detection.
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Figure 2.10: A fuel cell voltage response on a change of operation together with different steps
of the ageing rate detection.

If there is not enough data according to a predefined maximum window length, the ageing
rate detection does nothing. Otherwise, the procedure works the following way:

o First, a set of data with a decided maximum window length is given to the age rate detec-
tion. When a new measurement occurs, the maximum window forgets the oldest data
point and adds the new one.

e Second, the detection starts from the last point of the data, but considers a minimum
amount of values in order to sustain influences of noise. Figure 2.10 shows such a window
(green).

e Third, the fit is calculated, using the least square approach. The gradient of the found fit
ay is kept.

e Fourth, the found fit gets separated in three smaller windows with equal size and each
windows counts the number of values above and below the found fit. A good fit would
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lead to 50% of the values below and 50% above for each of the three windows. Due to
the least square method, only the complete interval of a; fulfills this rule for every case
and the distribution inside the smaller windows is a possibility to prove the quality of the
linear fit. The method can sustain a decent amount of oscillations and outliers.

¢ The Fifth step is to calculate a mean of difference from the expected 50% over the three
windows.

This procedure is repeated several times for different window sizes (e.g. Figure 2.10), start-
ing at a predefined minimum window size and ending with the maximum window size. When-
ever a mean relation difference closer to the best result of 50%, the ageing rate replaces the
last found ageing rate and saves the result as best fit (cp. Figure 2.10).

When a new value is available, the procedure is repeated. In this way, every point gets
its own estimation of the ageing rate, when the data to analyze is bigger than the maximum
window. The distribution difference is used as criteria in order to weight the found ageing
rates. A good fit, with 50%-50% distribution in all three control windows leads to a maximum
weight of 0.5. In addition, the number of values in relation to the maximum window size are
used as criteria. If the best fit interval is equal to the maximum window, which represents the
most statistically healthy fit, the maximum weight of 0.5 is obtained. Both weights form a 1,
which represent 100% of the found ageing rate will be considered for further investigations.
The weights are saved along with the detected ageing rates in order to apply it for an overall
mean ageing rate. The procedure gives an estimation of ageing rate for each new point.

Beside the ageing rate, the standard deviation of the voltage is calculated and saved in the
same way as the ageing rate. The standard deviation can only be calculated after ageing trend
is subtracted from the voltage. Otherwise, the ageing trend increases the standard deviation in
relation to its gradient and causes a systematic error, which can vary by the situational ageing
rates.

In addition, a transient free start voltage is calculated for every found fit and can be used
to achieve a AU(t,, ), the difference to the voltage before the change of operation (cp. Fig-
ure 2.10).

2.2 Evaluation of the prognosis

This section is confidential due to the patent process.

2.3 Data used

This section is partially confidential due to the patent process.

A detailed description of the data can be found in other deliverables. The algorithm was
developed on the 2160 hours duratest from ZSW and validated on the 2850 hours Sapphire 2
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data. In addition, these data were used by an Adaptive Neuro-Fuzzy Inference Systems (ANFIS).

2.4 Prediction

This section is confidential due to the patent process.

2.5 Algorithm for the system

The final step would be an executable, created by Matlab Compiler. The principle would be
to copy this executable onto a windows industrial computer of a fuel cell system and install
the free Matlab executable library. Depending on the preferences of the system producer, the
executable can be started manually by a user or frequently by the fuel cell control.

2.5.1 Architecture

The architecture is simple and executables can be used on different systems, as long as the
Matlab library can be installed and the OS is able to start executables. However, there are
some steps before building the executable, which are important for the usability.

The most important step is the decision for an interface or how the measured parameters
(current, voltage and additional correction parameters) are taken by the algorithm. For exam-
ple, the running control system can save the measured data in a txt-file and start the executable
time after time. The executable can import different file formats (txt or csv) and use different
data structures (e.g. first data column is current and second column is voltage), but it has to
be implemented before the executable is generated and cannot be changed afterwards. The
procedure would be to define the file format and the data structure and tell the fuel cell control
system to save the measured data in that specified way to the folder of the executable.

