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The association and dissociation of particles via specific anisotropic interactions is a fundamental process,
both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of alternative binding
sites can lead to multiple productive states but also to non-productive ‘decoy’ or intermediate states. Be-
sides anisotropic interactions, particles can experience non-specific isotropic interactions. We employ single
replica transition interface sampling to investigate how adding a non-productive binding site or a nonspecific
isotropic interaction alters the dimerization kinetics of a generic patchy particle model. The addition of a
decoy binding site reduces the association rate constant, independent of the site’s position, while adding an
isotropic interaction increases it due to an increased rebinding probability. Surprisingly, the association kinet-
ics becomes non-monotonic for a tetramer complex formed by multivalent patchy particles. While seemingly
identical to two-particle binding with a decoy state, the cooperativity of binding multiple particles leads to
a kinetic optimum. Our results are relevant for understanding and modeling of biochemical networks and

self-assembly processes.

I. INTRODUCTION

Association and dissociation of proteins, such as pro-
teins binding to DNA!, ligands binding to receptors, and
proteins forming multicomponent complexes, are basic
steps in many biochemically relevant processes such as
gene regulation, signaling, and intercellular communi-
cation??. Knowledge of the association and dissocia-
tion kinetics is crucial for understanding the balance of
the biochemical network and cascade reactions and why
such reactions are of processive or distributive nature??.
Proteins usually bind via specific interaction sites in a
diffusion-influenced reaction to form a productive tar-
get structure®'9, stabilized by specific hydrophobic in-
teraction, hydrogen bonds, or electrostatic interactions,
which can be modeled by anisotropic, angular dependent,
potentials'!12 (provided large conformational changes do
not play a role). Proteins and protein complexes can
have several similar or identical target sites, leading to
multiple productive bound states®!3. Interactions can
also lead to a trapped decoy state: a (metastable) on-
or off-pathway intermediate state. Finally, proteins in-
teract with an (more or less) isotropic effective potential,
for instance, due to van der Waals or depletion forces®!4.
Because of the anisotropic effective interaction, the possi-
bility of multiple (rebinding) pathways, and the presence
of isotropic potentials, it is not trivial to predict how
additional non-specific sites affect the overall association
rate constant towards a productive target structure.

Anisotropic interactions also play a role in the design
of novel self-assembled materials, as colloidal particles
with specific binding sites can be synthesized!®'¢. The
particles’ patchiness and multi-valency alter the kinetic
pathways they take to reach the most stable state and
subsequently form higher order phases'™7 19 Detailed
knowledge of association kinetics helps to understand and
design complex colloidal self-assembly2°.

The major question that we address here is: How does

the association kinetics depend on the location, strength,
and shape (anisotropic or isotropic) of additional non-
productive interactions? To answer this fundamental
question we employ molecular simulation of a generic
patchy-particle model that can represent proteins and
patchy colloids'?2126, Neglecting hydrodynamics, sim-
ulating proteins or colloids dynamics in solution requires
a stochastic technique such as Brownian dynamics or Dy-
namic Monte Carlo (DMC)?7. As brute force calculation
of accurate (un)binding rate constants is hampered by
large energetic and entropic barriers caused by strong
binding and anisotropy of the interaction, we employ
the Single Replica Transition Interface Sampling (SR-
TIS) method?®2% an advanced path sampling method
enabling numerically exact treatment of the association
and dissociation kinetics by efficient generation of unbi-
ased rare pathways of all the relevant transitions. The
combination of the simplified protein model and SRTIS
gives us the ability to study many interaction parameters,
which would otherwise be intractable, but we stress that
our results generalize to arbitrarily complex potentials.

In the first part of this work we focus on dimerization
kinetics, where we find anisotropic decoy interactions act
as kinetic traps and suppress association kinetics, but
that an additional isotropic interaction opposes this ef-
fect, and enhances association kinetics again. We show,
using our path sampling methodology, how this kinetic
enhancement is largely due to rebinding pathways to the
target state. Having thus set the stage, in the second part
we investigate association kinetics of a larger cluster, in
this case a tetramer. Surprisingly, as a function of the
isotropic interaction strength, the tetramer association
kinetics behaves non-monotonically. A initial enhance-
ment in association is offset by a complete suppression
at higher isotropic strength. Using the insights obtained
from the dimerization kinetics, we can explain these op-
posing effects in terms of an induced decoy state due to
cooperative interactions.



The remainder of the paper is organized as follows.
After a description of the used model, the DMC dynam-
ics and the SRTIS method, we present and discuss the
results. We end with concluding remarks.

Il. METHODS
A. Model

For the case of two-particle dimerization, we consider
two particles where one particle (1) has two binding sites,
one target t and one decoy site d, whereas the other par-
ticle (2) has only one binding site b (see Fig. 1). This
system has three meta-stable states: a bound (target)
state T" when site b is bound to target site ¢, a nonpro-
ductive decoy state D when site b is bound to decoy site
d and an unbound state U when particles are far apart.
We model the interaction between the particles and the
patches based on a 24-12 Lennard-Jones-like potential.
This potential is of shorter range than the standard 12-6
Lennard-Jones (LJ) potential. As such the phase be-
havior of a many-particle system exhibits a metastable
liquid vapor coexistence line with respect to the gas solid
coexistence3?, similar to protein solutions.

