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Nomenclature

𝜂ե Voltage drop at the anode [𝑉]
𝜂խ Voltage drop at the cathode [𝑉]
𝜏֛խ Time constante of the diffusion convecƟon impedance [𝑠]
𝑏ե Tafel anode parameter [𝑉−џ]
𝑏խ Tafel cathode parameter [𝑉−џ]
𝑏֛խ Parameter of the variaƟon law of 𝑅֛խ [𝑉−џ]
𝐶ձխե Double layer capacity at the anode [𝐹/𝑐𝑚ӝ]
𝐶ձխխ Double layer capacity at the cathode [𝐹/𝑐𝑚ӝ]
𝐸֙ Nernst PotenƟal [𝑉]
𝑖 Number of EIS realized at each characterizaƟons
𝑗աե Exchange current density at the anode [ 𝐴/𝑐𝑚ӝ]
𝑗ախ Exchange current density at the cathode [ 𝐴/𝑐𝑚ӝ]
𝑗ա֛խ Parameter of the variaƟon law of 𝑅֛խ [𝐴/𝑐𝑚ӝ]
𝐽գի Dynamic current density [𝐴/𝑐𝑚ӝ]
𝐽կի StaƟc current density [𝐴/𝑐𝑚ӝ]
𝑗֏խ Limit current density at the cathode [𝐴/𝑐𝑚ӝ]
𝑘 Number of characterizaƟons
𝑘֛խ Parameter of the variaƟon law of 𝜏֛խ [𝐴.𝑠/𝑐𝑚ӝ]
𝐿 Connectors’ inductance [𝐻.𝑐𝑚ӝ]
𝑅֕ Internal resistance [𝛺.𝑐𝑚ӝ]
𝑅֛խ Module of the diffusion convecƟon impedance [𝛺.𝑐𝑚ӝ]
𝑅ֱե Transfert resistance at the anode [𝛺.𝑐𝑚ӝ]
𝑅ֱխ Transfert resistance at the cathode [𝛺.𝑐𝑚ӝ]
𝑈 Stack Voltage [𝑉 ]
𝑈գի Dynamic stack Voltage normalised per cell [𝑉 ]
𝑈կի StaƟc stack Voltage normalised per cell [𝑉 ]
𝑈֙ Stack voltage normalized per cell [𝑉 ]
𝑊֛խ Diffusion convecƟon impedance [𝛺.𝑐𝑚ӝ]

1 IntroducƟon
In the frame of the SAPPHIRE project, a prognosƟcs approach for PEMFC has to be developed.
For that purpose, a behavioral model able to predict is described in this deliverable. It is based
on an instantaneous behavioral model presented in [1] which present two main issues for the
aim: the lack of ageing and the high number of parameter. This deliverable is composed of
a quick descripƟon of the model used with a highlight of its limitaƟons and the way they are
overcome. In order to face the first issue, the high number of parameters, a sensiƟvity analysis
is realized and described, in order to evaluate which parameters have big influences and then
focus our aƩenƟon on them. For the second issue,and with the results obtained thanks to the
sensiƟvity analysis, the parameters are expressed with a Ɵme dependent funcƟon. Finally, this
deliverable develops the progress from a simple instantaneous behavioral model to a model
able to predict the behavior of the stack.
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2 Model without ageing

2.1 PresentaƟon of the model
In order to develop a model-based prognosƟcs an efficient mean of reproducƟon of the behav-
ior of the fuel cell is needed. To face this necessity, a model is presented here. It is composed
of a staƟc and dynamic part, as it can be seen on figure 1.

The input of this model is the current which is normalized as current density to be decom-
posed in alternaƟve and conƟnuous parts. These two current densiƟes are the input of the
staƟc and dynamic models. The output of these models are recomposed in voltage per cell to
finally be denormalized in voltage.

Figure 1: Scheme of the model

The aim of the dynamic part of the model is to link voltage variaƟons with the current vari-
aƟon around a staƟc operaƟng point. This part of the model is based on an electrical equiva-
lency. Indeed, the physical phenomena are represented by an impedance (Figure 2).

Figure 2: Electrical equivalency impedance of the dynamic model

The Warburg 𝑊֛խ is defined by its module 𝑅֛խ and its Ɵme constant 𝜏֛խ which are finally
defined thanks to sub parameters (also regressed on a later step).

𝑅֛խ = 1
⎛⎜
⎝

𝑏֛խ.2.𝑗ա֛խ.ཟ೐ ևմք֬
ӝѵ։բ֜ծ

೑
ӝ + 1⎞⎟

⎠

(1)

𝜏֛խ = 𝑘֛խ
𝐽ճփ֫

(2)
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The staƟc part of the model is based on a development of the Butler Volmer law with a
difference made between the electrodes (eq. (3)) :

𝑈կի = 𝐸֙ − 𝑅֕ ⋅ 𝐽կի − 1
𝑏ե

⋅ 𝑎𝑠𝑖𝑛ℎ೼ 𝐽կի
2 ⋅ 𝑗աե

೽ − 1
𝑏խ

⋅ 𝑎𝑠𝑖𝑛ℎ⎛⎜
⎝

𝐽կի
2 ⋅ 𝑗ախ ⋅ ೐1 − ևհլ

։֐ծ
೑

⎞⎟
⎠

(3)

The parameters of the model are updated at each characterizaƟon phase thanks to experi-
mental data: polarizaƟon curves and Electrochemical Impedance Spectroscopy. For the whole
descripƟon of the parameter’s updaƟng process, please refer to complete descripƟon of the
model [1].

