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Abstract: In this paper, it was developed a method for 

determining the Vibration Normal Modes of a Jib Crane. A Finite 

Element Method modeling the Jib Crane as an Euler-Bernoulli 

boom has been used. We made the approximation of dividing the 

Boom into a limited number of elements, characterizing the 

weight distribution on the boom itself. This allowed us to obtain an 

analytical solution to the problem. The Jib Mass and Stiffness 

Matrices were calculated. Finally, the first natural frequencies are 

obtained as well as the first corresponding eigenvectors. From 

these results, we can derive the behavior of the structural 

dynamics of the Crane. This is particularly important for large 

tower cranes that show high structural dynamics, since this 

approach allows to reduce the vibrations of the crane structure. 

The advantage of this method is given by the fact that the set of 

eigen-frequencies can be recalculated using a supervisor Pc. This 

Pc sends the data of the same eigen-frequencies in real-time to the 

PLC that controls the crane according to the variable position of 

the trolley and payload on the Jib. 

Keywords: Vibrations Normal Modes, Jib Crane, FEM, 

Euler-Bernoulli Approximation.   

I. INTRODUCTION 

A study of the vibration normal modes relative to the 

structure of the Jib in a Tower crane is presented in this work.  

Being the Tower cranes structure not rigid, a resulting 

dynamics vibrations of the crane structure are generated also 

without the presence of the payload. This effect can cause 

dangerous instability and serious damages to the crane 

system. That behavior makes difficult the control of the 

crane, above all precise positioning and manual control of the 

crane movement.  

Recently, numerous works have been carried out relative 

to the sway control of a slewing crane with flexible cable for 

the payload. We can cite [1]-[2]-[3]-[4]-[5], as well as the 

works of the author of the present paper [6] and [7]. 

Each of these works corresponds to different control 

methods with either closed or open loop, as, for example, 

Adaptive Output Feedback Control, Observer Design for 

Non-Linear Systems. Also some Patents have been 

developed regarding the control of the slewing of a tower 

crane. We can cite [8]. Some of these Patents can be 

associated with important companies in the Crane sector. 

Nevertheless, to date, a limited number of papers have 
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considered the contribution of tower crane vibrations to the 

stability of the slewing movement. The control of rotating 

Euler-Bernoulli beams has been an active field of research in 

the last years. 

In a recent paper [9], Liu et al. describe and simulate 

dynamic models to understand tower cranes dynamic 

characteristics and vibration features. The tower crane is 

modeled by the finite element method. 

Ghazwani et al. [10] defined a Failure Analyses of Tower 

Crane using FEM. Nevertheless, they studied tower crane’s 

stability during cyclones, without consider the slewing of the 

crane during the work phase. Also the author of this paper 

developed a work [11] on the vibration of a Tower crane 

during the slewing movement. Nevertheless, although an 

anti-sway solution was developed in this work, the limit was 

that its applicability might be limited for cranes with large 

jibs. This effectively also applies to the previous cited works. 

Instead, in their paper Rauscher et al. [12] defined a modal 

method for the slewing control based on a distributed-mass 

model. The crane jib was modelled as an Euler-Bernoulli 

beam within a rotating frame of reference. A possible limit of 

this work is given by the high number of the discretization 

nodes. In fact, this number should be chosen high enough to 

precisely model the elastic jib dynamics, hence represents a 

high order ODE. Therefore, for stabilization they had to 

perform a complex modal order reduction. 

Other relevant works, where Finite Elements Method was 

applied to Slewing crane, are the cited 

[13]-[14]-[15]-[16]-[17]-[18]. 

 

In this paper, we present an application of vibration 

analysis of a Jib. As a lot of works on the FEM in analyzing 

the cranes, we will derive the theoretical background for the 

governing equations of motion for the jib crane vibration. 

