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Nomenclature
P Voltage drop at the anode [V]
N Voltage drop at the cathode [V]
To. Time constante of the diffusion convection impedance [s]
b, Tafel anode parameter [V-1]
b, Tafel cathode parameter [V-1]
bo.  Parameter of the variation law of R, [v-1]
C,.. Double layer capacity at the anode [F/cm?]
C,.. Double layer capacity at the cathode [F/cm?]
E, Nernst Potential [V]
i Number of EIS realized at each characterizations
Joa Exchange current density at the anode [A/cm?]
Joe Exchange current density at the cathode [A/cm?]
Jooe Parameter of the variation law of R, [A/cm?]
Joc  Dynamic current density [A/cm?]
Jpc  Static current density [A/cm?]
JLe Limit current density at the cathode [A/cm?]
k Number of characterizations
ko.  Parameter of the variation law of 7, [A.s/cm?]
L Connectors’ inductance [H.cm?]
R, Internal resistance [Q.cm?]
R,. Module of the diffusion convection impedance [Q.cm?)
R,,  Transfert resistance at the anode [2.cm?]
R,. Transfert resistance at the cathode [Q.cm?]
U Stack Voltage [V]
U,- Dynamic stack Voltage normalised per cell V]
Upc Static stack Voltage normalised per cell [Vl
U, Stack voltage normalized per cell [V]
We. Diffusion convection impedance [Q.cm?]

1 Introduction

In the frame of the SAPPHIRE project, a prognostics approach for PEMFC has to be developed.
For that purpose, a behavioral model able to predict is described in this deliverable. It is based
on an instantaneous behavioral model presented in [1] which present two main issues for the
aim: the lack of ageing and the high number of parameter. This deliverable is composed of
a quick description of the model used with a highlight of its limitations and the way they are
overcome. In order to face the first issue, the high number of parameters, a sensitivity analysis
is realized and described, in order to evaluate which parameters have big influences and then
focus our attention on them. For the second issue,and with the results obtained thanks to the
sensitivity analysis, the parameters are expressed with a time dependent function. Finally, this
deliverable develops the progress from a simple instantaneous behavioral model to a model
able to predict the behavior of the stack.

Robust prognostics methods and algorithms 4/26
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2 Model without ageing

2.1 Presentation of the model

In order to develop a model-based prognostics an efficient mean of reproduction of the behav-
ior of the fuel cell is needed. To face this necessity, a model is presented here. It is composed
of a static and dynamic part, as it can be seen on figure 1.

The input of this model is the current which is normalized as current density to be decom-
posed in alternative and continuous parts. These two current densities are the input of the
static and dynamic models. The output of these models are recomposed in voltage per cell to
finally be denormalized in voltage.

Static
Model

I i — ) v} U

M Dynamic U
Model Ac

Figure 1: Scheme of the model

The aim of the dynamic part of the model is to link voltage variations with the current vari-
ation around a static operating point. This part of the model is based on an electrical equiva-
lency. Indeed, the physical phenomena are represented by an impedance (Figure 2).
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Figure 2: Electrical equivalency impedance of the dynamic model

The Warburg W,,.. is defined by its module R, and its time constant 7. which are finally
defined thanks to sub parameters (also regressed on a later step).

1

Ro. = 2 (1)
. J
(boc.Z-JOOc' (2.]%1;@) * 1)
koe
Toc = ‘KIS (2)
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The static part of the model is based on a development of the Butler Volmer law with a
difference made between the electrodes (eq. (3)) :

_ 1 ; JDC 1 ; JDC
Upc=E,—R,, - Jpc b asmh(z.joa) b asznh(2~j0C~(1—JF’—C) (3)

JL

The parameters of the model are updated at each characterization phase thanks to experi-
mental data: polarization curves and Electrochemical Impedance Spectroscopy. For the whole
description of the parameter’s updating process, please refer to complete description of the
model [1].