The data used are based on experiments. A 5 cells stack of 100 square cenƟmeters of acƟve
area is experimented with a ripple current of 70 A more or less 10% at a 5𝑘𝐻𝑧 frequency. The
experiment is a long term test that lasted around one thousand hours. Some measures as
current and voltage are monitored during the whole experiment. Each week, an experimental
characterizaƟon is realized, which is composed of polarizaƟon curves (current - voltage curves)
and Electrochemical Impedance Spectroscopies (EIS) at three DC current values.

The model developed is really saƟsfactory instantaneously (Figure3), indeed, it presents a
good reproducƟon of the behavior during short amount of Ɵme, here around 200𝑠.
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Figure 3: EvoluƟon of the simulated voltage versus to the experimental one under the same
solicitaƟon

2.2 Discussion
2.2.1 Number of parameter

The global model has finally 13 parameters (Table 1) (as 𝑅ֱե and 𝑅ֱխ are expressed thanks to 𝑏ե,
𝑏խ, 𝑗աե, 𝑗ախ and 𝑗֏խ).
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Parameter Significance Unit
𝑏ե Tafel anode parameter [𝑉−џ]
𝑏խ Tafel cathode parameter [𝑉−џ]
𝐸֙ Nernst PotenƟal [𝑉]
𝑗աե Exchange current density at the anode [ 𝐴/𝑐𝑚ӝ]
𝑗ախ Exchange current density at the cathode [ 𝐴/𝑐𝑚ӝ]
𝑗֏խ Limit current density at the cathode [𝐴/𝑐𝑚ӝ]
𝑗ա֛խ Parameter of the variaƟon law of 𝑅֛խ [𝐴/𝑐𝑚ӝ]
𝑘֛խ Parameter of the variaƟon law of 𝜏֛խ [𝐴.𝑠/𝑐𝑚ӝ]
𝑏֛խ Parameter of the variaƟon law of 𝑅֛խ [𝑉−џ]
𝐶ձխե Double layer capacity at the anode [𝐹/𝑐𝑚ӝ]
𝐶ձխխ Double layer capacity at the cathode [𝐹/𝑐𝑚ӝ]

𝐿 Connectors’ inductance [𝐻.𝑐𝑚ӝ]
𝑅֕ Internal resistance [𝛺.𝑐𝑚ӝ]

Table 1: Parameters in the global model

As explained in [1], the different parts of the model are regressed on experimental data in
order to obtain parameters values, in the tuning process. As there are numerous parameters,
there are high chances to find local minima. Indeed, the numerical soluƟon to the fiƫng issue
can have no link with the physical sense.

Figure 4: EvoluƟon of 𝐶ձխե’s value obtained at each characterizaƟon with the tuning process

Another aspect of this issue is the fact that, some parameters that do not show a clear
evoluƟonwith the Ɵme as it can be seen on figure 4. It does not allow a smooth inclusion of the
ageing effect on the evoluƟon of the parameter with Ɵme. A crucial point here is the number
of parameters which seems to be too large in relaƟon to the number of data. Numerous local
minima can be hit during the fiƫng process.

In order to face this issue, a sensiƟvity analysis is realized. It will allow to detect influenƟal
parameters with which extra cauƟon will have to be taken.
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2.2.2 Ageing

The model is instantaneously saƟsfactory, but since there is no evoluƟon of the model with
the Ɵme, the only means of evolving the model is to have a characterizaƟon phase and realize
an updaƟng procedure. Indeed, as it can be seen on figure 5, the simulated voltage does not
match the experimental one. During these 1000 hours, the stack degraded, so its response to
the same current solicitaƟon evolve with the Ɵme: an ageing model is needed. Indeed, the
final need being prognosƟcs, it is necessary to have a predicƟon of the stack’s behavior. For
that, it is necessary to include a Ɵme dependency in the global model. In order to face this
issue, the idea is to define the value of each parameter as a Ɵme dependent funcƟon (fig. 6).
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Figure 5: EvoluƟon of the experimental voltage and simulated one under the same solicitaƟon

Figure 6: Inclusion of the Ɵme in the model

This step seems realizable: as it can be seen on figure 7, some parameters seems to have a
clear evoluƟonwith Ɵme. This figure present the values of𝑅֕ obtained at each characterizaƟon
with the tuning process versus to the Ɵme corresponding to the characterizaƟon.
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Figure 7: EvoluƟon of 𝑅֕’s value obtained at each characterizaƟon with the tuning process

However this step is related to the reliability of the idenƟficaƟon of the parameters and the
avoidance of local minima.

In conclusion, for facing these issues, a sensiƟvity analysis is realized on the staƟc model
that reproduce the polarizaƟon curve, on the dynamic model that can reproduce Nyquist plot
obtained thanks to EIS and on the global model that can reproduce the voltage of the stack
under the same current solicitaƟon. It should allow poinƟng out which parameter has a big
influence or not and compare it with the literature in order to decide if some should represent
ageing or not.

3 Parameters Analysis thanks to ANOVA (ANalysis of VAriance)

3.1 The basics of ANOVA’s calculaƟon
The following presents the basics of the sensiƟvity analysis that has been applied independently
on the three realized in our case (staƟc part, dynamic part and global model). The following
paragraph is presented with a general point of view as it can be applied to any study [2].