The total potential is a superposition of a strongly re-
pulsive WCA-like potential®!32, an isotropic attractive
potential, and the minimum of two attractive anisotropic
angle dependent potentials:

Uia(ri2,Q1,Q2) = Urep(riz) + Uiso(r12) (1)
+ min [Up (112,21, Q22), Upa(r12, 21, Q)]

where ri3 = ro — ry is the inter-particle vector with r;
the coordinates of particle 7, and 2, 2 denote the orienta-
tions of the particles, stored in quaternion form. The min
function returns the smaller of its arguments, and is in-
troduced to avoid spurious interference of two patchy in-
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FIG. 1. Left: cartoon image of the patchy particle model
(particle 1 orange, particle 2 blue) with the angle between
decoy and target site, 1, distance between particles r = |r12|,
patch (unit) vector p; and corresponding angle 6;. Middle:
states T" and D are depicted. Right: potential energy surface
as function of the distance between particles, r, and the shift
in orientation, 6 for v = 120°, ep = 10kgT, er = 15kpT,
€iso = 4kpT, § = 20° showing clearly the two potential min-
ima due to the two patches and additionally the low isotropic
attraction.

teractions that are near each other. The isotropic WCA-
like repulsive potential is given by:

10[(2)" = (2)" +1] itr<2m0
Urep(r12) = X 1

ifr > 210

(2)

where r = |ri9| is the distance between particles, o de-

termines the diameter of the particle. This repulsive in-

teraction provides the basic hard core interaction, even

in absence of the isotropic potential. The isotropic inter-
action is given by:

24 12] .
4.0€;50 [(%) - (%) ] ifr <r,

Uiso(r12) = { (3)

0 ifr > r,

where €;,, is the strength of the isotropic potential and r,
is the potential cutoff, beyond which the potential van-
ishes. For simplicity we took a Lennard-Jones like form.
The repulsive part of this isotropic potential will con-
tribute also to the hard core nature of the particle. The
anisotropic patchy interaction between b and t is given
for r < r. by:

24 12
Upt(r12,€1,Q2) = 4.0er [(:) - (g) } Spe(riz, Q1,2)
(4)

and zero otherwise, where e is the strength of the patchy
interaction between b and ¢. The patchy interaction be-
tween b and d is defined similarly:

24 12
Uba(r12,1,Q2) = 4.0ep {(:) - (%) ] Spa(riz, Q1,Q2)
(5)

where ep is the strength of the patchy interaction be-
tween b and d. The continuous patch function S;; (€21, Q2)
gives a penalty for misalignment:

62 + 62

Sij(ri2, €1, Q) =exp | — 552 : (6)
where 0 defines the patch angular width, 8, = arccos(p; -
ri2/r), 84 = arccos(pq - r12/7), Oy = arccos(pp - ra1/7),
with pg the (unit) vector defining patch py (with k €
{b,d,t}) on its respective particle (1 or 2), rotated from
the particle frame to the system frame along €2; 5. Note
that for binding site b the inter-particle vector ro; = —rq9
is reversed. Finally, we use the angle 1) = arccos(pq - pt)
to describe the angular distance between the patches d
and t. The interaction between particles can be eas-
ily tuned via the patch-patch interaction strengths er,
€p, the isotropic interaction strength €;5, and the angu-
lar width §. Proteins usually have a specific (narrow)
patchy interaction, therefore, the patch-width is chosen
to be small, § = 20°. This patch-width was shown to re-
produce the gas-liquid curves of protein solutions such as
~-crystallin and lysozyme quite well®3, albeit with more
patches. A similar patch width was used to study protein



crystallization'?. Naturally, an even smaller patch-width
is also allowed by the model, however a much smaller
patch-width also dramatically restricts the time-step in
the dynamics. An example of the potential for the dimer
is shown in Fig. 1.

For the constrained tetramer we employed the same
model between each pair of particles of the complex as
for the two-particle system. FEach particle has three
patches aligned along the vertices of the perfectly formed
tetramer. There is no additional decoy site defined. The
total energy for the constrained tetramer is

4
UL (0%, Q%) = " Urep(rsg) + Uiso(ri)

1<j

4 3
+ZZUM(I'U,Q¢,Q]') (7)

i<j k<l

where the superscript 4 denotes the fact that all particle
positions r and orientations §2 are in principle taken into
account. The first (double) sum on the r.h.s. is over each
particle pair in the tetramer, and the second (double)
sum is over the patch pairs k,I. The potential Uy; is
defined similarly to Eq. 4.

B. Dynamic Monte Carlo

We use Dynamic Monte Carlo (DMC) to propagate the
system in time. By using small translation and rotational
step sizes, time evolution via MC dynamics numerically
solves the Fokker-Planck equations which represents the
Brownian movement of proteins in solution.?'27. A
translation move displaces a randomly chosen particle
by a random amount in the interval [—d;, J;] and a ro-
tation move rotates a randomly chosen particle over an
angle randomly chosen between [0, d,]. The maximum
translational displacement is set to 0.0050 for all cases.
The rotational step size is chosen to obey the rotational
Stokes-Einstein relation, i.e.

& _ [a, D;
5. 7 a; 3D, (8)

where D;, D, denotes the translational and rotational
diffusion constant, respectively, and the average trans-
lational and rotational acceptance ratios, a; and a, are
always higher than 0.7. It has been demonstrated that
this regime leads to proper diffusive dynamics2734.

Taking a colloidal suspension in water, with colloids of
size 0 = 1um, and using the Stokes-Einstein relation to
compute the translational diffusion, DY = kpT/(3mno),
we can estimate the actual time-step as At = §2a;/(6DY).
In the colloid case every DMC cycle corresponds roughly
to Tus. For proteins, which are roughly a hundred times
smaller, this time becomes ~ 102 ns.

C. Path Sampling with SRTIS

Here we use Single Replica Transition Interface Sam-
pling (SRTIS) to obtain the full (un)binding path ensem-
ble between the defined stable states?®2°. A path is de-
fined as x¥ = {x¢,x1,...Xz}, a series of L time frames
or slices. Each frame is a point in configuration space
x = {r¥, QV}, with r and Q the coordinates and orien-
tation (in quaternion representation) ) of each particle in
the N —particle system (note the difference between this
definition and previous definitions in e.g. Refs.2829:35,36
as here we do not carry the momenta, due to the use of
DMC, but we do carry the orientation of the particles.)

Consider a set of (meta)stable states M. For instance,
for the case of the dimer M = {T,D,U}, and for the
tetramer M = {U,T,I,D}. See Sec. IIIC for an expla-
nation of these latter states. For each state Z € M we
define a set of m non-intersecting hypersurfaces (called
interfaces®™) Az = {A\},AL... A7} based on an order
parameter A (e.g. a distance or a potential energy). We
use the convention here that for all interface and indica-
tor functions a superscript refers to the interface index,
while a subscript denotes the state the interface belongs
to. This notation is slightly different than in Refs. 28 and
29. Note that while each set of interfaces belonging to a
state Z is non-intersecting, interfaces from different states
are allowed to intersect. Also note that the first interface
AY is located outside the definition of stable state Z. See
Sec.IT G for precise stable state and interface definitions
for the dimer and tetramer systems.