The data used are based on experiments. A 5 cells stack of 100 square centimeters of active
area is experimented with a ripple current of 70 A more or less 10% at a 5kHz frequency. The
experiment is a long term test that lasted around one thousand hours. Some measures as
current and voltage are monitored during the whole experiment. Each week, an experimental
characterization is realized, which is composed of polarization curves (current - voltage curves)
and Electrochemical Impedance Spectroscopies (EIS) at three DC current values.

The model developed is really satisfactory instantaneously (Figure3), indeed, it presents a
good reproduction of the behavior during short amount of time, here around 200s.
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= = = stack measured
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Figure 3: Evolution of the simulated voltage versus to the experimental one under the same
solicitation

2.2 Discussion
2.2.1 Number of parameter

The global model has finally 13 parameters (Table 1) (as R,, and R,.. are expressed thanks to b,
bc'jOa'jOC andch)'

Robust prognostics methods and algorithms 6/26
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Parameter | Significance [ Unit |
b, Tafel anode parameter [V-1]
b, Tafel cathode parameter [V-1]
E, Nernst Potential [V]
Joa Exchange current density at the anode [A/cm?]
Joe Exchange current density at the cathode | [A/cm?]
Jre Limit current density at the cathode [A/cm?]
Jooe Parameter of the variation law of R, [A/cm?]
koe Parameter of the variation law of T, | [A.s/cm?]
bo, Parameter of the variation law of R, [V-1]
Cica Double layer capacity at the anode [F/cm?]
Cice Double layer capacity at the cathode [F/cm?]
L Connectors’ inductance [H.cm?]
R, Internal resistance [Q.cm?]

Table 1: Parameters in the global model

As explained in [1], the different parts of the model are regressed on experimental data in
order to obtain parameters values, in the tuning process. As there are numerous parameters,
there are high chances to find local minima. Indeed, the numerical solution to the fitting issue
can have no link with the physical sense.
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Figure 4: Evolution of C,_.,’s value obtained at each characterization with the tuning process

Another aspect of this issue is the fact that, some parameters that do not show a clear
evolution with the time as it can be seen on figure 4. It does not allow a smooth inclusion of the
ageing effect on the evolution of the parameter with time. A crucial point here is the number
of parameters which seems to be too large in relation to the number of data. Numerous local
minima can be hit during the fitting process.

In order to face this issue, a sensitivity analysis is realized. It will allow to detect influential
parameters with which extra caution will have to be taken.

Robust prognostics methods and algorithms 7/26
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2.2.2 Ageing

The model is instantaneously satisfactory, but since there is no evolution of the model with
the time, the only means of evolving the model is to have a characterization phase and realize
an updating procedure. Indeed, as it can be seen on figure 5, the simulated voltage does not
match the experimental one. During these 1000 hours, the stack degraded, so its response to
the same current solicitation evolve with the time: an ageing model is needed. Indeed, the
final need being prognostics, it is necessary to have a prediction of the stack’s behavior. For
that, it is necessary to include a time dependency in the global model. In order to face this
issue, the idea is to define the value of each parameter as a time dependent function (fig. 6).
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Figure 5: Evolution of the experimental voltage and simulated one under the same solicitation
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Figure 6: Inclusion of the time in the model

This step seems realizable: as it can be seen on figure 7, some parameters seems to have a
clear evolution with time. This figure present the values of R, obtained at each characterization
with the tuning process versus to the time corresponding to the characterization.
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Figure 7: Evolution of R,,’s value obtained at each characterization with the tuning process

However this step is related to the reliability of the identification of the parameters and the
avoidance of local minima.

In conclusion, for facing these issues, a sensitivity analysis is realized on the static model
that reproduce the polarization curve, on the dynamic model that can reproduce Nyquist plot
obtained thanks to EIS and on the global model that can reproduce the voltage of the stack
under the same current solicitation. It should allow pointing out which parameter has a big
influence or not and compare it with the literature in order to decide if some should represent
ageing or not.