The jib crane was treated as a beam conforms to the 

Euler-Bernoulli beams in order to analyze their vibration 

properties. The vibration analysis of the jib was investigated 

using the method of dividing the beam into finite elements, 

characterized by relevant nodes (counter-jib, trolley, vertical 

crane). The amplitude of vibration, the first natural 

frequencies as well as the first mode shapes were calculate 

using this method. The effect of the different loads 

(counter-jib, payload, trolley) carried by the jib crane was 

taking into consideration by generating a localized force on 

the individual segments on the jib. The resulting theoretical 

general equations were used to evaluate the vibration 

parameters of the jib crane using numerical value. This paper 

is organized as follows. In Section II the dynamical model of 

the Jib crane is described. The Jib is modeled as an 

Euler-Bernoulli beam.  
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The structure of the Jib is divided into a number of 

elements of finite size. A set of functions (shape functions) 

are constructed. The Jib Mass and Stiffness Matrices are 

calculated. Finally, the first natural frequencies are obtained 

as well as the first corresponding eigen-vectors. In Section 

III, an implementation of the method and the most relevant 

results of the model simulation are presented. Here, we 

highlight the fact that the set of eigen-frequencies can be 

recalculated using a supervisor PC, which sends the data of 

the same eigen-frequencies in real-time to the PLC that 

controls the crane. At the end, in Section IV concluding 

remarks are defined. 

II. EULER-BERNOULLI BEAM USING FEM 

The crane system can be schematizzato as a vertical 

column, the Tower, a flexible Jib, a trolley system, a hoisting 

line, and a payload.  and l represent the slew angle and the 

length of the hoisting line respectively. The slew angle is the 

slewing angle of the crane Jib around the Tower or slewing 

pedestal controlled by the operator’s slew command. Sway 

angles are excited as the system operates, namely the 

tangential sway t , and the radial sway 
r . In this study, 

the payload is regarded as a point mass and the payload 

exhibits the behavior of a pendulum. A geometric description 

of the Tower Crane system is given in Fig.1. 

As regards the analysis of the elastic deformations of the 

Jib (referring to papers [19] and [20]) we will make the 

hypothesis of approximating the Jib to a thin beam, with a 

load concentrated in well-defined nodes. We will apply the 

Euler-Bernoulli theory, by ignoring the effects of shear 

deformation and rotary inertia. 

Real systems can be represented as continuous systems 

with infinite degrees of freedom (d.o.f.). Using continuum 

theory means dealing with complex partial differential 

equations. As a consequence, generally, continuous systems 

with infinite degrees of freedom are discretized into a discrete 

model with N degrees of freedom which adequately 

approximates their behavior. There are various discretization 

techniques, some of which are: the Boundary Element 

Method, the Multi Body method, the Ritz-Rayleigh method. 

the Finite Element Method. 

For lumped parameter systems with N d.o.f. it is possible 

to obtain natural frequencies and mode shapes in exact form 

by equating the determinant of the characteristic equation to 

zero and solving the system of coupled equations thus 

obtained. For large values of N, the solution of the system can 

be long; in these cases it is possible to use the modal method 

to obtain a system of the same order of magnitude. 

The Ritz-Rayleigh (R.R.) method it is essentially a 

discretization technique for deriving approximate solutions 

of the system's equation of motion when the displacement 

v(x,t) is obtained as a linear combination of prescribed 

functions multiplied by the unknown functions. The latter are 

obtained by solving an eigenvalue problem. However, for 

complex systems it is not easy to define a priori a possible 

shape function over the entire domain. In fact, in R.R.'s 

method the shape function must be defined over the entire 

domain of the structure. The finite element method allows us 

to overcome this problem, in fact the shape functions are 

defined in small subdomains of the complete system, called 

finite elements. These functions are low order polynomials 

and are the same for every finite element. The methodology 

followed in this work, taken from the finite element method, 

is the following: 

 

A) The structure of the Jib is divided into a number of 

elements of finite size. The elements are joined to each other 

by knots. In our system, each node corresponds to a relevant 

point of the thin flexible beam with which the Jib is 

schematized: either it is the fixing point to the ground (knot 0, 

via the vertical Tower) or that of the final end of the Jib (knot 

2), or those where the concentrated masses are defined (knots 

1 and 3). In Fig.2 the deformation of the Boom, due to the 

vibrations in the xy plane, is represented with a dotted line. 