An important information for the algorithm is the future current profile, because it supplies
the calculation of the remaining useful lifetime, how the future will look like according to the
planned operation strategy. This profile has to be loaded every time the executable is run or it
could be implemented inside the executable, which makes it easier to apply the algorithm. On
the other hand, the algorithm can be only used for that implemented profile, which is an addi-
tional and properly unnecessary constrain. The last thing to specify, would be the output. The
simplest way could be a single number, saved in a file and loaded by the fuel cell system con-
trol. Displaying the number in an additional output window from the executable is a possibility
as well. Another way could be a plot with the actual, measured data and the estimated trend.
The complexity of the output can be increased in an arbitrary way, but should be adjusted to
system producer and customer needs.
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2.6 Conclusion

This section is partially confidential due to the patent process.

The results of the algorithm are very promising. A relative error of 2.3% estimated over
1900 hours into the future for ZSW duratest data done in a lab environment and relative error
of 6.7% estimated over 2580 hours into the future for Dantherm Sapphire 2 data done in a
fuel cell system shows a high precision, even after several 100 of hours. For the general case
of ©CHP systems, were a normal and not an accelerated ageing profile is applied, the results
should be even better. In addition, the applied ANFIS approach provides an optimization po-
tential for the algorithm and even a possibility to use the model in another way.

In the end, the results are very satisfying and further investigations would improve the
practical use of the algorithm.
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The LabVIEW program consists of three main functions, called projects in the following.

The first part of this documentation is dedicated to explaining the purpose of these functions.
The second one will allow the user to look into the projects in details.

Table of Contents

1. Explanation of main fUNCHONS ......ccceeciieeiieriieriierie sttt e seeete e eteesteestaessaessseesseesseesssenssennsas
1.1 Project 1: Voltage estimation - ModeleGlobal EvalV.Ivproj.............ccoceeeeeevivecceeacveeninennns
1.1.1 Overview of the main function of the Project..........cccvevieviiiiciiiieriesiece e
1.1.2 Use of the main VI of the project ..........ccoviiriiiiieiieieeeeteeeee e
1.2 Project 2: Polarization estimation - EValPola.IVPrO] ...........ccceevvevievienieiieeieeeeeeeesie e
1.2.1 Overview of the main function of the Project..........ccccvevverieriieiciiiiieeeee e
1.2.2 1.1.2 Use of the main VI of the Project .......c.cceceiirieniiiininieeneecceeeeeeteseesese e
1.3 Project 3: Updating procedure UpdatingProcedure. [Vproj ..........c.ccouevvveecveecieeceeseesvenvenenes
1.3.1 Overview of the main function of the Project..........cccvevierieriiriiiiiiiereeee e
1.3.2 Use of the main VI of the Project .......ccveeiiiiiiiiiiieceeee e
1.4  Project 4: Updating procedure UpdatingProcedure.[Vproj ...........ccocceeeevecrvenvesivesieesrennneens 10
1.4.1 Overview of the main function of the Project...........ccoeveeiieiiiniiiieeeee e 10
1.4.2 Use of the main VI of the Project .......cciieciiiiiiiiiiiieeeee et 10
2. Detailed explanation Of the PrOJECES .......cccviviiriiiiiiiieieeree e eie ettt esee e saesreesreesseessaessseseens 12
2.1 Project 1 - ModeleGlobal EVAIV.IVDTO] ......cccveieeiiiiiiiieeeeeeee ettt 12
2.1.1 Overview of the Project EXPIOTET........cc.viviiiiieiiiiieeieccee ettt reesre 12
2.1.2 Structure and functioning of MainGIlobal.Vi...............cccuvveeeeeeniieniiiniiieieeseeeeeee e 13
2.1.3 Detailed explanation of sub VI SimulationEXp. Vi .........c.coceeeeciveecieeeiieeiieeeieeeevee e 14
2.2 Project 2 - EVAIPOIA.IVPTO] c...cc.ooeevieciieeieeie ettt se sttt tesbe e ssaesnsesnsaensaenseens 15
2.2.1 Overview of the Project EXPIOTET........ccveviiiiiiiiiieeieereeseeee e 15
2.2.2 Structure and functioning Of MaiR. Vi..........cceeecvievciiieciieeie et 15
2.3 Project 3 - UpdatingProcedure. IVPro].......c.vevieriieriieiie ittt ense e 16
2.3.1 Overview of the Project EXPIOTET........ccooiiiiiiiiiiieieeeeeeee e 16
2.3.2 Structure and functioning of MaiR. Vi..........cccocevvevriirieiciierieeerie e 17
233 Detailed explanation of sub VI Statique.vi..........cccccooveeveniniiiniinieiiiiienceteeeeeene 18
3. HOW tO TUN the PrOZIAM ...c.uviiiiiieiiie ettt ettt ee et e e et e e st e e esbbeessbeeessbeessseeessseessseeesssenans 20