Lets 𝑌 be the results of the simulaƟon that has to be studied, 𝑃 the number of parameters
that vary and 𝐴 levels the number of levels for each 𝑝 (parameter).

The experimental plan is realized with all the possible combinaƟons of parameters that give
a result 𝑌 . The total number of experiments is then expressed by :

𝑁 = 𝐴֟ (4)

The mean of all the simulaƟon with 𝑌֙ being the results of the 𝑛ֱց experiment is:

̄𝑌 = 1
𝑁 .

֗
ྎ
֙=ա

𝑌֙ (5)

The total square summaƟon is the basis for all of calculaƟons and is defined with (eq. 6):

𝑆𝐶𝑇 =
֗

ྎ
֙=ա

಺𝑌֙ − ̄𝑌಻ӝ (6)
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3.1.1 Influence of one parameter

In the following the influence of each parameter 𝑝 on its own is calculated.
Let 𝑌֡զ be the result for the parameter 𝑝 at the level 𝑎.

̄𝑌֡զ = ഒ 𝐴
𝑁 ྎ

ե
𝑌֡զഓ − ̄𝑌 (7)

The sum of the difference squared is calculated for each 𝑝:

𝑆𝐶𝐸֡ = 𝑁
𝐴

գ
ྎ
ե=ա

̄𝑌֡զ
ӝ (8)

The influence of one parameter is then:

𝐼𝑛𝑓֡ = 𝑆𝐶𝐸֡
𝑆𝐶𝑇 (9)

The influence can finally be expressed as:

𝐼𝑛𝑓֡ =
֗
գ ∑գ

ե=ա ಺಺ գ
֗ ∑ե 𝑌֡զ಻ − ̄𝑌಻ӝ

∑֗
֙=ա ಺𝑌֙ − ̄𝑌಻ӝ (10)

3.1.2 Interparametric influence of degree two

The details for the calculaƟon of the influence of two parameters combined is given here.
On this second step, let 𝑌֡ѠզѠ

˷֡ӞզӞ
be the result for the parameters 𝑝џ at the level 𝑎џ and 𝑝ӝ

at the level 𝑎ӝ.
The spectral radius, wriƩen 𝑅2 is defined as:

𝑅2֡ѠզѠ
˷֡ӞզӞ

= ⎛⎜
⎝

⎛⎜
⎝

𝐽ӝ

𝑁 ྎ
եџ˷եӝ

𝑌֡ѠզѠ
˷֡ӞզӞ

⎞⎟
⎠

− ̄𝑌 − ̄𝑌֡ѠզѠ
− ̄𝑌֡ӞզӞ

⎞⎟
⎠

ӝ
(11)

The sum of the difference squared is calculated for each couple of parameters 𝑝џ, 𝑝ӝ :

𝑆𝐶𝐸֡Ѡ˷֡Ӟ = 𝑁
𝐴ӝ

գ
ྎ
եӞ=ա
զѠ=բ

𝑅2֡ѠզѠ
˷֡ӞզӞ

(12)

The interparametric influence is then:

𝐼𝑛𝑓֡Ѡ˷֡Ӟ = 𝑆𝐶𝐸֡Ѡ˷֡Ӟ

𝑆𝐶𝑇 (13)
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3.2 Parameters’ sensiƟvity analysis
3.2.1 StaƟc model

For this ANOVA study, the𝑌 taken is the error (MAPE) between the simulated polarizaƟon curve
and the experimental one. This study was realized on each characterizaƟon. The staƟc model
is defined thanks to the parameters:

• 𝑅֕ the resistance;

• 𝐸֙ the Nernst potenƟal;

• 𝑏ե, 𝑏խ the Tafel parameters;

• 𝑗աե, 𝑗ախ the exchange current density;

• 𝑗֏խ the limit current density at the cathode only.

As explained in 3.1 a complete experimental plan is realized with all combinaƟons of pa-
rameters possible. The table 3.2.1 presents the low value of each parameter and its high value,
the number of levels taken being 3, there is one value added in the middle. The lower and
upper bound of the variaƟon for each parameters in the experimental plan is quite realisƟc.

Parameter Minimum Value Maximum Value Unit
𝑅֕ 0.08 0.2 𝛺.𝑐𝑚ӝ

𝐸֙ 0.9 1 𝑉
𝑏ե 20 100 𝑉−џ

𝑏խ 20 100 𝑉−џ

𝑗աե 0.001 1 𝐴/𝑐𝑚ӝ

𝑗ախ 0.001 1 𝐴/𝑐𝑚ӝ

𝑗֏խ 1.001 1.5 𝐴/𝑐𝑚ӝ

Table 2: StaƟc parameters extreme values for the experimental plan

The results for the staƟc model are on figure 8. This figure shows the percentage of influ-
ence of each parameter on the error between the simulaƟon and the experiment. There are
8 bars for each parameters, because the sensiƟvity analysis was realized on the 8 characteri-
zaƟons. The characterizaƟons are numbered by the Ɵme they are happening, the first at Ɵme
0ℎ, the second at Ɵme 35ℎ and the last at 1016ℎ. The results on the eight characterizaƟons
are similar, a convenient point as it shows that the parameters’ influence on the difference
between the simulaƟon and the experiment is not drasƟcally evolving.
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Figure 8: ANOVA’s result for the staƟc model

The parameters with the biggest influence are 𝐸֙, 𝑅֕, 𝑏ե and 𝑏խ that can be easily verified
by the observaƟon of the eq. (3). Indeed, a variaƟon on the values of these parameters has
direct impact on the voltage.