3 Parameters Analysis thanks to ANOVA (ANalysis of VAriance)

3.1 The basics of ANOVA’s calculation

The following presents the basics of the sensitivity analysis that has been applied independently
on the three realized in our case (static part, dynamic part and global model). The following
paragraph is presented with a general point of view as it can be applied to any study [2].

Lets Y be the results of the simulation that has to be studied, P the number of parameters
that vary and A levels the number of levels for each p (parameter).

The experimental plan is realized with all the possible combinations of parameters that give
a result Y. The total number of experiments is then expressed by :

N = AP (4)

The mean of all the simulation with Y, being the results of the n”* experiment is:

S '
:ﬁ.;n (5)

The total square summation is the basis for all of calculations and is defined with (eq. 6):

SCT = i (v, -7)° (6)

n
n=0

Robust prognostics methods and algorithms 9/26
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3.1.1 Influence of one parameter

In the following the influence of each parameter p on its own is calculated.
Let ¥, be the result for the parameter p at the level a.

Y, = (%Zypa)—f/ (7)

The sum of the difference squared is calculated for each p:

N& >
SCE, = & Zoypa (8)
The influence of one parameter is then:
/ SCE, 9
"y = SeT ©)

The influence can finally be expressed as:

AN ((4X.Y,)-T)

10
Zivzo (Yn_Y)2 o

Injjp

3.1.2 Interparametric influence of degree two

The details for the calculation of the influence of two parameters combined is given here.

On this second step, let Ypla1 P2, be the result for the parameters p, at the level a, and p,

at the level a,.
The spectral radius, written R2 is defined as:

2
J? _ - _
Rzpl,,l,pzaz = ((ﬁ 12,2 Ymal,pzaz) - Y- Yplal - Yp2a2) (11)
The sum of the difference squared is calculated for each couple of parameters p,, p, :
N A
SCEPI’Pz = Ip ZORzpla],Pzaz (12)
a=
a;=0

The interparametric influence is then:

Inf}?]»lh = —er (13)

Robust prognostics methods and algorithms 10/26
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3.2 Parameters’ sensitivity analysis

3.2.1 Static model

For this ANOVA study, the Y taken is the error (MAPE) between the simulated polarization curve
and the experimental one. This study was realized on each characterization. The static model
is defined thanks to the parameters:

* R, the resistance;

e E, the Nernst potential;

e b, b, the Tafel parameters;

* joar Joc the exchange current density;

e j, . the limit current density at the cathode only.

As explained in 3.1 a complete experimental plan is realized with all combinations of pa-
rameters possible. The table 3.2.1 presents the low value of each parameter and its high value,
the number of levels taken being 3, there is one value added in the middle. The lower and
upper bound of the variation for each parameters in the experimental plan is quite realistic.

] Parameter \ Minimum Value \ Maximum Value \ Unit \

R, 0.08 0.2 Q.cnm?
E, 0.9 1 %
b, 20 100 v
b, 20 100 v
Joa 0.001 1 A/cm?
Toe 0.001 1 AJcm?
Jie 1.001 15 A/ cm?

Table 2: Static parameters extreme values for the experimental plan

The results for the static model are on figure 8. This figure shows the percentage of influ-
ence of each parameter on the error between the simulation and the experiment. There are
8 bars for each parameters, because the sensitivity analysis was realized on the 8 characteri-
zations. The characterizations are numbered by the time they are happening, the first at time
04, the second at time 354 and the last at 1016A4. The results on the eight characterizations
are similar, a convenient point as it shows that the parameters’ influence on the difference
between the simulation and the experiment is not drastically evolving.

Robust prognostics methods and algorithms 11/26
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Figure 8: ANOVA’s result for the static model

The parameters with the biggest influence are E,, R,,, b, and b, that can be easily verified
by the observation of the eq. (3). Indeed, a variation on the values of these parameters has
direct impact on the voltage.

On table 3.2.1, the percentages of influence is given for the first characterization. It depicts
the influence of one parameter on the diagonal, and the interparametric influence. A point
has to be noted here, the total sum of the influences is low, around 18% (Table 3.2.1). The
interparametric influences have values no higher than 0.1%.