Therefore, with reference to Fig.2, we set: 

1 2 3; ;Tr cj Tr cjL x L L l x L l  − −                               (1)            

( )

( )

( )

1

2

3

Tr L Tr

cj Tr

cj cj

M m m x

M L l x

M m l







 + + 



  − − 


 +  

                                         (2) 

where M1, M2, M3,are the mass corresponding to the 

positions 1, 2, 3 including the distributed masses respectively 

on the elements 0-3, 0-1, 1-2, being μ the mass per length unit 

on the Jib. lcj is the length of the counter-jib, xtr is the trolley 

position on the x axes on the Jib, L is the total length of the 

Jib. 

B) A given number of d.o.f. is associated with each node. 

To study the bending vibrations of the beam, each node i will 

be associated with a displacement ( , )v x t along the 

perpendicular y axis and a rotation ( , )z x t around the z 

axis.  

C)  A set of functions (shape functions) are constructed 

such that each has a unit value in one degree of freedom and 

zero in all others. We will represent one-dimensional vectors 

with the “_” symbol underneath, for example, and 

two-dimensional matrices with the double subscript, for 

example. We'll have: 
1( , ) ( ) ( ) ( ) ( ) ( ) ( )v x t p x t p x A v t N x v t −=           (3) 

being:  
1( ) ( )N x p x A−                                              (4) 

where ( )N x  are the shape functions, A  is the Coefficient 

matrix. We will have, in fact: 

 
2 3( ) 1p x x x x =                             (5) 

 0 1 2 3( )T t    =                        (6) 

being ( )t  the vector of the time coefficients. It turns out 

like this: 

( ) 2( , ) , 0 1 2 3 ( )z

d
x t v x t x x t

dx
  =         (7) 
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Fig. 1.  Geometric Description of the Tower Crane System 

A. Segment 03  

Let's now define the individual segments into which the 

Jib has been divided. With reference to Fig.2, regarding the 

Segment 03, we set:                  

 
03 0 0 3 3

T

z zv v v =                           (8) 

0(0)v = ;           1(0)z =                      (9) 
2 3

3 0 1 3 2 3 3 3( )v L L L L   − = − + − ;                     (10) 

2

3 1 2 3 3 3( ) 2 3z L L L   − = − + ;                          (11) 

03 2 3

3 3 3

2

3 3

1 0 0 0

0 1 0 0

1

0 1 2 3

A
L L L

L L

 
 
 =
 − −
 

− 

                  (12) 

( ) 4

03 3det A L=                                  (13) 

1

03 03 03 03( ) ( )v A t t A v  −=   =             (14) 

 

2 3 4 4 4

11 3 3 3 3 3 3

2

3 3

1 0 0

det 3 2

1 2 3

A L L L L L L

L L

 
 

= − −  −  
 − 

   (15) 

4

3

4

* 3

03 03 2 3 2 3

3 3 3 3

2 2

3 3 3 3

0 0 0

0 0 0

3 2 3

2 2

T

L

L
A Cof

L L L L

L L L L

 
 
  =
 −
  − 

               (16) 

where
*

03A  is the self-adjoint matrix of the matrix A . 

We thus obtain the inverse matrix 
1

03A−
 

( )

*

031 *

03 03 4

303

1

det

A
A A

LA

−  =                              (17) 

and the resulting shape vector 03N     

1 2 3 1

03 03 03 031N p A x x x A− − =            (18) 

 

2 3

2 3

3 3

2 3

2

3 3

03
2 3

2 3

3 3

2 3

2

3 3

3 2
1

2

3 2

T

x x

L L

x x
x

L L
N

x x

L L

x x

L L

  
− −  

  
  
 + + 
  

=  
  

+  
  

  
+  

   

                (19) 

 

D) The shape functions of an element are substituted into 

the expression of the kinetic energy 
ijT  and the elastic 

potential energy to obtain the Mass and Stiffness matrices of 

each finite element
ijU  to obtain the Mass

ijM  and Stiffness 

ijK  matrices of each finite element. Thus, from the Kinetic 

Energy 03T  of element 03is obtained the expression of the 

Mass
03M : 

3

3

2

03 03 03
0

03 03 03
0

1
( , )

2

( ) ( )

L

L
T

T A v x t dx

M N x N x dx





−

−

=

=  





                        (20) 

being   the mass per unit length on the beam. 