On table 3.2.1, the percentages of influence is given for the first characterizaƟon. It depicts
the influence of one parameter on the diagonal, and the interparametric influence. A point
has to be noted here, the total sum of the influences is low, around 18% (Table 3.2.1). The
interparametric influences have values no higher than 0.1%.

The low value of the total sum could be explained by the range of values taken that is too
short. Indeed the worst polarizaƟon curve given is not really a wrong one giving big error. The
calculaƟons are done between two values, the simulated polarizaƟon curve and the experi-
mental one, finally too close.

This hypothesis can be confirmed by the realizaƟon of the same analysis with variaƟons’
range pushed tomore extreme values. Such simulaƟons give a sum growingwith the increasing
difference between the iniƟal values.

The decision to take realisƟc values for the experimental plan is then bringing issues within
the ANOVA calculaƟon.

Robust prognosƟcs methods and algorithms 12/26
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Influence (%) 𝑏ե 𝑏խ 𝐸֙ 𝑗աե 𝑗ախ 𝑗֏խ 𝑟
𝑏ե 4.69 0.0043 0.014 0.15 0.016 1.9 𝐸−ͳ 0.0059
𝑏խ 5.41 0.016 0.026 0,24 5.59 𝐸−ͳ 0.0082
𝐸֙ 5.3547 0.040 0.038 1.58 𝐸−ͳ 0.0019
𝑗աե 0.11 0.090 7.10 𝐸−ͳ 0.016
𝑗ախ 0.65 0.0016 0.015
𝑗֏խ 0.0038 1.76 𝐸−ͳ

𝑟 2.10

Table 3: Results of the first sensiƟvity analysis of the staƟc part of the model on the first polar-
izaƟon curve

3.2.2 Dynamic model

On this part of the model, the 𝑌 taken is the error (MAPE) between the simulated EIS and the
experiment one at 70𝐴; as this is the solicitaƟon of current during the experiment. This error
is actually decomposed in two part, since the numbers on which it is calculated are complex
impedance. So, there will be two different results for the sensiƟvity analysis of this model’s
part, the error on the real and the error on the imaginary.

The parameters on this model are:

• The Warburg impedance 𝑊֛խ which is decomposed in two impedances, 𝑅֛խ and 𝜏֛խ.

• The double layer capaciƟes 𝐶ձխե and 𝐶ձխխ.

• Two transfer resistances 𝑅ֱե and 𝑅ֱխ.

• The ionic conductance of the membrane is modeled by an equivalent resistance 𝑅֕.

• The inducƟve behavior due to the connectors 𝐿.

The complete experimental plan can be seen on table 3.2.2, one should read it in the same
way of the staƟc experimental plan (3 levels with 2 extreme values and their middle).

Parameter Minimum Value Maximum Value Unit
𝐶խձխե 0.03 0.06 𝐹/𝑐𝑚ӝ

𝐶ձխխ 0.02 0.05 𝐹/𝑐𝑚ӝ

𝑅֛խ 0.05 0.2 𝛺.𝑐𝑚ӝ

𝜏֛խ 0.1 0.6 𝑠
𝐿 0.8E-06 2E-06 𝐻

𝑅֕ 0.08 0.2 𝛺.𝑐𝑚ӝ

𝑅ֱե 0.01 0.6 𝛺.𝑐𝑚ӝ

𝑅ֱխ 0.01 0.4 𝛺.𝑐𝑚ӝ

Table 4: Dynamic parameters extreme values for the experimental plan
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The results of the sensiƟvity analysis for the dynamic model are on figure 9. There are two
figures as the sensiƟvity analysis is done on the imaginary and on the real part of the Nyquist
plot. Indeed, the solicitaƟon here is the frequency and permits to obtain the impedance ex-
pressed in a form of a complex number. These results can be seen in the figure 9, as one can
see, the two parts present a complementary aspect on someparameter’s influence. So the sum
of the two influences have been realized, and is counted as a proporƟon face to two hundred.

Figure 9: ANOVA’s result for the dynamic real and imaginary part

The parameters with the biggest influence can be seen on figure 10. The sum here of all the
influences and inter parametric influences is close to 100% for the two part of the impedance
(Table 3.2.2 and 3.2.2).

Inf.
(%) 𝐶ձխե 𝐶ձխխ 𝑅֛խ 𝑇𝑎𝑢֛խ 𝐿 𝑅֕ 𝑅ֱե 𝑅ֱխ

𝐶ձխե 1.10 1.76 𝐸−ͯ 4.40 𝐸−ҽ 1.83 𝐸−ҽ 5.67 𝐸−ӝЁ 9.04 𝐸−ͳ 0.0061 8.20 𝐸−ͯ

𝐶ձխխ 1.45 3.22 𝐸−ͯ 1.50 𝐸−ͯ 3.81 𝐸−ӝЁ 0.0038 7.32 𝐸−ͯ 0.075
𝑅֛խ 0.35 3.16 𝐸−ͳ 4.66 𝐸−ӝЁ 4.42 𝐸−ͯ 5.67 𝐸−ͳ 9 𝐸−ͯ