The low value of the total sum could be explained by the range of values taken that is too
short. Indeed the worst polarization curve given is not really a wrong one giving big error. The
calculations are done between two values, the simulated polarization curve and the experi-
mental one, finally too close.

This hypothesis can be confirmed by the realization of the same analysis with variations’
range pushed to more extreme values. Such simulations give a sum growing with the increasing
difference between the initial values.

The decision to take realistic values for the experimental plan is then bringing issues within
the ANOVA calculation.

Robust prognostics methods and algorithms 12/26
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Influence (%) | b, | b. | E. | Jou | Joo | e | r ]
ba 4.69 | 0.0043 0.014 0.15 | 0.016 1.9E*4 0.0059
bc 541 0.016 0.026 | 0,24 | 5.59 E* 0.0082
En 5.3547 | 0.040 | 0.038 | 1.58 E* 0.0019
jOQ 0.11 | 0.090 | 7.10 E~¢ 0.016
Joe 0.65 | 0.0016 | 0.015
Jre 0.0038 | 1.76 E*

r 2.10

Table 3: Results of the first sensitivity analysis of the static part of the model on the first polar-
ization curve

3.2.2 Dynamic model

On this part of the model, the Y taken is the error (MAPE) between the simulated EIS and the
experiment one at 70A4; as this is the solicitation of current during the experiment. This error
is actually decomposed in two part, since the numbers on which it is calculated are complex
impedance. So, there will be two different results for the sensitivity analysis of this model’s
part, the error on the real and the error on the imaginary.

The parameters on this model are:

e The Warburg impedance W,,. which is decomposed in two impedances, R, and 7.

The double layer capacities C,., and C,,..

Two transfer resistances R,, and R,...

The inductive behavior due to the connectors L.

The ionic conductance of the membrane is modeled by an equivalent resistance R,,.

The complete experimental plan can be seen on table 3.2.2, one should read it in the same
way of the static experimental plan (3 levels with 2 extreme values and their middle).

\ Parameter \ Minimum Value | Maximum Value \ Unit \

Cica 0.03 0.06 F/cm?
Cee 0.02 0.05 F/cm?
Ro. 0.05 0.2 Q.cm?
T oc 0.1 0.6 s
L 0.8E-06 2E-06 H
R, 0.08 0.2 Q.cm?
R,, 0.01 0.6 Q.cm?
R,. 0.01 0.4 Q.cm?

Robust prognostics methods and algorithms

Table 4: Dynamic parameters extreme values for the experimental plan
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The results of the sensitivity analysis for the dynamic model are on figure 9. There are two
figures as the sensitivity analysis is done on the imaginary and on the real part of the Nyquist
plot. Indeed, the solicitation here is the frequency and permits to obtain the impedance ex-
pressed in a form of a complex number. These results can be seen in the figure 9, as one can
see, the two parts present a complementary aspect on some parameter’sinfluence. So the sum
of the two influences have been realized, and is counted as a proportion face to two hundred.
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| | M sth C
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Influence on the imaginary part
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1=

w
o

]
o
T

o

Cdea Cdce ROc TauQc L
Parameter

Rm Rta Rt

Figure 9: ANOVA’s result for the dynamic real and imaginary part

The parameters with the biggest influence can be seen on figure 10. The sum here of all the
influences and inter parametric influences is close to 100% for the two part of the impedance
(Table 3.2.2 and 3.2.2).

I(;S Cdca Cdcc ROC TauOc L Rm Rta th
C,. || 110 1.76 E5 [ 4.40E~7 | 1.83E~ | 5.67E 2 | 9.04E* | 0.0061 | 820E°
Coree 145 |[322E5 |150E | 3.81E2 | 00038 | 7.32E° | 0.075
R, 0.35 316 E™* | 466 E2° | 442E | 567E™* 9E
Tau,, 0.1189 | 1.85E27 | 226E> | 1.82E* | 1.81E™
L 3.27E%" | 520E7% | 545E7%° | 2.56 E~*°
R, 42.1 0.0028 0.0064
R, 31.0 0.014
R, 18.5