Documentation of LabVIEW program 2



1. Explanation of main functions

1.1 Project 1: Voltage estimation - ModeleGlobal_EvalV.lvproj

1.1.1 Overview of the main function of the project

The purpose of this project is to evaluate the voltage at a time t.

T

I

r MainGlobal.vi
stat,dyn

Ystack

Inputs:
T the aging time in hours (array)
I the current (array corresponding to T)
I'stat,ayn €Xponential parameters (fitting of static and dynamic parameters)
Ystack  stack characteristics (active area and number of cells)

Output:
\% voltage (array corresponding to T)
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1.1.2 Use of the main VI of the project

Here is the Front panel of MainGlobal.vi:

— T (h) | Sl'mulatl'o ﬂ. tl'me V(t)

| Initial Time (s)  Min Step Size () Initial Step Size :r|g ﬂ ;|0 |]- |0

[ [o | o | o | : ‘ n

| i({] signal v

| Final Time (s)  Max Step size (s) Relative Tolerance e T ————
¥ o o o— 5 [P—

| NISIE 0 0 0 0
Stackparam Inputparam i ; 7

| size nbcell | Tau D | = (1 - - -
o | — l; Co— C— (B e T T T
[I_]ﬁl_e name [T]_fﬂe_na_rn_e 11 ;)arameters

| Rotioe |] || Ttott |] | Time T(h)

L ¢ | -

| (L
Exp Param file name |

prat rParameters
L e

by bOc Lcon
o | I | o | o

ErrorIn Error Qut ||| Rm j0e kOc

| status code | status code |0 | |0 | |0 |
| - 40 | ! 40 || ba iLc Cdca

source | source | |0 | |0 | |0 |
0 i pi0a j00c Cdec

lo | lo | o |

Control elements in this front panel are:

- Simulation configuration: It is a cluster of numeric controls that will configure the
control and simulation loop. User can add other parameters and wire them to the loop.

- Stack param: 1t is a cluster of numeric controls that corresponds to Ystack values.

- Input param: 1t is a cluster that contains two numeric controls; Tau is the time
constant of the low-pass filter and D is the gap from t, that will be initially fixed at 0.022 (can
be changed).

- [1] file name: It is a string control of the text file name that contains I array data. The
array should be stored in the form of a column vector

- [T] file name: 1t is a string control of the text file name that contains T array data.
This array should also be stored in the form of a column vector and its number of rows should
be equal to the number of rows of 1.
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- Exp Param file name: 1t is a string control of the text file name that contains I dyn
(exponential parameters). The storage should be in the following order (from the 1* row to the
last one): I'ro

l—‘Rm

l_‘ba

Ljoa

l—‘bc

Ljoc

Ljie

I'j00c

I'boc

l_‘k0c

l—‘Cdca

l—‘Cdcc

IﬂLcon
Amplitudes should be in the first column and damping in the second.
These parameters are already stored by the third project UpdatingProcedure.lvproj.

In this front panel, indicator elements are the following:

- T (h): It is a numeric indicator that shows the variation of the aging time T through
the simulation.

- I(#): Tt is a numeric indicator that shows the variation of the current I through the
simulation.

- simulation time: It's a numeric indicator that shows the variation of the simulation
time generated by the control and simulation loop.

- V(¥): 1t is a numeric indicator that shows the variation of the voltage V though the
simulation.

- signal V: It is a cluster of two array indicators; Time shows the simulation time array
and V shows the voltage V. These results are displayed at the end of the simulation.