In SRTIS a single replica performs a random walk
among the interfaces while simultaneously sampling path
space by employing five different path moves. The pri-
mary move is the one-way shooting move from a point
at a current interface®®. From the time slice at which
the path first crosses the current interface a partial trial
path is generated either in the forward or backward direc-
tion, and accepted if this partial path ends in any stable
state, irrespective of the path length (there is of course
a hard-coded maximum path length to prevent memory
overflow). The complementary part of the full trajectory
is taken from the old path3®. Note that the acceptance
ratio becomes close to unity because all generated paths
already cross the interface. Due to the stochastic nature
of the dynamics the newly generated path will sample a
different part of path space. In order to achieve decor-
relation between pathways, the time-reversal move re-
verses the pathway in time, by reversing the order of the
frames3®, and an inversion of the momenta for each frame
(this is not needed for Brownian dynamics or DMC). In
addition, we use replica swap and state-swap moves. A
replica swap move attempts to change the current inter-
face to a neighbouring interface, under the condition that
the path still crosses this new interface. Uniform sam-
pling of all interfaces of a state is achieved by a Wang-
Landau algorithm, with the acceptance criterion for a



replica swap between interfaces ¢ and j:

9z(X))

where the min function returns the smaller of its argu-
ments, and h% [x©] is a trajectory indicator function that

Puco(x: Xy = X)) = x| min [1, ”W)] o

is unity only if the path starts in Z, crosses interface A7,
and ends in any stable state (including Z). The Wang-
Landau bias is imposed through the density of paths
gz (M%) which upon visiting A% is updated by multiplying
with a Wang-Landau factor exp(fw ). At the start of
the simulation, the densities of paths are initialized to
g(A) =1 and fir, = 0.01. Once all replicas have been
sampled uniformly within a certain threshold, the WL
factor is halved until sufficiently small (fy-, < 107°) 28,

A state swap move attempts to change the current ini-
tial state to a different state when the path is of type
T — J with J # Z. This swap move requires a path-
reversal, altering a path of type Z — J into type J — Z.
After the state swap the set of interfaces belonging to the
new initial state is used. The acceptance probability for
the state swap is

Pace(x%5 Xy = M) = B2 [% "] min [1,73%] (10)

where the arrow to the left in %% denotes the reverse or-
der of the trial path, and the factor R is unity if a state
swap is only performed between the outermost interfaces,
or only between interfaces A\¥ and )\’3 with identical in-
dices k, and R = mz/m is the ratio of the number of
replicas of states Z and 7 if one allows swaps between all
interfaces. When states are nested within interfaces, it
can be advantageous to allow for all-interface state swaps.
Finally, to randomize within the stable states, we em-
ploy the so-called 'minus move’3%3®  sampling an ad-
ditional first interface ensemble3”, which lets the path
evolve (backward or forward in time) within a state un-
til it exits the state and crosses the first interface. The
minus interface ensemble can always exchange with the
first (regular) interface ensemble via replica exchange.

D. Rate constant calculation

The rate constant between any two states Z and J is
given by374;

krg = ®P(\7 A7) (11)

where ®7 is the flux out of state Z through the in-
nermost interface Az, and P(A%|A\}) is the conditional
crossing probability to reach state J from AL, with )\?7
the state definition of J. The flux is calculated as
0 1\~ 1 0\ :
b7 = (<TI> + <TI>) where <TI> is the average dwell
time in the stable state Z, before crossing AL, which can
be calculated directly from the length of the pathways

4

generated by the minus move. Correspondingly, <T%> is
the average time it takes from the first interface back to
the stable state Z, and follows directly from the length
of the pathways sampled in the first interface replica.

It is interesting to note that the flux out of the unbound
state U can change with the total simulation volume V.
As for the unbound state 7} is given by free diffusion
when the particles are beyond 2.00 apart, the dependence
of 7'8 on volume V can be solved analytically and the
total flux out of state U is given by:

v = (i) + h)o) (12)

for arbitrary volume V' > V[ where 1} denotes the volume
at which the diffusive dwell time 73 is computed.

P(A?ﬂ)&) is calculated by joining all obtained crossing
probabilities for every replica of a state via WHAM*1:42,
As we sample all association and dissociation transitions
we obtain the full rate M x M matrix K (i.e. the matrix
form of kzr7). Note that the obtained rate expressions
are exact under the assumption of rare event (exponen-
tial) kinetics between the states. While the kinetics of
diffusion-controlled association depends on dimensional-
ity, in our work this kinetics is dominated by diffusion
in three dimensions, for which the exploration of space
is non-compact*?. Even if the system can temporarily
switch to a quasi-2D diffusion when particles are bound
by an isotopic nonspecific potential, the corresponding
time scales for this diffusion in reduced dimensionality
are (or can be made) always smaller than the time spent
in the unbound state.

In a multiple state system, where states can be nested
in between interfaces of other states, Eq. 11 is not valid
anymore as it assumes that transitions only can occur
when the outermost interface A" has been reached, which
is not necessarily the case for systems which are nested
in between interfaces of other states. If Eq. 11 is used
naively many transitions would be missed in the rate
calculation. One can circumvent this problem by calcu-
lating the rate via the path-type numbers introduced in
Ref.??. A path-type number is defined as néj(/\ﬁ), which
in words is the number of paths in replica i joining states
7 and J that have crossed at maximum interface A%
(and thus by definition also all interfaces below k). The
superscript ¢ indicates that the paths should obey the
condition of replica ¢ in the ensemble. Because we have
set the maximum interface, we can reweight these num-
bers with the WHAM weights obtained from reweighting
of the crossing probability as follows:

m
nzg(\f) = % Y nr (M), (13)

i=1
with wh = (z:;€ 1/wh)~1, where w! are the optimized
WHAM weights for paths that have crossed interface
A% at maximum (note these should be the same as
the weights wlI obtained via the crossing probability).