2 2

3 3 3 3

2 3 2 3

3 3 3 3

03

2 2

3 3 3 3

2 3

3 3

13 11 9 47

35 210 70 420

11 1 13 1

210 105 420 140

9 13 13 11

70 420 35 210

47 1 11

420 140 21

L L L L

L L L L

M

L L L L

L L



       
− −       

       

       
−       

       
= 

       
− − −       

       

   
−   

   

2 3

3 3

1

0 105
L L

 
 
 
 
 
 
 
 
 
    

−    
    

(21) 
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( )3 03cjM m I M=  +                     (22) 

 

being 
cjm the mass of the counter-jib and I the Identity 

matrix. It is also obtained, from Elastic Potential Energy 03U  

of the element 03, the expression of the Stiffness matrix 

03K : 

3

3

2
2

03
03 20

2 2

03 03
03 2 20

( , )1

2

( ) ( )

L

z

T
L

z

v x t
U EI dx

x

d N x d N x
K EI dx

dx dx

−

−

 
=  

 

   
=     

   





  (23) 

being E the elastic modulus and zI the second moment of 

inertia on the boom. 

 

2 3

3 3

22
3 303

2

2 3

3 3

2

3 3

6 12

4 6

( )

6 12

2 6

T

x

L L

x

L Ld N x

dx x

L L

x

L L

  
− +  

  
  
 + 
    

=   
    

+  
  

  
+  

   

         (24) 

3 2 3 2

3 3 3 3

2 2

3 3 3

03

3 2 3 2

3 3 3 3

2 2

3 3 3 3

12 78 12 6

78 78 2
0

12 78 12 6

6 2 6 4

z

L L L L

L L L
K EI

L L L L

L L L L

        
− −        

        
 

     
 − −     
      

=  
        

− −        
        

        
 − − −       
        



    (25) 

B. Segment 01  

As regards the Segment 01, in a similar way, we will 

have: 

 
01 0 0 1 1

T

z zv v v =                          (26) 

0(0)v = ;           1(0)z =                       (27) 
2 3

1 0 1 1 2 1 3 1( )v L L L L   = + + + ;                      (28) 

2

1 1 2 1 3 1( ) 2 3z L L L   = + + ;                           (29) 

01 2 3

1 1 1

2

1 1

1 0 0 0

0 1 0 0

1

0 1 2 3

A
L L L

L L

 
 
 =
 
 
 

                   (30) 

( ) 4

01 1det A L=                                   (31) 

 
1

01 01 01 01( ) ( )v A t t A v  −=   =            (32) 

 

2

14 1 1 1

1

0 1 0

det 1 2

0 1 2

A L L L

L

 
 

=  − 
 
 

           (33) 

 
4

1

4

* 1

01 01 2 3 2 3

1 1 1 1

2 2

1 1 1 1

0 0 0

0 0 0

3 2 3

2 2

T

L

L
A Cof

L L L L

L L L L

 
 
  =
 − −
  − 

         (34) 

 

( )

*

011 *

01 01 4

101

1

det

A
A A

LA

−  =  

 
1 2 3 1

01 01 01 011N p A x x x A− − =              (35) 

 

2 3

2 3

1 1

2 3

2

1 1

01
2 3

2 3

1 1

2 3

2

1 1

3 2
1

2

3 2

T

x x

L L

x x
x

L L
N

x x

L L

x x

L L

  
+ +  

  
  
 − + 
  

=  
  

−  
  

  
− +  

   

                      (36) 

 

1

01 01 01
0

( ) ( )
L

TM N x N x dx=                 (37) 

 

2 2

1 1 1 1

2 3 2 3

1 1 1 1

01

2 2

1 1 1 1

2 3

1 1

59 67 13 31

7 210 7 60

67 1 11 1

210 105 210 140

13 11 13 11

7 210 35 210

47 1 11

420 140 210

L L L L

L L L L

M

L L L L

L L



       
−       

       

       
− −       

       
= 

       
− −       

       

   
− − −   

   

2 3

1 1

1

105
L L

 
 
 
 
 
 
 
 
 
    
    

    

  (38) 

 