𝑇𝑎𝑢֛խ 0.1189 1.85 𝐸−ӝҽ 2.26 𝐸−ͯ 1.82 𝐸−ͳ 1.81 𝐸−ͯ

𝐿 3.27 𝐸−ӝҽ 5.20 𝐸−ӝЁ 5.45 𝐸−ӝЁ 2.56 𝐸−ӝЁ

𝑅֕ 42.1 0.0028 0.0064
𝑅ֱե 31.0 0.014
𝑅ֱխ 18.5

Table 5: Influences of parameters on the real part of the dynamic model on the first character-
izaƟon
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Inf.
(%) 𝐶ձխե 𝐶ձխխ 𝑅֛խ 𝑇𝑎𝑢֛խ 𝐿 𝑅֕ 𝑅ֱե 𝑅ֱխ

𝐶ձխե 0.71 5.49 𝐸−ͯ 5.30 𝐸−ҿ 2.82 𝐸−ҿ 4.75 𝐸−ͯ 4.40 𝐸−ӝͅ 0.0075 2.35 𝐸−ͳ

𝐶ձխխ 0.42 5.60 𝐸−ͳ 1.46 𝐸−ͯ 1.35 𝐸−ͳ 5.69 𝐸−ӝͅ 2.7 𝐸−ͳ 0.0025
𝑅֛խ 21.2 0.028 2.67 𝐸−ҽ 5.20 𝐸−ӝͅ 2.99 𝐸−ͳ 0.0023
𝑇𝑎𝑢֛խ 12.0 1.37 𝐸−ҽ 6.34 𝐸−ӝͅ 6.54 𝐸−ͯ 1.62 𝐸−ͳ

𝐿 0.0017 5.50 𝐸−ӝͅ 2.11 𝐸−ͯ 5.07 𝐸−ͯ

𝑅֕ 3.97 𝐸−ӝҿ 5.26 𝐸−ӝͅ 4.74 𝐸−ӝͅ

𝑅ֱե 44.7 0.0090
𝑅ֱխ 15.60

Table 6: Influences of parameters on the imaginary part of the dynamic model on the first
characterizaƟon

Figure 10: ANOVA’s result for the staƟc model

3.2.3 Global model

The global model present links between some dynamic and staƟc parameters as exposed in
2.1. The parameters on the global model are:

• 𝑅֕ the resistance;

• 𝐸֙ the Nernst potenƟal;

• 𝑏ե, 𝑏խ the Tafel parameters;

• 𝑗աե, 𝑗ախ the exchange current density;

• 𝑗֏խ the limit current density at the cathode only;

• The double layer capaciƟes 𝐶ձխե and 𝐶ձխխ;
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• The inducƟve behavior due to the connectors 𝐿;

• 𝑗ա֛խ and 𝑏֛խ that are sub-parameters of 𝑅֛խ;

• 𝑘֛խ, sub-parameter of 𝜏֛խ.

There are here some dynamic parameters that are not present. As explained earlier, this
can be explained by their decomposiƟon in under parameters.

The experimental plan realized is supposed to be read like the two previous.

Parameter Minimum Value Maximum Value Unit
𝐸֙ 0.9 1 𝑉
𝑏ե 20 100 𝑉−џ

𝑏խ 20 100 𝑉−џ

𝑗աե 0.001 1 𝐴/𝑐𝑚ӝ

𝑗ախ 0.001 1 𝐴/𝑐𝑚ӝ

𝑗֏խ 1.001 1.5 𝐴/𝑐𝑚ӝ

𝑅֕ 0.08 0.2 𝛺.𝑐𝑚ӝ

𝐶խձխե 0.03 0.06 𝐹/𝑐𝑚ӝ

𝐶ձխխ 0.02 0.05 𝐹/𝑐𝑚ӝ

𝐿 0.8E-06 2E-06 𝐻
𝑗ա֛խ 0.01 0.5 𝐴/𝑐𝑚ӝ

𝑏֛խ 10 30 𝑉−џ

𝑘֛խ 0.01 0.5 𝐴.𝑠/𝑐𝑚ӝ

Table 7: Global model parameters extreme values for the experimental plan

The value taken for the ANOVA study is the mean of the difference taken between the ex-
perimental and simulaƟon evoluƟon during around 100𝑠. These 100𝑠 are chosen in the exper-
iment as they present a solicitaƟon evolving. There was 6 part of the experiment that met the
previous requirement (i.e. around 100𝑠 and evolving solicitaƟon), all around a characterizaƟon.
The sensiƟvity analysis was then realized on those 6 parts.
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Figure 11: ANOVA’s result for the global model
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Inf
(%) 𝑏ե 𝑏խ 𝐸֙ 𝑗աե 𝑗ախ 𝑗֏խ 𝑅֕ 𝐶ձխե 𝐶ձխխ L 𝑗ա֛խ 𝑏֛խ 𝑘֛խ