Now we have the correctly reweighted number of paths
nzz(A\%) joining state Z with state J that have at max-
imum have crossed interface A\%. Subsequently summing
over all interfaces k gives the reweighted number of paths
coming from state Z and ending in state J:

irg =Y nrg(\f). (14)
k=1

Because the Wang-Landau scheme biases the simulation
to sample all states equally via the state-swap bias, the
path-numbers for each state need to be corrected for this
bias. In an unbiased ensemble each Z.J path is as likely
as the reversed JZ path. Therefore, we split the obtained
path-type matrix, nz 7, into M matrices and symmetrize
the Zth matrix: nyzr = nzy and setting all other en-
tries of the Zth matrix to zero, resulting in M differ-
ent matrices with only a nonzero Zth row and a nonzero
Jth column. Subsequently, all M matrices are joined
via WHAM giving the individual weights for each state
(these weights can also be used to calculate the coeffi-
cients, cz, in the reweighted path probability, see Eq. 16
below). This leads to a M x M transition path type num-
ber matrix, nzy. Normalizing the matrix with the total
numbers of paths going out of a state ) ; g7 yields

POYIAL) = "Iij 15
(A% 7) SO (15)

This normalized transition probability matrix can be di-
rectly used in Eq. 11.

E. Free Energy landscapes and Reactive Path Density
from the Reweighted Path Ensemble

In SRTIS we obtain the Wang-Landau biased path en-
semble for each state Z € M . We can reweight this bi-
ased path ensemble, by using the same WHAM reweight-
ing procedure as explained above. Defining the phase
space volume A2 = {x|\(x) > A} } as the volume outside
interface AZ, the reweighted path probability Prpg [xL]
for observing a path x” in an unbiased path ensemble is

n—1
Prpe[xt] = Z cr w%PA_1 [xF] + Z Pra, X" Wz[x"]
IeM j=1

(16]
where Pza; and P, ; denote the (biased) path prob-
ability for interface j of state Z and the minus inter-
face, respectively (In Ref.3 this minus interface ensem-
ble is labeled ’additional first interface ensemble’. Note
also that we rearranged the sub- and superscripts w.r.t.
Refs. 28:29:39 to be consistent with the discussion in the
previous sections). The constants ¢z are obtained via
matching the density of paths, gz[x’], between states.
The factor Wz[x?] = 307 @L0(APw[x] — AL)O(Nig1 —
Amaz[xL]) selects the correct weight wi for a path that

has its maximum A\ between interface ¢ and i + 1. Here,
6(x) denotes the Heaviside theta function, and A\ [x]
returns the maximum A value along a path. Similar to the
previous section, W} = (3_;_, 1/wy) ™", where wy are the
optimized WHAM weights for each interface histogram.
Note that this reweighting is on the full trajectories, and
not on the crossing histograms only**.

From the reweighted path ensemble we can calculate

the free energy landscape F(q)3°:
F(q) = —kpTlogp(q) + const

L
o) = [ DxPrrslt] Y slate) o).
k=0

where p(q) is the equilibrium probability to observe a
(combination of ) collective variable(s) q, C' is a normal-
izing constant, [ Dx’ is the (formal) path integral over
the ensemble of pathways x”, q(xz) denote the collec-
tive variables (e.g. in case of the dimer or tetramer,
the angle ¢ and the distance r, see Sec. III) at time slice
Xr. The sum over delta functions projects each slice of
the reweighted paths on the collective variable space q
to yield the probability p(q).
The reactive path density is defined as3:

no(q) = / Dx Prpplxhr (xo)hy (x1)he(x)  (18)

where the function hq(x%) is unity if the path visits q,
and zero otherwise. hz(xo) and h7(xz) ensure that only
reactive pathways are taken into account. Note that a
path density does not add up to unity.

F. Transition Path Theory

In order to understand how non-specific binding affects
the overall binding rate, the rate from U to D, and D to
T has to be considered (and the corresponding rates to I
for the tetramer) Transition Path Theory (TPT) allows
us to calculate the overall association rate k74745, An
important quantity in this framework is the committor
probability, ¢;", which for binding processes is the prob-
ability to reach the bound state, T', from intermediate
state i before reaching the unbound state U. By defini-
tion q§ = 0 and q; = 1. Generally speaking the other
committor probabilities are given by solving a linear set
of equations:

g = ZTikq; + Ty, (19)
kel

where T = exp(KT) is the transition probability matrix
in a certain lag time 7 and I are all intermediate states.
For the case of the dimer M = {T, D, U}, we only define
one intermediate state, i.e. I = D, and therefore the
committor probability qJB is easily derived:

Tpr

_ 20
Tpr +Tou (20)

ap =



TPT

The overall rate k;;-* is subsequently given by:

RIET — mu(Tur + Tupad)
T(mu + Tpap)

; (21)

where ¢, =1 — qg, and 77 is the population of state Z.
The dissociation rate constant k25T can be formulated
in a similar fashion.

In addition to the overall (un)binding rate, also the
flux between states during association (or dissociation)
can be calculated. Here we are mainly interested in the

ratio of the flux as follows:

f(JJrT _ TUT

+ = +>
fUDT TUDQD

(22)

which gives insight whether association primarily occurs
indirectly via state D or directly from U to T

G. Simulation details

SRTIS: For two-particle dimerization, we consider the
three possible (meta)stable states: a bound state T, de-
fined when the patchy interaction Uy < —0.9¢r, a de-
coy intermediate state D defined when the interaction
Upq < —0.9¢p and the unbound state when the particles
are separated more than r.. All interfaces around stable
states are defined through the energy of the system. For
the bound states T" and D we set interfaces every 1.5kpT
starting from the boundary of the state until the energy
is zero. Interfaces for state U are set at low values of
energy to guide the system towards state 7" or D and
to be sure paths with low energy are properly sampled:
Av = {0.0,-107° 1073, -107, -0.4, 1.0} kpT?'.
An example of a converged simulation (ep = 8kpT),
€iso = 0.0, ¥» = 120°) showed that logg(Ay) =
[0,—0.25,—-3.2, —5.5, —6.0, —6.3], which validates the use
of interfaces with very small energy values as the crossing
probability decreases quickly for such small values. The
interfaces could have been optimized further, however,
this would not change the results.