( )1 01Tr LM m m I M = +  +                (39) 

 

being Trm  the Trolley mass and Lm the Load mass. 

http://doi.org/10.35940/ijbsac.D0509.1210423
http://www.ijbsac.org/


International Journal of Basic Sciences and Applied Computing (IJBSAC) 

ISSN: 2394-367X (Online), Volume-10 Issue-4, December 2023 

5 

 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijbsac.D05091210423 
DOI:10.35940/ijbsac.D0509.1210423 

Journal Website: www.ijbsac.org 

 

2 3

1 1

22
1 101

2

2 3

1 1

2

1 1

6 12

4 6

( )

6 12

2 6

T

x

L L

x

L Ld N x

dx x

L L

x

L L

  
+  

  
  
 − + 
    

=   
    

−  
  

  
− +  

   

              (40) 

1

2 2

01 01
01 2 20

( ) ( )
T

L

z

d N x d N x
K EI dx

dx dx

   
=     

   
    (41) 

 

3 2 3 2

1 1 1 1

2 2

1 1 1

01

3 2 3 2

1 1 1 1

2 2

1 1 1 1

156 54 12 18

54 6 2
0

12 6 12 6

18 2 6 4

z

L L L L

L L L
K EI

L L L L

L L L L

        
− −        

        
 
     

 − −     
      

=  
        

− − −        
        

        
−        

        


 (42) 

C. Segment 12  

Concerning the Segment 12, we get the same results as 

Segment 01, simply by replacing the length 1L with the 

length 2L . This is except for the boundary conditions that 

are set subsequently. We will therefore have: 

2 12M M=                        (43)  

D. Matrices M and K for the Overall Beam (Jib)  

Let v  the vector containing all the d.o.f. of the 3-element 

beam considered: 

 3 3 0 0 1 1 2 2

T

z z z zv v v v v   =         (44) 

 

This vector can be related to the vectors
ijv  relating to the 

individual finite elements using the transformation 

matrices ija . We will therefore have for the 3 segments: 

3

3

30 30

0

0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
;

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

z

z

v

a v
v





  
   
   = =
   
   
   

  (45) 

0

0

01 01

1

1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
;

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

z

z

v

a v
v





  
   
   = =
   
   
   

  (46) 

01

1

12 12

2

2

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
;

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

z

z

v

a v
v





  
   
   = =
   
   
   

  (47) 

  being:            

30 30

01 01

12 12

a v v

a v v

a v v

  =


 =


 =

                                                          (48) 

 

Now we consider the matrix 
03M for the segment 30 which 

we describe (for synthetic reasons) using the symbols 
ija  for 

its elements: 

 

11 12 13 14

21 22 23 24

03

31 32 33 34

41 42 43 44

a a a a

a a a a
M

a a a a

a a a a



 
 
 =
 
 
 

           (49) 

 

The matrix
03M  will be associated with the total 

matrix
(0)TOTM  of the distributed masses, using the 

following transformation: 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

30 03 30

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T

a a a a

a a a a

a a a a

a a a a
a M a 

 
 
 
 
 
 =
 
 
 
 
 
 
 

   (50) 

 

Similarly, we will consider the matrix 
01M for the segment 

01 using the symbols ijb  for its elements; we will have: 

 

11 12 13 14

21 22 23 24

01

31 32 33 34

41 42 43 44

b b b b

b b b b
M

b b b b

b b b b



 
 
 =
 
 
 

                                    (51) 

 

The matrix 01M  will be associated with the total matrix 

(0)TOTM of the distributed masses using the 

following transformation: 
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Similarly, we will consider the matrix 
12M for the 

segment 12 using the symbols 
ijc  for its elements; we 

will have: 

 

 

 
11 12 13 14

21 22 23 24

01 01 01

31 32 33 34

41 42 43 44

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

T

b b b b

b b b b
a M a

b b b b

b b b b



 
 
 
 
 
 =
 
 
 
 
 
 
 

    (52) 

 

 

 

11 12 13 14

21 22 23 24

12

31 32 33 34

41 42 43 44

c c c c

c c c c
M

c c c c

c c c c



 
 
 =
 
 
 

     (53) 