𝑏ե 1.38 7.3
𝐸−ӗ

1.6
𝐸−ӝ

7.7
𝐸−ӝ

2.9
𝐸−ӝ

8.1
𝐸−ͯ

9.8
𝐸−ӗ

3.31
𝐸−ҿ

4.6
𝐸−ҿ

1.8
𝐸−ӝҿ

7.6
𝐸−ͯ

2.7
𝐸−ͯ

4.2
𝐸−ͯ

𝑏խ 1.67 1.7
𝐸−ӝ

3.6
𝐸−ӝ 0.14 6

𝐸−ͯ
1
𝐸−ӝ

1.8
𝐸−ҿ

4.2
𝐸−ҿ

2
𝐸−ӝҿ

6.8
𝐸−ͯ

2.5
𝐸−ͯ

4.5
𝐸−ͯ

𝐸֙ 10.6 3.1
𝐸−ӝ

3.2
𝐸−ӝ

5.3
𝐸−ҿ

4.9
𝐸−ͳ

7.9
𝐸−ҽ

5.3
𝐸−ҿ

1.9
𝐸−ӝҿ

8.5
𝐸−ҿ

7.2
𝐸−ҿ

2.2
𝐸−ͯ

𝑗աե 2.12 0.11 1.6
𝐸−ͳ

1.8
𝐸−ӝ

3.9
𝐸−ͯ

6.9
𝐸−ͯ

2.3
𝐸−ӝҿ

4.5
𝐸−ͳ

9.8
𝐸−ͯ

3.2
𝐸−ͳ

𝑗ախ 1.32 6.8
𝐸−ͳ

1.9
𝐸−ӝ

2.5
𝐸−ͯ

1.8
𝐸−ͯ

2.2
𝐸−ӝҿ

3.2
𝐸−ͳ

6.9
𝐸−ͯ

2.1
𝐸−ͳ

𝑗֏խ
1.1
𝐸−ӝ

5
𝐸−ҿ

1.7
𝐸−ͅ

4.2
𝐸−Ё

2
𝐸−ӝҿ

7.5
𝐸−ҽ

4.5
𝐸−ͅ

1.5
𝐸−ҽ

𝑅֕ 5.62 9.2
𝐸−ͅ

1.4
𝐸−ҿ

2
𝐸−ӝҿ

1.6
𝐸−ͳ

1.5
𝐸−ͯ

8.4
𝐸−ͯ

𝐶ձխե
4.84
𝐸−ͯ

1.6
𝐸−ҽ

2.1
𝐸−ӝҿ

8.3
𝐸−ͅ

2.6
𝐸−ͅ

2.4
𝐸−ҽ

𝐶ձխխ
5.49
𝐸−ͳ

2.21
𝐸−ӝҿ

1.7
𝐸−ҽ

8.9
𝐸−ҽ

2.18
𝐸−ҿ

L 1.55
𝐸−ӝͳ

2.2
𝐸−ӝҿ

2.07
𝐸−ӝҿ

2.14
𝐸−ӝҿ

𝑗ա֛խ 0.16 1.3
𝐸−ͯ

1.06
𝐸−ͳ

𝑏֛խ
5.3
𝐸−ӗ

1.58
𝐸−ͯ

𝑘֛խ
7.6
𝐸−ӝ

Table 8: SensiƟvity analysis results in percentage for the global model around the second char-
acterizaƟon

The figure 11 present the results on these 6 porƟons. The parameter with the biggest in-
fluence is 𝐸֙, a coherent point with the previous simulaƟons of the model. Indeed, a wrong
setup for the value of 𝐸֙ directly implies an important error on the voltage at the open circuit
voltage.

The staƟc parameters are the ones having the most of influence. This may be explained by
the data available. Indeed, the analysis was realized on the error between the experiment and
the simulaƟon. It is possible for the dynamic model to does not have a great influence because
of the sampling that can be with a too low frequency.

However, the low influence of𝐶խձխե,𝐶ձխխ can only be because they do not impact much the
global model. Indeed, 𝑏ե, 𝑏խ, 𝑗աե and 𝑗ախ are also present in the development of the dynamic
model, so their great influence is coherent with the model developed.
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3.3 Second version of the parameters’ sensiƟvity analysis
A second sensiƟvity analysis was realized; only on the staƟc and dynamic part of the model
this Ɵme, but following the same process (i.e. experimental plan and influence calculaƟon).
The difference here, is that no data are taken into account. The idea is only to evaluate the
influence of each parameter on the output of each part of the model.

3.3.1 StaƟc

A second sensiƟvity analysis on the parameter was realized for the staƟc part of the model.
The 𝑌 taken here is the voltage obtained under a certain solicitaƟon. This analysis was realized
under three different solicitaƟons: 0𝐴/𝑐𝑚ӝ, 0.5𝐴/𝑐𝑚ӝ and 0.98𝐴/𝑐𝑚ӝ. The results are on figure
12. On the first point, the Nernst potenƟal 𝐸֙ is the only parameter influencing the output,
indeed, if 𝐽կի is null on the equaƟon (3), the output take the value of 𝐸֙. The results for
the second and third points are the same. Indeed, under these solicitaƟons, this part models
the same kind of behavior. This is also why the limit current density 𝑗֏խ has not an important
influence. The range of solicitaƟon tested does not go where this parameter allow to model
another kind of behavior. However, based on the data used, it is not necessary to go over the
solicitaƟons proposed, indeed, on the data the current stays on the range proposed.
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Figure 12: Influence of the staƟc parameters on the output of the staƟc part of themodel under
different solicitaƟons(from leŌ to right: 0𝐴/𝑐𝑚ӝ, 0.98𝐴/𝑐𝑚ӝ and 0.5𝐴/𝑐𝑚ӝ)

3.3.2 Dynamic

On the dynamic part of themodel, the second analysis lay on the output. The same experimen-
tal planwas followed, but the analysis is based on the impedance themodel provide under spe-
cific solicitaƟons. The points taken are spread on a Nyquist plot: 1.27𝐸ӗ𝑟𝑎𝑑.𝑠−1 ; 280𝑟𝑎𝑑.𝑠−1
;39𝐸ӗ𝑟𝑎𝑑.𝑠−1 ;1.39𝑟𝑎𝑑.𝑠−1.