For the constrained tetramer, an additional state [
is defined, where only two bonds are formed and the
remaining patches are not allowed to form bonds via
barrier-less rotation (see Sec. IIIC). State T is defined
when all three bonds are formed, and U[S"™ < —2.7ep
and state D is defined when no bonds are formed and
the particle is on the opposite side of the complex, and
Ulel™ < —2.7¢;5, and the unbound state when the motile
particle is separated more than r. to any other particle
of the complex. The interfaces of tetramer states are
similarly defined as states defined for two particles.

SRTIS simulations were performed with DMC in a cu-
bic periodic box of size 5.70. Frames were saved ev-
ery ten DMC steps. The maximum path length was set
to 10 frames, to prevent memory overflow (Note that
this maximum path length only refers to the transition
path times between states, not the dwell times in the

states, which might be much longer). A production cycle
of 5 x 10° SRTIS cycles was performed after the scale
factor for the Wang-Landau biasing was sufficiently low
(< 1075), where every cycle consisted of 10 shooting, re-
versal, replica swap and state swap moves. Averages for
the crossing probability and path densities were sampled
after each move.

Potential: For the two-particle system, the attractive
strength and the patch angular width of the target site
is set to, e = 15kgT and & = 20° degrees, respec-
tively. For the constrained tetramer complex, the attrac-
tive strength and the patch angular width of the target
sites is set to, e = 5kpT and § = 20° degrees, respec-
tively. The potential is truncated at r. = 2.00.

The strengths of attraction for the dimer were chosen
such that the binding affinities are comparable to real
proteins, i.e. in the order nM~! — uM~!, correspond-
ing to dissociation rates of order k,fy ~ 1073 — 10951,
The strength of the tetramer is comparable to the patch
strength used in the work of Fusco and Charbonneau'2.
The non-specific isotropic strength was varied up to
€;so = 10, where the association rate reaches a plateau.

IIl. RESULTS AND DISCUSSION
A. Effect of the decoy binding site on kinetics
1. Rate matrix and population

We first study how an additional decoy binding site
affects the overall dimerization rate constant. Consider
two particles of diameter ¢ interacting via an attractive
angle-dependent, short-ranged 24-12 Lennard-Jones (LJ)

F > o |
T 112141618 2 2224

rlc

FIG. 2. Left: Association transitions between unbound (U),
decoy (D) and target (T) states. Right: Cartoon image of
the patchy particle model. The decoy (green) and target
(black) sites are separated by angle ¥. The particle distance
is 7 = |riz2|, with ri2 the center of mass vector. The an-
gles ¢, = arccos(riz - p;/r) between the patch vector p; and
c.o.m. vector rio track the orientation. Middle: The free en-
ergy landscape obtained from the sampled path ensembles for
1 = 120°, ep = 10kpT, projected on distance, r, and angle
¢ = ¢1 + ¢2. The bound state T is clearly visible at » = 1.00
and ¢ = 0. The unbound state U is defined by r > 2.00. The
decoy state D is visible as a minimum at ¢ = 120°.
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FIG. 3. Rate matrix, K, for different angles of the decoy
patch, ¢ = 60° (circles), ¥ = 120° (squares), ¥ = 180° (tri-
angles). Rate constants kry and kyr are hardly dependent on
ep as expected. Moreover, only krp and kpr are dependent
on 1. Elements kpr and kpy show expected Arrhenius-like
behaviour after ep ~ 8kpT. However, at low values of ep,
diffusion limits become more dominant. All rates are reported
in units of DMC time steps.

potential with strength er = 15kgT and a patch-width
d = 20° (a similar patch-width was used to study pro-
teins!233). For a protein size 0 = 5nm this choice cor-
responds to a dissociation constant of order pM45. In
addition, one particle has a decoy binding site placed
under an angle ¥ away from the target site with the
same patch-width and with attractive strength ep (see
Fig. 1 and 2). This system has three meta-stable states:
a bound (target) state T', a nonproductive decoy state D
and an unbound state U, which, for the chosen box size
of 5.70, has the largest equilibrium population.

We perform SRTIS simulations for several values of the
decoy strength ep/kgT = {2,4,6,8,10,12,14,16}. For
each transition we compute the rate constant via Eq. 15.
The resulting rate matrix is plotted in Fig. 3 in units
of DMC time steps. The units can be easily translated
to real time, depending on the system that the model
represents. Using the conversion factors mentioned in
sec IIB we find that for colloids with a diameter o =
1pum and a time step of Tus, a rate constant of 107
corresponds to roughly 0.014s~! . For proteins, with a
diameter of 10nm and a DMC time-step of around 102
ns, a rate constant of 1077 corresponds approximately to
1s~ 1.

Rate constants kry and kyr are nearly independent of
€p, as expected. Only krp and kpr are dependent on v,
demonstrating that the rebinding probability from state
D to T is significantly larger for ¢ = 60°. Elements kpr
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FIG. 4. Equilibrium population of 7', D and U as function
of decoy interaction strength for different values of » = 60°
(circles), 120° (squares) and 180° (triangles). Clearly, the
decoy state only becomes higher populated when ep > er.
Moreover, due to the box size the population of U is always
higher. Also note that the populations are not dependent on

.

and kpy show expected Arrhenius-like behavior (i.e. an
exponential dependence on ¢€) for ep 2 8kgT, whereas
at low values of €p, the rate constant becomes more dif-
fusion influenced as seen from the nonlinear dependence.
Note that while the standard usage of *Arrhenius behav-
ior’ is to describe the exponential dependence of the rate
with the inverse temperature T, we also use it here for the
exponential dependence of the rate with the attraction
strength €. Since the e always appears in combination
with 1/kgT this identification is natural.
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FIG. 5. Overall association (left) and dissociation (right) rate
constant calculated via TPT as function of ep for different val-
ues of ¢ = 60° (circles), 120° (squares) and 180° (triangles).
Even though the reactive path density in Fig. 6 shows prob-
ability from D to T, the decoy state has little effect on the
overall association or dissociation irrespective of the position
relative to the target site, due to kpy > kpr for each ep. At
high ep the decoy site has a negative effect on the association
rate constant which halves at high ep almost independent of

.