 

The matrix
12M will be associated with the total 

(0)TOTM  of the distributed masses using the following transformation: 

 

12 12 12

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Ta M a
c c c c

c c c c

c c c c

c c c c



 
 
 
 
 
 =
 
 
 
 
 
 
 

(54) 

 

 

2 2

3 3 3 3

2 3 2 3

3 3 3 3

2 2

3 3 3 1 3

(0)

13 11 9 47
0 0 0 0

35 210 70 420

11 1 13 1
0 0 0 0

210 105 420 140

9 13 13 59 11 67

70 420 35 7 210

TOT

L L L L

L L L L

L L L L L

M 

       
− −       

       

       
−       

       

          
− − + − +          

          

=

2 2

1 1 1

2 3 2 2 3 3 2 3

3 3 3 1 3 1 1 1

1 1

13 31
0 0

210 7 60

47 1 11 67 1 1 11 1
0 0

420 140 210 210 105 105 210 140

13 11
0 0

7 210

L L L

L L L L L L L L

L L

      
−      

      

                  
− + − + − −                  

                  

   
−   

   

2 2 2 2

1 2 1 2 2 2

2 3 2 2 3 3

1 1 1 2 1 2

13 59 11 67 13 31

35 7 210 210 7 60

31 1 11 67 1 1 11
0 0

60 140 210 210 105 105 210

L L L L L L

L L L L L L

              
+ − + −              

              

               
− − − + + −               

               

2 3

2 2

2 2

2 2 2 2

2 3 2 3

2 2 2 2

1

140

13 11 13 11
0 0 0 0

7 210 35 210

31 1 11 1
0 0 0 0

60 140 210 105

L L

L L L L

L L L L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

−   
   

        
− −        

        
        

− − −        
        

 (55) 

 

 

The total matrix on the Jib (0)TOTM , relating to the distributed masses, was obtained as: 

( )(0) 30 03 30 01 01 01 12 12 12

T T T

TOTM a M a a M a a M a= + + .                           (56) 

From which TOTM will turn out to be, coming form (22), (39) e (43): 

1 2 3TOTM M M M= + +                                       (57) 

We will proceed in a completely similar way for the stiffness matrix (0)TOTK , relative to the distributed masses, obtaining: 
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3 2 3 2

3 3 3 3

2 2

3 3 3

3 2 3 3 2 2 3 2

3 3 3 1 3 1 1 1

(0)

12 78 12 6
0 0 0 0

78 78 2
0 0 0 0 0

12 78 12 156 6 54 12 18

TOT z

L L L L

L L L

L L L L L L L L

K EI

       
− −       

       

     
− −     

     

                
− − + + − −               

                

=

2

12 2 2

3 3 3 1 3 1

3 2 3 3 2 2 3 2

1 1 1 2 1 2 2 2

0 0

6
6 2 6 54 4 2

0 0 0

12 6 12 156 6 54 12 18
0 0

L
L L L L L L

L L L L L L L L


 



 
    −           

− − + − − +              
             

                 
− − + − + − −                

                 

2 2 2 2

1 1 1 2 1 2 2

3 2 3 2

2 2 2 2

2 2

2 2 2 2

18 2 6 54 4 6 2
0 0 0

12 6 12 6
0 0 0 0

18 2 6 4
0 0 0 0

L L L L L L L

L L L L

L L L L
















 



                
− + − + −                

                

       
− − −       

       

       
−       

       















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(58) 

 

The total stiffness matrix 
(0)TOTK relating to the distributed masses, is obtained as: 

( )(0) 30 03 30 01 01 01 12 12 12

T T T

TOT TOTK K a K a a K a a K a = + +                                  (59) 

In a next work we will describe how this method of determining the normal modes of vibration for the Jib can be applied to 

control the vibrations and sway of a Slewing Crane.                                 

 
Fig. 2 Finite Elements Distribution on the Jib 

 
                                     

III. RESULT AND DISCUSSION 

We are now able to calculate the eigenvalues and 

eigenvectors associated with the dynamic vibration problem. 