The points chosen are related to the data used. Indeed, it is unnecessary to exceed these
values as they are not inputs of the stack during experiments. Almost every dynamic parameter
has an influence on the output under defined solicitaƟon, except the double layers capaciƟes
that has always the lowest influence (Figure 13).
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Figure 13: SensiƟvity analysis on the output of the dynamic part of the model (from top leŌ to
boƩom right: 1.27𝐸ӗ𝑟𝑎𝑑.𝑠−1 ; 280𝑟𝑎𝑑.𝑠−1 ;39𝐸ӗ𝑟𝑎𝑑.𝑠−1 ;1.39𝑟𝑎𝑑.𝑠−1 )

3.4 Discussion
The two sensiƟvity analyses are not systemaƟcally giving the same results, but with their com-
plementarity, they will allow to obtain a complete analyze. The objecƟve was here to face a
first issue, the excessive number of parameters. Indeed, the definiƟon of the parameters’ value
thanks to data would be more like a numerical soluƟon than one with physical meaning. The
idea is then to detect which parameters have enough influence tomodel ageing, and represent
a real ageing phenomena.

On the staƟc part of the model, the great divergence is on the exchange current densiƟes,
indeed, these parameters have a great influence on the output, but they does not influence
much the error between the model and the experiments. It means that these parameters are
important for the instantaneous behavior as they are well influencing the output. But, their
variaƟons have no such influence on the error. This is why, they could be fixed, but based on
the general knowledge of the fuel cell, only the anode current density, 𝑗աե will be fixed.

The Tafel parameters have a great influence on the error but also a non-negligible influence
on the output. They are thus important parameters.

The limit current density at the cathode 𝑗֏խ has no influence. This match the first assess-
ment: the operaƟng condiƟons does not allow themodel to be on the behavioral state in which
this parameter is expressed. As this parameter doesn’t presentmuch influence on either of the
analysis, it is a parameter with a very low importance. This kind of parameters are necessary
for the model, but seen their capability to influence the output or the error, it is not interesƟng
to model their ageing. Indeed, their evoluƟon would not bring a real difference in the output.

TheNernst potenƟal𝐸֙ is shown to have a great influence on the first and second sensiƟvity
analysis, on the staƟc part of the model and on the global one. But this parameter has a true
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and drasƟc does not evolve much with the Ɵme but also because the model is too sensiƟve to
it.

The internal resistance has some influence in a moderate way in all the analyses presented.
But by the general knowledge of the fuel cell, it is known that the internal resistance𝑅֕ evolves
with the ageing of the stack.

The double layer capacitances are parameters with a low influence. They are also known
to evolve not much with the ageing. They are therefore also fixed.

The inductance of the connectors has no influence on any of our analyses. Following the
same thought, it is a parameter to fix.

The diffusion convecƟon impedance is expressed thanks to sub parameters. These param-
eters, which are directly defined in the global model are 𝑗ա֛խ, 𝑏֛խ and 𝑘֛խ. The only parameter
here that does not deserve a parƟcular aƩenƟon is 𝑏֛խ as it has a lower influence, this last
parameter is also fixed for the same reason. A parameter with a low influence will not bring a
drasƟc difference in the output of the model global.

4 Time ageing inclusion
The sensiƟvity analysis points out some parameters with low influence on the model. The idea
is here to fix the values of some parameters with the Ɵme. It would allow to have less chances
to find a local minimum during the numerous regressions in the updaƟng procedure. Based on
the previous conclusion, the following decisions are taken in regard to the ageing.

• Firstly, the double layer capaciƟes𝐶ձխե and𝐶ձխխ will only be regressed with the first char-
acterizaƟon’s data and then fixed for the following and the ageing.

• Next, the connectors’ inductance wriƩen 𝐿 will not evolve as it is not exactly linked to
the stack ageing itself and does not show a big evoluƟon with the Ɵme.

• The limit current density at the cathode 𝑗֏խ is regressed on the first characterizaƟon and
then fixed.

• The Nernst potenƟal 𝐸֙ and the exchange current density at the anode 𝑗աե has their val-
ues set.

• The under parameter 𝑏֛խ of the resistance 𝑅֛խ in the diffusion convecƟon impedance is
also regressed with the first data and then fixed

The other parameters will evolve with Ɵme in the following.

4.1 Parameters funcƟons
In a first step an exponenƟal funcƟon is proposed for all the parameters evolving in the ageing
model. This hypothesis will have to be improved with a closer analysis of stack ageing.

The idea is to have in the final model Ɵme-dependent exponenƟal funcƟons for the param-
eters. For that, it is necessary to have a sufficient number of characterizaƟons in order to have
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enough values of each parameters. With these values and a regression funcƟon the variables
of the exponenƟal funcƟons can be defined.