From the rate matrix we can obtain the equilibrium
population by computing the zeroth eigenvector, or al-
ternatively apply the long time limit of p(t) = exp(Kt).
These populations are shown in Fig. 4. The decoy state
only has a larger population than the bound state when
€p > ep. Moreover, due to the size of the box the popula-
tion of U is always the highest of the three states. While
the populations shift toward D with increasing e€p, they
are independent of 1, indicating the effect of rebinding is
only affecting the kinetics of the system, not the thermo-
dynamic equilibrium, as expected (see also the free en-
ergy landscape projection of the path ensembles in Fig.
2b).

2. Effective rate constants

We extract the overall rate constants, kZET and kLET

from the rate matrix, using Transition Path Theory
(TPT)* via Eq. 21, shown as a function of ¢p in Fig. 5.

As expected, the overall association rate constant
kon = k‘g;T does not change much for low ep, but de-
creases for high ep > 12kgT, as then pathways that reach
D will not significantly contribute to association. Also,
the dissociation rate constant k.g = k%ET drops only
minimally at high ep = 16kgT. The transition from D
to T is less likely than D to U within these conditions,
as the patch alignment requirement limits the possible
kinetic pathways to state T

One could argue that there is no increase in association
rate constant due to the fact that the volume of the box is
small. Usual protein concentrations are much lower (e.g.
nM — uM) than what is simulated here (~ puM ) when o
is taken as 5 — 10nm, a typical protein size). Naively, one
would assume that with larger volume the presence of an
additional binding site which keeps the particles in close
proximity should increase the rate constant relatively to
no additional binding site, due to rebinding. However,
kpy is always significantly larger than kpr (see Fig. 3)
which shows that when the volume is enlarged, the non-
specific site will still not contribute to the association rate
constant as the system will more likely go back to the un-
bound state than progress towards the bound state. It
is interesting that the process from D to T is apparently
more unlikely than D to U within these conditions, which
is a manifestation of the fact that the requirement of pre-
cise alignment to bind due to the patchiness of particles
limits the kinetic pathways possible for systems to reach
their most stable state. Of course, when the decoy bind-
ing site moves even closer to the target state, this will
change due to lowering of the D-T barrier.

3. Free energy and reaction path density

In the first row of Fig. 6 we show the free energy land-
scape for three different values of ¢ obtained via Eq. 17
with the distance between the centers of the two particles,

r, and the angle ¢ = ¢1+¢2, where ¢; = arccos(ris-p;/7),
as the collective variables that capture the translational
and rotational degrees of freedom during the (un)binding
process between all three states (see also Fig 2). The
bound state T' is clearly visible at »r = 1.00 and ¢ = 0.
(Note that the ¢; variable is identical to ¢; variable used
in the potential energy. We still use two different variable
names, to emphasize that these variables do not have to
be the same in general, since we are free to choose any
collective variable. )

The unbound state is located beyond the line given by
r = 2.00 (see Fig 2). The intermediate state D is located
at different values of ¢ corresponding to ¥ = 60°, 120°,
or 180°. Mechanistic information can be obtained from
the path ensemble by plotting the reactive path density
(RPD). In Fig. 6 the RPD is plotted for state D defined
by Eq. 18. The RPD demonstrates that a transition
from T to D instead of U is very improbable (has a low
density) when ¢ is large, as most probably paths end up
in U (located at r = 2.00), which corroborates with the
low values of kpp. Only for small v is there a significant
probability to transition from D to T.

B. Effect of isotropic non-specific interaction
1. Rate matrices

Next, we add a non-specific isotropic interaction be-
tween the two particles of the dimer, and conduct
SRTIS simulations for a range of values ¢€;5,/kgT =
0,1,2,3,4,5,6,7,8,9,10, each for different values of ep.

12 14 16 18 21 12 14 16 18 2

1 12 14 16 18 21
rlo rlo rlc

FIG. 6. First row: free energy landscape for distance between
the centers, r, and the sum of the angles of patch vectors
with the inter-particle vector, ¢ for ep = 12kgT and from
left to right ¢» = 60°, 120° and 180°. The free energy is
shifted such that the minimum value (T state) is zero. All
minima due to the stable states are visible where it is clear
where the D state is located as v is changed. Second row:
corresponding reactive path density (RPD) for state D. There
is only a significant probability from D to T for ¥ = 60°.
However, the transition from D to U dominates the reactive
transitions out of state D. Note that integration of a reactive
path distribution does not result in unity.



In Fig. 7 the elements of the rate matrices are shown
as function of ep for €;5, = 10kpT, while in Figs. 8 and
9 the rate matrix elements are plotted as function of €;4,
for ep = 8kgT and ep = 16kgT, respectively.

Comparing Figs. 3 and 7, an isotropic interaction
€iso = 10kpT increases the binding rate constants kyr
and kyp by an order of magnitude relative to the rate
constants without the isotropic attraction. Furthermore,
Fig. 7 shows no difference in the rebinding rate constant
krp for ¢ = 120° and 180°, whereas when ¥ = 60°, k7 p
increases more sharply.