Table 5: Influences of parameters on the real part of the dynamic model on the first character-

jzation

Robust prognostics methods and algorithms
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(%) Cdca Cdcc ROC TauOc L Rm Rm th
Cuea 0.71 | 549E> | 530E° | 2.82E% | 475E° | 440E~% 0.0075 235E#
C e 042 |560E*|146E> |135E* | 569E 2% | 27E* | 0.0025
R,. 21.2 0.028 | 2.67E~7 | 520E28 | 299E* | 0.0023
Tau,, 120 | 137E7 | 6.34E 8 | 654E> | 1.62E~
L 0.0017 | 5.50E72% | 211 E | 5.07E>
R, 397E 20 [526E 28 | 474E 28
R, 44.7 0.0090
R, 15.60

Table 6: Influences of parameters on the imaginary part of the dynamic

characterization
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3.2.3 Global model
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Figure 10: ANOVA’s result for the static model

model on the first

The global model present links between some dynamic and static parameters as exposed in
2.1. The parameters on the global model are:

* R, the resistance;

e E, the Nernst potential;

e b, b, the Tafel parameters;

* joarJoc the exchange current density;

* j.. the limit current density at the cathode only;

e The double layer capacities C,., and C,.;

Robust prognostics methods and algorithms
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¢ The inductive behavior due to the connectors L;
* jooe and b, that are sub-parameters of R;
* ko, sub-parameter of 7.

There are here some dynamic parameters that are not present. As explained earlier, this
can be explained by their decomposition in under parameters.
The experimental plan realized is supposed to be read like the two previous.

] Parameter \ Minimum Value \ Maximum Value \ Unit

E, 0.9 1 %
b, 20 100 v
b, 20 100 =
Jou 0.001 1 Ajen?
Joo 0.001 1 Ajen?
Jre 1.001 1.5 A/cm?
R, 0.08 0.2 Q.cm?
Cooe 0.03 0.06 Flem?
Cooo 0.02 0.05 Flem?
L 0.8E-06 2E-06 H
Jooe 0.01 05 Ajen?
bo. 10 30 v
ko 0.01 0.5 A.s/cm?

Table 7: Global model parameters extreme values for the experimental plan

The value taken for the ANOVA study is the mean of the difference taken between the ex-
perimental and simulation evolution during around 100s. These 100s are chosen in the exper-
iment as they present a solicitation evolving. There was 6 part of the experiment that met the
previous requirement (i.e. around 100s and evolving solicitation), all around a characterization.
The sensitivity analysis was then realized on those 6 parts.

Robust prognostics methods and algorithms 16/26
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Figure 11: ANOVA’s result for the global model
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(%) ba bc En jOa jOc jLC Rm Cdca Cdcc L jOOc bOc kOC

73 |16 |77 |29 |81 |98 |331|46 |18 |76 |27 |4.2

ba 1.38 E—3 E—z E—2 E—2 E—S E—3 E—6 E—6 E—26 E—S E—S E—S
1.7 | 3.6 6 1 18 |42 |2 6.8 | 25 | 45

bc 1.67 E—2 E—Z 0.14 E—S E—Z E—6 E—6 E—26 E—S E—S E—S
31 | 3.2 |53 |49 |79 |53 |19 |85 |72 |22

E, 10.6 E2 | E2|ES|E4|ET7|ES| E26| 6| 6| E-S
. 16 |18 |39 |69 |23 |45 |98 |32
Joa 2.121 0.11 E4 | E2|ES|ES|E2 4| ES| E4
o 132 6.8 |19 |25 |18 |22 |32 |69 |21