- parameters: It is a cluster of numeric indicators that show, through the simulation,
the variation of the time 7 (&) and the parameters values at this time.
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1.2 Project 2: Polarization estimation - EvalPola.lvproj
1.2.1 Overview of the main function of the project

The aim of this project is to estimate a polarization curve.

[
0 Main.vi e\
stat  s—
Inputs:
I current in the form of array data

Ot static parameters (one could use the results of the third project)

Output:
\% array of voltage values

1.2.2 1.1.2 Use of the main VI of the project

The front panel of Main.vi:

Static Param Ipola Upola
- - — —
B0 r Ello 0 Ele IE
0 | |o | 0 0
0 a
JUE] ba ] 0
0 | o | ; :
i] 0
j0c bc L ” 0
0 | fo | o :
. 4 Jue—— -
ErrorIn Error Out
status code status code
® ® B
source source
e -~
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In this front panel there are two control elements:

- Static Param: 1t is a cluster of numeric controls. It corresponds to Oy,¢ values. The
user could use the exponential parameters I's,¢ obtained by the third project
UpdatingProcedure.lvproj.

- Ipola: 1t is an array control that correspond to the current I. This array could be
changed into an indicator and wired to a spreadsheet file.

There is one indicator element:

- Upola: 1t’s an array indicator that corresponds to the voltage V.
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1.3 Project 3: Updating procedure UpdatingProcedure.lvproj

1.3.1 Overview of the main function of the project

Firstly, this project fits the static model to an experimental polarization curve in order to
obtain the best option for the static parameters. When the number of polarization curves fitted
is up to three, this project is able to give the parameters of the exponential functions for each

parameter.
t
estat
Pola Main.vi
Vetack rstat,dyn
stac
Inputs:
t time
Pola pola data at time t
Ystack stack characteristics (number of cells and active area)
Outputs:
Ogtat static parameters at time t

I'statayn  €Xponential parameters of static and dynamic parameters fitting

1.3.2 Use of the main VI of the project

Here is an overview of the front panel of Main.vi

size nbcell Time
0 o ] lo
active area number of cells

Pola file name

| | DonneesPola\PolaTd. bt

best fit parameters exponential parameters
| exp param ba
E0 Il r
1l o 11 54 (O R C—
j0a | exp param j0c
lo | [.;. 0 0 ]
ba
1 | exp param bc
Lo |
[ | 0 0 0
e ' [ ]
| (o L -
|7 parameters are fitted if at least 3
C Ik
N polarization curves are fitted
| jLc
L
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The control elements that the user would have to enter are the following:

- Input parameters: It is a cluster of numeric controls of stack characteristics Ystack and
time t.

- [1]: 1t is a one dimension array control that the user has to fill with the current values
that the system were stabilized during the polarization curve.

- Pola file name: 1t is a string control of the text file name that contains Pola data at
time t.
The user could see the results in the following indicators:

- best fit parameters: It shows the values of Oy¢ at time t in a cluster of numeric
indicators.

- exponential parameters: it 1s a cluster of array indicators that shows I'pa, I'joc and I'pe.
The first element of the array would be the amplitude and the second would be the damping.
The user would get to see it only after the third polarization curve fitting.
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1.4 Project 4: RUL estimation ModeleGlobal_EvalV.Ivproj

1.4.1 Overview of the main function of the project

This project is a replicate of the second one that will give the time at which the threshold for
the RUL is hit. This threshold is defined as 0.6 V/cell at 35A.

SC
o t-1
[stat,dyn Main.vi .
Vstack
Inputs:
SC simulation configuration
Istatayn  €xponential parameters of static and dynamic parameters fitting
Ystack stack characteristics (number of cells and active area)
Outputs:
t-1 last time with the voltage higher than the threshold
t first time with the voltage lower than the threshold

1.4.2 Use of the main VI of the project

Here is an overview of the front panel of Main.vi

Simulation configuration

Initial Time (s)  Min Step Size (s) Initial Step Size
| o | ¢ | [ |

Threshold
| Final Time () Max Step size (s) Relative Tolerance

T
10 |2 | It \ ”—1

§tack param
I size nbcell El ,t_
| [200 | [46 | o |] o |

Exp Param file name

| [\prodt H

Error Out

ErrorIn [ status code
status code ’/‘ A
,/' 0 source

7

| source ‘ oo
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The control elements that the user would have to enter are the following:

- Simulation configuration: It is a cluster of numeric controls if the time for the
simulation.