Let us take the example of the resistance 𝑅֕ for the development of the process:

1. The complete updaƟng process that allows defining its values is realized for the charac-
terizaƟons already obtained.

2. These values are memorized, as well as the Ɵme at which the characterizaƟons are real-
ized.

3. A regression is done in order to obtain the variables of the exponenƟal funcƟon depend-
ing on Ɵme

4. This funcƟon is used for giving the value of 𝑅֕ at the Ɵme considered in the model

The number of characterizaƟons considered as already obtained is, here, 3, indeed, taking
less than 3 points for an exponenƟal regression is not a coherent approach as there would not
be enough data. On the data available there are 8 characterizaƟons and taking the first three
(around Ɵme 0, 35ℎ and 182ℎ) for the learning phase is acceptable, especially when compared
with the number of hours needed for a standard data-based prognosƟcs learning.

However, here, it can be noƟced that 3 characterizaƟons does not allow the fiƩed expo-
nenƟal funcƟon to follow the real trend of the parameters’ value. Indeed, when the values
obtained for all the characterizaƟons are compared with the values taken with the exponenƟal
funcƟon, a difference of tendency is eventually obvious for some parameters. This wouldmean
that the predicƟon of the parameters, does not have physical meaning.

Our model-based approach can now finally be considered as a hybrid-based approach. In-
deed, when the parameter is replaced by the exponenƟal funcƟon, at this stage, it cannot be
assured that the value taken is really representaƟve of the reality for the stack. This means
that for example the predicƟon of 𝑅֕ at the 6ֱց characterizaƟon is not the same than the value
obtained with the data, so the physical meaning of this parameter can be lost (figure 14).

Figure 14: ExponenƟal fiƫng of 𝑅֕
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4.2 ValidaƟon
4.2.1 State of Health esƟmaƟon

For validaƟng the approach, the three first characterizaƟons are used for the learning phase for
the parameters. This means that on figure 15, the learning phase includes the second ”peak”
which is around aŌer 182 hours, and the predicƟon phase start aŌer. The exponenƟal funcƟons
are then injected directly into the global model. It is finally simulated during the complete
duraƟon of the experiment. The solicitaƟon used is the same as the one as in the experiment.
That way, the simulaƟon and the experiment can be compared (figure 15). The results are
very saƟsfying with an answer very close to the real behavior of the stack. The mean error is
under 0.2𝑉 , corresponding to an error of around 5%. It is representaƟve of the efficiency of
the behavior predicƟon.

Figure 15: SimulaƟon and experiment under the same solicitaƟon during 1000 hours

More instantaneously, figure 16 represent the comparison during around 200𝑠 aŌer 500
hours. The model reproducƟon of the behavior is really efficient. However, there is a small
imperfecƟon: the simulated voltage goes over the real data for a short amount of Ɵme. This is
due to the decomposiƟon block which is a simple low pass filter in the global model (figure 6).
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Figure 16: SimulaƟon and experiment under the same solicitaƟon during 1000 hours

Then, it is interesƟng to study the predicƟon of a polarizaƟon curve face to the experimental
one. On figure 17, can be seen the comparison for the fiŌh characterizaƟon and the last one,
the eighth.

Figure 17: Comparison of the polarizaƟon curve predicted and the experimental one

A clear tendency can be observed, there is an aggravaƟon of the difference between the
simulaƟon and the experimental data with the Ɵme. However, this is not extremely bad, in-
deed, the worst MAPE, on the eighth polarizaƟon curve is 1, 9 with an 𝑅ӝ of 0, 98.

Finally, even though the model can now be considered as hybrid, its global performance is
saƟsfying as the reproducƟon of the behavior of the real fuel cell is efficient.
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4.2.2 Remaining Useful Life

DefiniƟon of the threshold: The definiƟon of the end of life (EoL) for Dantherm is when
the voltage reach 26.8𝑉 under a solicitaƟon of 37𝐴. The stack concerned by this definiƟon is a
46 cell stack, the voltage per cell is then 0.5826𝑉 . It is then possible to adapt this threshold to
the experimented 5 cell stack. At 37𝐴, when the stack’s voltage is under 2.913𝑉 , the system is
considered at its EoL.

Remaining Useful Life predicƟon: With the resoluƟon used for the simulaƟon, the EoL
of the stack tested is supposed to be between 5458ℎ and 5597ℎ (Figure 18). This predicƟon
has no clear sense. Indeed, the system on the experiment on which the EoL is predicted is not
running under 37𝐴 neither on the learning nor on the future.
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Figure 18: RUL

5 Conclusion
Finally the model presented is an efficient prognosƟc approach for the set of data used even
with the evoluƟon of the predicted parameters not linked with the evoluƟon of the physic
phenomenon they are supposed to represent.

The approach proposed is efficient as it can predict the behavior of the fuel cell, i.e. the
voltage with the Ɵme. The predicƟon of the values of the parameters is however not saƟsfac-
tory. This is certainly due to the first characterizaƟon which gives to some of them calendar
variaƟons with a wrong tendency. A few reasons can be considered, firstly, the parameters
updaƟng procedure on the first characterizaƟon may hit a local minimum. Secondly, the first
characterizaƟon was maybe realized before the few hours of experiment necessary before the
establishment of the regular experiment. For this issue, the same simulaƟons presented here
but with the exclusion of the first characterizaƟon will have to be realized.
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This approach efficient with a constant load and has to be also experimented under a vari-
able current. For that, the same simulaƟons will be realized with the data gathered within the
project.

A following part of the work, will consist in developingmore accurate Ɵme funcƟons for the
parameters. The form developed should be more in agreement with the physics.
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