E—4 E—2 E—S E—S E—26 E—4 E—S E—4
. 1.1 |5 1.7 |42 |2 75 |45 | 15
JLc E2 | ES|E8|E9|E2E7|E38|ET
92 |14 |2 16 |15 | 84

R 5.62

m E—S E—6 E—26 E—4 E—S E—S

484116 |21 |83 |26 |24

Cdca E—S E—7 E—26 E—8 E—S E—7
549 2.21| 1.7 |89 | 2.18

Cdcc E—4 E—26 E—7 E—7 E—6
1.55| 22 | 207|214
L E—24 E—26 E—26 E—26
. 1.3 | 1.06
Jooc 0.16 E_S E_4
53 | 1.58

bOC E3 | ES

7.6

kOC E—2

Table 8: Sensitivity analysis results in percentage for the global model around the second char-
acterization

The figure 11 present the results on these 6 portions. The parameter with the biggest in-
fluence is E,, a coherent point with the previous simulations of the model. Indeed, a wrong
setup for the value of E,, directly implies an important error on the voltage at the open circuit
voltage.

The static parameters are the ones having the most of influence. This may be explained by
the data available. Indeed, the analysis was realized on the error between the experiment and
the simulation. It is possible for the dynamic model to does not have a great influence because
of the sampling that can be with a too low frequency.

However, the low influence of C,,.,, C,.. can only be because they do not impact much the
global model. Indeed, b,, b, j,, and j,. are also present in the development of the dynamic
model, so their great influence is coherent with the model developed.
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3.3 Second version of the parameters’ sensitivity analysis

A second sensitivity analysis was realized; only on the static and dynamic part of the model
this time, but following the same process (i.e. experimental plan and influence calculation).
The difference here, is that no data are taken into account. The idea is only to evaluate the
influence of each parameter on the output of each part of the model.

3.3.1 Static

A second sensitivity analysis on the parameter was realized for the static part of the model.
The Y taken here is the voltage obtained under a certain solicitation. This analysis was realized
under three different solicitations: 0A/cm?, 0.5A/cm? and 0.98A /cm?. The results are on figure
12. On the first point, the Nernst potential E, is the only parameter influencing the output,
indeed, if Jp is null on the equation (3), the output take the value of E,. The results for
the second and third points are the same. Indeed, under these solicitations, this part models
the same kind of behavior. This is also why the limit current density j; . has not an important
influence. The range of solicitation tested does not go where this parameter allow to model
another kind of behavior. However, based on the data used, it is not necessary to go over the
solicitations proposed, indeed, on the data the current stays on the range proposed.

150
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o
w
o
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N
o
N
o

Influence (%)
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[
o
=
o

Influence (%)
Influence (%)

ba bc En joa joc jLc r 0 ba bc En j0a joc jlc r ba bc En joa joc jLc r
Parameter Parameter Parameter

Figure 12: Influence of the static parameters on the output of the static part of the model under
different solicitations(from left to right: 0A/cm?, 0.98A/cm? and 0.5A/cm?)

3.3.2 Dynamic

On the dynamic part of the model, the second analysis lay on the output. The same experimen-
tal plan was followed, but the analysis is based on the impedance the model provide under spe-
cific solicitations. The points taken are spread on a Nyquist plot: 1.27E3rad.s1 ; 280rad.s™1
:39F3rad.s~1;1.39rad.s™ 1.

The points chosen are related to the data used. Indeed, it is unnecessary to exceed these
values as they are not inputs of the stack during experiments. Almost every dynamic parameter
has an influence on the output under defined solicitation, except the double layers capacities
that has always the lowest influence (Figure 13).
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Figure 13: Sensitivity analysis on the output of the dynamic part of the model (from top left to
bottom right: 1.27E3rad.s™ 1 ; 280rad.s™ 1 ;39E3rad.s~1 ;1.39rad.s"1)

3.4 Discussion

The two sensitivity analyses are not systematically giving the same results, but with their com-
plementarity, they will allow to obtain a complete analyze. The objective was here to face a
first issue, the excessive number of parameters. Indeed, the definition of the parameters’ value
thanks to data would be more like a numerical solution than one with physical meaning. The
idea is then to detect which parameters have enough influence to model ageing, and represent
a real ageing phenomena.