- Stack Param: 1t is a cluster of numeric controls for the values of the stack
characteristics Ystack -

- Exp Param file name: 1t is a cluster string control of the text file name that contains

the exponential parameters I'stat,ayn.

- Pola file name: 1t is a string control of the text file name that contains Pola data at
time t.
The user could see the results in the following indicators:

- Threshold: 1t shows the values of the threshold.

- t-1: Tt shows the values of the last time at which the threshold was not hit.

- t: It shows the values of the first time at which the threshold was hit.

The RUL will be a time between the #-/ and the ¢.
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2. Detailed explanation of the projects

2.1 Project 1 - ModeleGlobal_EvalV.Ivproj

2.1.1 Overview of the Project Explorer

=3 Eﬁ. Project: ModeleGlobal_EvalV.lvproj
= B My Computer
=+ SubSystems
AnalyticalFunction.vi
Anodewvi
ArrayData.vi
Cathodewi
CurrentDecomposition.vi
DeMormalizing.vi
DynamichModelvi
ExpFeonovi
ModeleDynamiquevi
Mormalization.vi
PararmFcn.vi
ProduitMatVect.vi
ProduitVectLignCol.vi
ROcEstFun.vi
RtaEstFun.vi
RtcEstFun.vi
SimulationExp.vi
StaticAnalyticModel vi
SystElectrodenvi
SystElectrode?_wvi
SystElectrode_2.vi
TaulcEstFun.vi
YoltageRecomposing.wvi
Warburg2RCwvi
- |ml, MainGlobalwvi
G+ %' Dependencies
+i: Build Specifications

0 R
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2.1.2 Structure and functioning of MainGlobal.vi

Here is the block diagram of the VI:

Error In
Simulation configuration ||E

Input param

Control & Simulation Loop

Simulation Time simulation time

Stack param 0.022 Eﬁj
[1]file name
pT @ Data.vi @
pRm . o= B
pba
pi0a [ T]file name A

pbc =3 Data.vi 3
pilc o gy
piLc oo
pi00c

phOc \

pkOc EI:pParam file name ArrayData.vi
pCdca Abd """"‘““‘“““‘“““““‘-
pCdece g

plcon

SimulationExp.vi

Bl Input param

W Stack param
Indexer 2

T(h)

v signal Uy

Time / parameterzHﬂ' =

Error Out
[ Error fpe=t]

signal V
(55|

As we can see in the figure above, MainGlobal.vi contains a control and simulation loop. All
others *.vi files are simulation subsystems.

The functioning of this VI and its sub VIs is the following:

MainGlobal.vi

SimulationExp.vi

This VI estimates the voltage
values.

(File is detailed below)

ParamFcn.vi

In this VI, we give parameters
value 6 using their exponential
parameters / and current time

value .

O=1I;*exp(I> *1)
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2.1.3 Detailed explanation of sub VI SimulationExp.vi
In this project, SimulationExp.vi follows the physics based behavioural model.

Physics based behavioural model:

Static U
/' Model oc
—-—-| Mormalization H Decomposition * Recomposing De normalizing l_'
o Dynamic Use
Model
Overview of SimulationExp.vi:
e AIIDG
Collector 3
FEeEH signal jJAC
paamep || e
[ [ StaticAnalyticModel.vi
Stack Normalization.vi CurrentDecompositign.vi EJ VoltageRecomposingai DeNormaIlzmgL.lw e onall
[ D&jmicl\nodel.vi -------

ing time in seconds
Tv
T

@ 3600 1% Aging time
Analogy:
Normalization Normalization.vi
CurrentDecomposition.vi
Static Model StaticAnalyticModel.vi

Dynamic Model DynamicModel.vi
VoltageRecomposing.vi

DeNormalizing.vi

ORORROROR O

De normalizing
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2.2 Project 2 - EvalPola.lvproj

2.2.1 Overview of the Project Explorer

2 [kl Project: Eval_Pola.vproj
2 W My Computer
= [ SubVI
. L.jml PolaEstFun.vi

Eﬂ, Main.wi
' Dependencies
- @ Build Specifications

2.2.2 Structure and functioning of Main.vi

Main.vi

PolaEstFun.vi

It receives Ipola and Static
parameters as inputs and
returns Upola.