The rate matrices in Fig. 8 and 9 show that kpry and
kpy behave Arrhenius-like for strong €;5, or ep. For
small e p the kinetics becomes dominated by €;5,, and vice
versa. Interestingly, both kpr and krp reach a plateau
for €;50/kpT > 4, where rebinding dominates over escape.
Moreover, for ¥ = 60°, kpr and krp are relatively high
and hardly change with €;,, indicating that the chance
of rebinding is high for small ¥, due to a (partial) overlap
of the patches, lowering the barrier for the D to T tran-
sition. For larger ¢ angles, increasing the €;5, isotropic
interaction leads to an enhanced rebinding probability.
Note that changing ep only really alters the exit rate
constants from decoy state D (see also Fig. 7).
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ep/ kgT
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5107

2 4 6 810121416
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2 46 810121416
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FIG. 7. Rate matrix, K, for different angles of the decoy
patch, ¥ = 60° (circles), ¢ = 120° (squares), ¢ = 180° (trian-
gles) with a non-specific isotropic interaction of €;5o = 10kpT.
Rate constants kry and kyr are not dependent on ep and
there is no dependency on 1 for kpy as expected. For the
rebinding rate constants kpr and krp there is no difference
between 1 = 120° or 180°, only for ¥ = 60°.
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FIG. 8. Rate matrix, K, for different angles of the decoy
patch, ¥ = 60° (circles), ¥ = 120° (squares), » = 180° (tri-
angles) with a decoy interaction of ep = 8kpT. Naturally,
kru and kpy show Arrhenius-like behavior for strong €;so.
There is no dependency on v for kru, kur and kpy as ex-
pected. Interestingly, for ¢» = 120° and 180°, kpr and krp
level off around €;50/kBT = 4, whereas for 1» = 60° there is
no dependency at all on €;50.

2. Path density

Fig. 10 gives mechanistic information of the rebinding
effect in the form of the reactive path density (RPD) for
transitions out of D, obtained from the path ensembles.
The rebinding probability increases between €;5, = 2kgT
and €;5, = 6kgT, and saturates for high €;5, = 12kgT.
While a transition from D to T instead of U is probable
(has a high density) for small ¢ or high €;4,, it is very
improbable for large v and small €;,,, as then most paths
end up in U (r > 2.00).

3. Effective rate constants

Fig. 11 shows the effect of both non-specific isotropic
interaction €;5, and decoy interaction €p on the overall
association rate constant, kg?T, computed using Eq. 21
Clearly, kggT increases by more than an order of mag-
nitude with the isotropic interaction €;s, for low decoy
interaction €p, and but eventually levels off at high at-
traction, i.e. €;5, = 8. However, adding the isotropic
interaction does not affect the association rate constant
for high decoy interaction ep = 16. As the decoy patch
becomes more attractive, the increase in k., gained via
the non-specific interaction is lost. In this region, it is

just as probable to end up in D as in T, since both the
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FIG. 9. Rate matrix, K, for different angles of the decoy
patch, ¢ = 60° (circles), ¥ = 120° (squares), ¢ = 180° (tri-
angles) with a decoy interaction of ep = 16kpT. Similar
trends are visible as in Fig. 8, except for kpy and kpr are
significantly lower.

target and decoy sites are of equal strength. This con-
sequently retards the overall association toward the tar-
get state. The effect of the decoy strength is clearly to
lower kLET for each setting of the €;5,. Note that the
opposing effect of the decoy site is much stronger when
there is non-specific isotropic interaction. This is at first
sight surprising, but is a direct consequence of the shift
in equilibrium population due to the isotropic interac-
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FIG. 10. Effect of isotropic interaction on reactive path den-
sity (RPD) for state D with ep = 12kgT as function of the
distance 7 and the angle ¢, for ¢» = 60° (top row) and ¢ =
180° (bottom row), from left to right for €iso = 2,6, 12ksT
The transition from D to U dominates the paths out of state
D for low €;50 < 6. There is only a significant rebinding
probability from D to T for ¢ = 60° or for high €;s,.

10

tion, making effectively the D — T transition the relevant
barrier to overcome (as is also clear from Eq. 21).
Non-specific isotropic interactions of more than a few
kpT will lead to condensation. The short-ranged 24-12
LJ potential used here leads to a metastable vapor-liquid
coexistence line with respect to the fluid-solid line3°. For
high €;4, crystallization can only be avoided at very low
concentration. Our results are robust against lowering
the concentration (see Fig. 15 of the SM). Furthermore,
by using a shorter ranged potential, e.g. a 100-50 LJ po-
tential, the fluid-solid line will shift significantly, whereas
the effect of the non-specific isotropic interaction on the
association kinetics will not change qualitatively.

4. Preferred mechanism

We infer the preferred association mechanism from the
TPT fluxes. Fig. 12 plots the net flux ratio fur/fupr
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FIG. 11. Top Row: Heat map of the overall association
rate 107 x kLZET (1, €iso,€p) for ¢ = 60° (left), and 180°
(right). The diagonal lines indicate the effect of cooperativity
in the tetramer on the overall rate constants. For low 1) a
higher maximum overall association rate constant is reached
along the diagonal. Lower panels: Different cuts through
the parameter space for the overall association rate. 2nd
Row: kZHT (1, €is0, €p) for different decoy strengths, as func-
tion of €. 3rd row: kHFET (1, €iso, €p) for different isotropic
strengths, as function of ep. All rates are in units of DMC
time steps. The rate constants increase with non specific
isotropic interaction, but decrease for high ep values.



FIG. 12. Flux ratio fur/fupr as a function of €, for a
decoy site with ep = 14kgT and ¥ = 60°(circles), ¢ =
120°(squares) and ¢ = 180°(triangles). Higher rebinding
probability for ¢ = 60° results in lower fur/fupr indicat-
ing more reactive pathways from U to T via D compared to
higher values of .

computed via Eq. 22, for a strong decoy ep = 14. The
higher rebinding probability for a low 1 results in more
associating pathways via D than for high v, i.e. a lower
flux ratio fyr/fupr. Thus, direct paths are dominant
for low €;5, and for high v, as rebinding is very rare for
these settings. The flux ratio never drops below unity,
even when all paths exiting D rebind correctly to T,
since the chances of going to the D or T state from the
unbound state U are about equal.