On the static part of the model, the great divergence is on the exchange current densities,
indeed, these parameters have a great influence on the output, but they does not influence
much the error between the model and the experiments. It means that these parameters are
important for the instantaneous behavior as they are well influencing the output. But, their
variations have no such influence on the error. This is why, they could be fixed, but based on
the general knowledge of the fuel cell, only the anode current density, j,,, will be fixed.

The Tafel parameters have a great influence on the error but also a non-negligible influence
on the output. They are thus important parameters.

The limit current density at the cathode j, . has no influence. This match the first assess-
ment: the operating conditions does not allow the model to be on the behavioral state in which
this parameter is expressed. As this parameter doesn’t present much influence on either of the
analysis, it is a parameter with a very low importance. This kind of parameters are necessary
for the model, but seen their capability to influence the output or the error, it is not interesting
to model their ageing. Indeed, their evolution would not bring a real difference in the output.

The Nernst potential E,, is shown to have a great influence on the first and second sensitivity
analysis, on the static part of the model and on the global one. But this parameter has a true
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and drastic does not evolve much with the time but also because the model is too sensitive to
it.

The internal resistance has some influence in a moderate way in all the analyses presented.
But by the general knowledge of the fuel cell, it is known that the internal resistance R,, evolves
with the ageing of the stack.

The double layer capacitances are parameters with a low influence. They are also known
to evolve not much with the ageing. They are therefore also fixed.

The inductance of the connectors has no influence on any of our analyses. Following the
same thought, it is a parameter to fix.

The diffusion convection impedance is expressed thanks to sub parameters. These param-
eters, which are directly defined in the global model are j, ., bo. and k.. The only parameter
here that does not deserve a particular attention is b, as it has a lower influence, this last
parameter is also fixed for the same reason. A parameter with a low influence will not bring a
drastic difference in the output of the model global.

4 Time ageing inclusion

The sensitivity analysis points out some parameters with low influence on the model. The idea
is here to fix the values of some parameters with the time. It would allow to have less chances
to find a local minimum during the numerous regressions in the updating procedure. Based on
the previous conclusion, the following decisions are taken in regard to the ageing.

e Firstly, the double layer capacities C,., and C,.. will only be regressed with the first char-
acterization’s data and then fixed for the following and the ageing.

e Next, the connectors’ inductance written L will not evolve as it is not exactly linked to
the stack ageing itself and does not show a big evolution with the time.

e The limit current density at the cathode j, . is regressed on the first characterization and
then fixed.

e The Nernst potential E,, and the exchange current density at the anode j,, has their val-
ues set.

e The under parameter b,,. of the resistance R,,. in the diffusion convection impedance is
also regressed with the first data and then fixed

The other parameters will evolve with time in the following.

4.1 Parameters functions

In a first step an exponential function is proposed for all the parameters evolving in the ageing
model. This hypothesis will have to be improved with a closer analysis of stack ageing.

The idea is to have in the final model time-dependent exponential functions for the param-
eters. For that, it is necessary to have a sufficient number of characterizations in order to have
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enough values of each parameters. With these values and a regression function the variables
of the exponential functions can be defined.
Let us take the example of the resistance R,, for the development of the process:

1. The complete updating process that allows defining its values is realized for the charac-
terizations already obtained.

2. These values are memorized, as well as the time at which the characterizations are real-
ized.

3. Aregression is done in order to obtain the variables of the exponential function depend-
ing on time

4. This function is used for giving the value of R,, at the time considered in the model

The number of characterizations considered as already obtained is, here, 3, indeed, taking
less than 3 points for an exponential regression is not a coherent approach as there would not
be enough data. On the data available there are 8 characterizations and taking the first three
(around time 0, 35k and 182h) for the learning phase is acceptable, especially when compared
with the number of hours needed for a standard data-based prognostics learning.

However, here, it can be noticed that 3 characterizations does not allow the fitted expo-
nential function to follow the real trend of the parameters’ value. Indeed, when the values
obtained for all the characterizations are compared with the values taken with the exponential
function, a difference of tendency is eventually obvious for some parameters. This would mean
that the prediction of the parameters, does not have physical meaning.