It represents the static model
function in order to estimate the
voltage values under the current
solicitation set as input.
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2.3 Project 3 - UpdatingProcedure.lvproj

2.3.1 Overview of the Project Explorer

= &l Project: UpdatingProcedure lvproj
= B My Computer
EID Sousl
=[] SousVi
|gﬂ. Ancde.wvi
|;ﬂ. CalculTensionEtai
|;i1, Cathodewvi
|;i1, InitialisaticnAnodigued v
- [l InitialisationCathodigue.vi
- |mgl, InitialisationDeR.vi
- [l InitialisationNonDiff.vi
|;ﬂ. LoadPola.vi
- [l MonDiffvi
- [, MonLinFit.vi
|gﬂ. PolaModelFunction.vi
|gﬂ. RtabModelFunction.wvi
|;ﬂ. ReadArrayData.vi
|;i1, Ustack.vi
|gﬂ. LinspacePola.vi
|gﬂ. RtaEstFun.vi
|gﬂ. RtcEstFun.vi
|;ﬂ. PolaEstFun.vi
|;i1, etaFunction.vi
|;i1, PolaSimuleewvi
- [l InitialisationCathodique2 vi
|gﬂ. etaModelFunction2.vi
- [l Cathode2.wi
|;i1, WriteSpreadsheetData.vi
|;i1, ReadParam5.vi
|gﬂ. Prm5Stt.vi
- [l PrmExptet.vi
|gil, InitialisationTotaleSwvi
|;ﬂ, InitializationTotale52 v
|;i1, ParametresRegroupes.vi
|gi1, Statique.wvi
|gi1, ParamFitting5tat.vi
|gi1, FetFitExpoStatiquei
- [l Timelnitvi
- |l Affichagel.vi
|gi1, Main.vi
EEI-_';_:,_" Dependencies
+% Build Specifications
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2.3.2 Structure and functioning of Main.vi

Main.vi

ParamFittingStat.vi

Timelnit.vi

Statique.vi

This VI checks
whether the time ¢
received as input is
less, equal or greater
than the time
corresponding to the
previous fitting.

If it's greater, a new
fitting is done. Ifit's
equal, the last results
are kept. If it's less,
then a new procedure
of fitting is started at
this time # (so all

previous results are
deleted).

Finally, its returns
the index of the
current time: 0, n or
nt+1; where #n is the
previous time's
index.

If we are using the
first pola data (at an
initial time 7)), we
will execute sub VI
InitialisationTotaleS
Vi

Else, we will execute
sub VI
InitialisationTotaleS
2.Vi

The difference
between both Vls is
that the first uses
standard starting
point for the new
fitting; whereas the
second one uses
previously fitted
parameters for
starting the
regression of the new
fitting.

New results are
saved in a new file.

(File is detailed
below)

ParametresRegroupes.vi
|

Values of each
parameter are read
and assembled in an
array, from initial to
final time.

FctFitExpoStatique.vi

First we check if at
least three fittings are
done (corresponding
to three different pola
data).

If so, we do an
exponential fitting of
each parameter and
return exponential
parameters.

These parameters are
saved in a new file.

Else, nothing is done.
The indicators of
these parameters
remain empty.
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2.3.3 Detailed explanation of sub VI Statique.vi

Statique.vi

If we are using the first pola data (at an initial time #)),

InitialisationTotaleS.vi

NonDiff.vi

Anode.vi

Cathode.vi

LoadPola.vi reads pola data
and returns current /pola and
voltage Upola values. It uses
stack characteristics and
current array that we give as
input for polarization.

InitialisationDeR.vi reads
exponential parameters of Rm
and returns 7 at time t.

InitialisationNonDiff.vi does
a non-linear curve fitting of
Upola using initially fixed
parameters and returns best
fitting for i0, b and iL. The
model equation to fit Upola is
coded in
PolaModelFunction.vi. For
the fitting, we use the sub VI
NonLinFit.vi, based on
Levenberg-Marquardt model.