C. Constrained tetrahedron formation

Protein complexes frequently consist of more than two
proteins. We study the formation kinetics of a model
tetramer complex in which each protein has three bind-
ing sites. The rate determining step in the tetramer for-
mation is the addition of a single protein to a correctly
formed trimer. In previous work, we studied the influence
of rotational diffusion®! and of the multivalency*” on the
formation kinetics of this “constrained tetrahedron”?!.
Here, we investigate the effect of adding an isotropic non-
specific interaction to each protein. We use the same
interaction potential between particles as for the dimer,
only now the particles have three patches put at the con-
tact points of a perfect tetrahedral arrangement of the
particles (see Sec. ITA). In this patchy particle system
there are four stable states, U, T, I and D (see Fig. 13
for a schematic representation). Starting in the unbound
state U (one particle far away from the correctly formed
trimer) the incoming particle can bind to the fixed trimer
correctly by forging all three bonds (the T state), or could
be trapped in an intermediate state where two frustrated
patchy bonds are formed. Note that for this system a
patch interaction e = 5kpgT yields the same total energy
for state T' as for the dimer. The additional non-specific
isotropic potential results in a fourth (meta)stable state,
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D, where the incoming particle is trapped on the oppo-
site side of the trimer, forming no specific patchy bonds,
but only interacting via isotropic potentials. In this state
the attaching protein interacts with the three particles
of the fixed trimer simultaneously. Therefore rearrange-
ment into the productive state can only occur by losing
at least one non-specific isotropic interaction. As the
trimer can be seen as a rigid body with a (trivalent) tar-
get binding site, and the D state as a decoy state, at first
sight this situation seems very similar or (almost) identi-
cal to the binding of two particles with a decoy state, as
discussed above. To investigate the similarity/difference
between the two cases, we compute the 4 x 4 association
rate matrix with SRTIS, for several values of the attrac-
tive isotropic interaction, €;5, (see Fig. 6 of the SM). In
Fig. 13 we plot the overall association rate constant as
a function of €;,,. Strikingly, the rate constant increases
first, then decreases with non-specific isotropic interac-
tion. Remarkably, the increase is relatively strongest for
the lowest concentration. The maximum in association
rate constant shifts for decreasing concentration from
4kgT to 8kpT. The behavior of the overall dissociation
rate constant roughly follows Arrhenius-like behavior (see
Fig. 77 of the SM).

One might think that the case of the constrained tetra-
hedron would be almost identical to the non-specific de-
coy case with only a slightly different geometry. How-
ever, the behavior is qualitatively different due to the co-
operativity of the non-specific interaction in the trimer.
This unexpected difference between the tetramer and the
dimer systems can be reconciled by realizing that for
the tetramer the decoy state potential is not fixed, but
changes with €5, as Up = 3¢;50, ignoring the configura-
tions in which the attaching protein is bound to two par-
ticles. This corresponds to a dimer with Up = €;5, + €p,
so that the two systems behave similarly for approxi-
mately ep = 2¢;5,. This relation specifies a diagonal cut
through the parameter space €;50, €p plotted in the 2D
heat map representation in Fig. 11. Indeed, the maxi-
mum in association rate along this diagonal qualitatively
explains the behavior of the tetramer formation. These
results indicate that rebinding effects due to the isotropic
potential enhances association for dimer systems, but can
suppress it for larger complexes.

IV. CONCLUSIONS

In this work we have investigated the effect the pres-
ence of additional binding sites as well as nonspecific
isotropic interaction on the association kinetics of patchy
particle colloid and protein models. In general we find
that additional anisotropic potentials suppress overall as-
sociation kinetics, while adding an isotropic potential en-
hances it. This can be understood in energy landscape
terms. An isotropic potential corresponds to a smooth
energy landscape that is easy to navigate for the dimer.
A rougher energy landscape, such as induced by (deep)



FIG. 13. Top: Cartoon images of states defined for the con-
strained tetrahedron system with the motile particle in or-
ange. Bottom: Overall association rate constant kfZET as
function of €;s, for different concentrations by scaling the vol-
ume with V/Vp, where V; is the simulation volume. The rate
constants are scaled with a factor 10 to fit in the same plot,
where V/Vy = 1.0 (black, 2 = 7), 10.0 (purple, z = 8), 10?
(green, = 9), 10° (blue, x = 10), 10* (orange, x = 11), 10°
(red, z = 11). The maximum in the association rate constant
shifts from 4kgT to 8kpT for decreasing concentration.

potential minima causes kinetic trapping, hampering the
search for global minima. Surprisingly, the enhancement
that is gained by the isotropic potential completely van-
ishes for kinetic traps of more than 8 kg7T. Our predic-
tion is thus, that natural protein or colloid association
kinetics can accommodate binding traps up to a certain
strength, but not much higher. This threshold will de-
pend on potential shape; a narrower anisotropic potential
than the 20° angle used here will raise the threshold; a
broader one will lower it. Our results suggest that if op-
timal association kinetics is important, e.g. for signaling
or cellular response, evolution should tend to smooth the
energy landscape for binding, although a certain amount
of roughness can be sustained. If such optimal binding
kinetics is selected for, one would even expect an energy
landscape with a gradient toward the binding site.

In addition, the association kinetics of complexes be-
comes shape dependent. For the formation of a tetramer
we found non-monotonic association rate constants as
function of the nonspecific isotropic interaction, caused
by an induced decoy site. This suggests that for success-
ful complex formation, a non-specific isotropic interac-
tion has to be limited in strength, as cooperativity can
oppose the enhancement in association kinetics. These
insights can also be used as a design principle for enhanc-
ing soft matter self-assembly by dressing patchy particles
with a smooth non-specific isotropic attraction, and en-
suring that nonproductive patchy interactions are not too
strong®®. Experimentally, the isotropic potential can be
altered via ionic strength, pH, depletant, or tempera-
ture'®, while specific interaction can be designed, e.g. by
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sequence mutation.

Our methodology can be applied with arbitrary protein
or colloid potentials. In more complex systems, such as
realistic, large proteins, a challenge will be to construct
a reasonable order parameter describing the interfaces
around the states. In this work we used the energy of
the pair interaction, and something similar might be ap-
propriate for a more complex systems as well. In general,
the problem of the choice of the order parameter is not
solved, although the transition interface sampling meth-
ods are much more forgiving in that respect than other
rare event methods??, save for straightforward dynamics.

Finally, the applied methodology allows evaluation of
rate matrices up to moderate complexity (up to tens of
states). This is important for the multiscale modeling
of biochemical networks®®®! and biomolecular or soft-
matter self-assembly!®.

SUPPLEMENTARY MATERIAL

See Supplementary Material for additional information
on the effective rate constants, path length distributions,
and reactive path densities for the dimer, as well as rate
constant matrices and effective rate constants for the
tetramer system.
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