Some examples of the determination of Natural Frequencies 

and Vibration Measurement are given in articles [21] and 

[22]. We use GNU Octave version 5.1.0. Octave is a 

mathematical package capable of solving an eigenvalue and 

eigenvector problem. In particular for this type of problem, 

the syntax is: 

[eigenvector,eigenval] = eig(Square_Matrix). 

If we suppose we have a 2 degrees of freedom system of 

which we know the stiffness and mass matrix, with Octave 

we can perform the modal analysis using the following 

syntax: 

2 0TOT i TOT iK M −  =             (60) 

Clearly TOTK e TOTM are known terms, as they are derived a 

priori from the characteristics of the structural system, while 

i e i  are unknowns. The previous expression can be 

rewritten as follows: 
2

TOT i i TOT iK M =   .               (61) 

This represents a generalized eigenvalue and eigenvector 

problem and can be reduced to the standard form simply by 

pre-multiplying by the inverse matrix TOTM . We will have: 
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1 2

TOT TOT i i iM K −   =                (62) 

It is therefore a matter of finding the eigenvalues and 

eigenvectors of the overall matrix 
1

TOT TOTM K−  . 

In Tab.1 are described the Exemplary Crane Parameters 

for a Jib of a large Crane. 

In the following figures the eigenvector 1 (Fig.3), 

eigenvector 2 (Fig.4), eigenvector 3 (Fig.5) and eigenvector 4 

(Fig.5) are represented. Finally, the histogram relating to the 

Eigenfrequencies corresponding to the first six Vibration 

Norman Modes is defined in Fig.7. 
 

 
Fig. 3 Eigenvector 1 

 
Fig. 4 Eigenvector 2 

 
Fig. 5 Eigenvector 3 

 
Fig. 6 Eigenvector 4 

Once we have obtained the eigen-frequencies we can 

define what the relevant positive aspect of this new method 

is. In fact, since the calculation of the eigen-frequencies is 

carried out in analytical form, they can be recalculated in 

real-time using a PC-supervisor. This will send, upon request, 

to the PLC that controls the crane, the data of the same 

eigen-frequencies depending on the variable position on the 

Jib of the trolley and the payload. In this way the speed 

profile, calculated on the PLC to obtain the anti-vibration and 

anti-sway effect, will always be correlated to the actual 

position of the trolley (and the payload) on the Jib. This 

position can obviously be very different depending on the 

situations. Otherwise, in the case of using a FEM with a very 

high number of elements (which happens with the methods 

described by the previous works) this calculation cannot be 

carried out in real-time, and therefore the possibility of 

having a description of the real system is compromised. 
 

 
Fig.7 Eigenfrequencies Corresponding to the first 6 

Vibration Norman Modes 

Table I: Exemplary Crane Parameters 

Symbol Parameter Value Unit 

μ 
Linear density  

(Mass per length unit) 
100 kg/m 

E Elastic Modulus 210·109 Pa 

Iz Second Moment of Inertia 5·10-3 m4 

L Length of the Jib 60 m 

lCJ Length of the counter-jib 12 m 

XTr 
Variable position of the Trolley on 

the Jib 
30 

m 

mCJ Counter-Jib mass 5·103 kg 

mL Load mass 2·103 kg 
mTr Trolley mass 6·103 kg 

IV. CONCLUSION 

This paper explores an effective method of analyzing the 

vibration of a jib crane by utilizing a Finite Element Method. 

The Jib Crane was modelled as an Euler-Bernoulli boom with 

the aim of finding the amplitude, frequency and mode shapes. 

The Boom was divided into a limited number of elements, 

characterizing the distribution of weights on the boom itself, 

in order to obtain an analytical solution to the problem. An 

approximate mode equation was derived using expansion of 

the modes shape as the expansion function for the beam. The 

results show an effective and practical approach to the 

computation of vibration of Jib structure, particularly 

important for large tower cranes that present high structural 

dynamics.  
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The advantageous novelty of this method is given by the 

fact that the eigen-frequencies can be calculated in real time, 

using a supervisor PC, which sends the data of the same 

eigen-frequencies to the PLC that controls the Jib crane. 

Therefore, these data are according to the variable position on 

the Jib of the trolley and payload, so that the PLC determines 

the most correct anti-vibration speed profiles. 
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