In this VI, we read Rta
exponential parameters and
then return Rta at t.

In InitialisationAnodique2.vi
we do a non-linear curve
fitting of Rta with initially
fixed parameters and return
the best fitting for ha. Again,
we use NonLinFit.vi. And the
model equation for this fitting
is coded in
RtaModelFunction.vi.

Using parameters returned by
NonDiff.vi and Anode.vi,
CalculeTensionEta.vi returns
a voltage Eta.

Then
InitialisationCathodique.vi
does a non-linear curve fitting
of Eta with initially fixed
parameters and returns the
best fitting for jOc, fbc and
jLc. Again, we use
NonLinFit.vi.
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Statique.vi

InitialisationTotaleS2.vi

NonDiff.vi

In this case, we execute
LoadPola.vi,
InitialisationDeR.vi and
InitialisationNonDiff.vi in
the same order. The
previously fitted values of i0,
b and iL are used as starting
points.

Else (we are not doing the first polarization)

Anode.vi

In the same way, here we will
first read Rta and return it.
Then in
InitialisationAnodique2 we
will put last fitting parameters
as input and return new ones.

Cathode2.vi

Parameters results obtained
by NonDiff.vi and Anode.vi
are imported and create a
voltage Eta.

InitialisationCathodique2.vi
will do a non-linear curve
fitting of Eta with the
parameters jOc, bc and jLc
obtained by the previous
fitting and will return the best
fitting for jOc, fbc. As for jLc,
it will remain the same for
next fittings. The model
equation for this fitting in in
etaModelFunction2.vi
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2.4 Project 4: RUL estimation ModeleGlobal EvalV.lvproj

2.4.1 Overview of the Project Explorer

= &l Project ModeleGlobal_EvalV lvproj
= W My Computer
S G SubSystems
--u AnalyticalFunctionana

=
=
=]
(=9
g

ArrayData.vi
Cathodewi
Condition.w
CurrentDecompositionaa
DeMommalizimg.vi
Dynamichodel.vi
Eval v

ExpFon.vi
ModeleDynamiguevi
MNomalization i
ParamFcna
ProduitMatVect.vi
ProduitVectLignCol.vi
ROcEstFun.an
FtaEstFun.vi
RitcEstFun.vi
SimulationExp i
StaticAnalyticModel.w
SystElectrodeni
systElectroded vi
SystElectrode 2w

] TabCreateon

- e TauODcEstFun.vi

- el VoltageRecomposing.vi
L ml Warburg2RC vi

N

)
4 %2 Dependencies
_"# Build Specifications

2.4.2 Structure and functioning of MainGlobal.vi

Here is the block diagram of the VI:

pED
pRm
pba
pi0a Stack param

Threshold
b} i
pbe EvalVyi | Conditionvi £ :
pidc | ExpParam file name [EEcl- = 11 &’ )| ::-EI Error Out
g;;; : Error In [T f—— iS5 ])
pbOc
pkOc

pCdca)
pCdec|

pleon ’—

Simulation configuration [ek= -
|_ Initial Time (5 |
b | Min Step Size () ———

Final Time (s

TabCreatevi

-
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As we can see in the figure above, MainGlobal.vi contains a copy of the project 1 and a condition.

MainGlobal.vi
TabCreate.vi EvalV.vi Condition.vi
. If the voltage is lower
With the description of C.O py of the Project one. than the threshold, the
. . Simulate the global ;
the simulation values of the previous
model under a 35A

configuration a vector of
all the time points that
will be simulated is
created.

solicitation with the
exponential parameters
extracted from the file
given.

and the considered time
1s given.

Else, we continue
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3. How to run the program

To run one of the projects:

> go to the main directory

> open the project's folder

> open the project by selecting *.lvproj file

> In the Project Explorer, the main VI is always stored in My Computer and the others
are in virtual folders.

> enter all controls' values in the main VI's Front Panel

> run the program

-All text files names could be paths, starting from current VI path.
-Spreadsheet data is always saved in *.txt files and each values are delimited by fab character
or enter character.
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