Our model-based approach can now finally be considered as a hybrid-based approach. In-
deed, when the parameter is replaced by the exponential function, at this stage, it cannot be
assured that the value taken is really representative of the reality for the stack. This means
that for example the prediction of R, at the 6/ characterization is not the same than the value
obtained with the data, so the physical meaning of this parameter can be lost (figure 14).

0116 %* Every values e ‘ ......
=== Time function
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Figure 14: Exponential fitting of R,
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4.2 \Validation

4.2.1 State of Health estimation

For validating the approach, the three first characterizations are used for the learning phase for
the parameters. This means that on figure 15, the learning phase includes the second "peak”
which is around after 182 hours, and the prediction phase start after. The exponential functions
are then injected directly into the global model. It is finally simulated during the complete
duration of the experiment. The solicitation used is the same as the one as in the experiment.
That way, the simulation and the experiment can be compared (figure 15). The results are
very satisfying with an answer very close to the real behavior of the stack. The mean error is
under 0.2V, corresponding to an error of around 5%. It is representative of the efficiency of
the behavior prediction.
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Figure 15: Simulation and experiment under the same solicitation during 1000 hours

More instantaneously, figure 16 represent the comparison during around 200s after 500
hours. The model reproduction of the behavior is really efficient. However, there is a small
imperfection: the simulated voltage goes over the real data for a short amount of time. This is
due to the decomposition block which is a simple low pass filter in the global model (figure 6).
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Figure 16: Simulation and experiment under the same solicitation during 1000 hours

Then, itis interesting to study the prediction of a polarization curve face to the experimental

one. On figure 17, can be seen the comparison for the fifth characterization and the last one,
the eighth.

Aging Results on Polarization Curve (5th) Aging Results on Pularization Curve (8th)
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Figure 17: Comparison of the polarization curve predicted and the experimental one

A clear tendency can be observed, there is an aggravation of the difference between the
simulation and the experimental data with the time. However, this is not extremely bad, in-
deed, the worst MAPE, on the eighth polarization curve is 1,9 with an R? of 0, 98.

Finally, even though the model can now be considered as hybrid, its global performance is
satisfying as the reproduction of the behavior of the real fuel cell is efficient.
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4.2.2 Remaining Useful Life

Definition of the threshold: The definition of the end of life (EoL) for Dantherm is when
the voltage reach 26.8V under a solicitation of 37A. The stack concerned by this definition is a
46 cell stack, the voltage per cell is then 0.5826V. It is then possible to adapt this threshold to
the experimented 5 cell stack. At 37A, when the stack’s voltage is under 2.913V, the system is
considered at its EoL.

Remaining Useful Life prediction:  With the resolution used for the simulation, the EolL
of the stack tested is supposed to be between 5458h and 5597h (Figure 18). This prediction
has no clear sense. Indeed, the system on the experiment on which the EoL is predicted is not
running under 37A neither on the learning nor on the future.

Model simulation under solicitation of 37A
4 T T T T
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Figure 18: RUL

5 Conclusion

Finally the model presented is an efficient prognostic approach for the set of data used even
with the evolution of the predicted parameters not linked with the evolution of the physic
phenomenon they are supposed to represent.

The approach proposed is efficient as it can predict the behavior of the fuel cell, i.e. the
voltage with the time. The prediction of the values of the parameters is however not satisfac-
tory. This is certainly due to the first characterization which gives to some of them calendar
variations with a wrong tendency. A few reasons can be considered, firstly, the parameters
updating procedure on the first characterization may hit a local minimum. Secondly, the first
characterization was maybe realized before the few hours of experiment necessary before the
establishment of the regular experiment. For this issue, the same simulations presented here
but with the exclusion of the first characterization will have to be realized.
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This approach efficient with a constant load and has to be also experimented under a vari-
able current. For that, the same simulations will be realized with the data gathered within the
project.

A following part of the work, will consist in developing more accurate time functions for the
parameters. The form developed should be more in agreement with the physics.
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