
UNIVERSITY OF UDINE

DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCE AND PHYSICS

READERSOURCING 2.0:

DOCUMENTATION

MICHAEL SOPRANO AND STEFANO MIZZARO

v1.0.15

Contents

List of Figures 3

List of Tables 4

1 Introduction 5

2 General Architecture 5

3 RS Server 5

3.1 Implementation and Technology . 6

3.2 Communication Paradigm . 8

3.3 Database . 9

3.4 Class Diagram . 11

3.5 Deploy . 13

3.5.1 Modality 1: Manual . 14

3.5.1.1 Requirements . 14

3.5.1.2 How To . 14

3.5.1.3 Quick Cheatsheet . 15

3.5.2 Modality 2: Manual Way (Using Docker) 15

3.5.2.1 Requirements . 15

3.5.2.2 How To . 16

3.5.3 Modality 3: Deploy on Heroku . 17

3.5.3.1 Requirements . 17

3.5.3.2 How To . 18

3.5.3.3 Quick Cheatsheet . 18

3.5.4 Environment Variables . 19

3.5.5 Setting Variables . 20

3.5.6 Sending Mails . 21

3.5.7 Connecting To The Database . 21

3.5.8 Logging To The Standard Output . 21

4 RS PDF 22

4.1 Implementation and Technology . 22

4.2 Package Diagram . 22

4.3 Class Diagram . 23

4.4 Installation . 24

4.4.1 Requirements . 24

4.4.2 Commmand Line Interface . 24

5 RS Rate 27

5.1 Implementation and Technology . 27

1

5.2 Installation . 27

5.3 Usage . 28

6 RS Py 32

6.1 Implementation and Technology . 33

6.2 Installation . 33

6.3 Usage . 33

7 Overview 34

References 37

2

List of Figures

1 Architecture of Readersourcing 2.0 (NOT UML). 6

2 Intuitive scheme of the MVC pattern (NOT UML). 7

3 Entity-Relationship schema of the RS Server database (NOT UML). 11

4 Class diagram of RS Server. 12

5 Representation of the token-based authentication process (NOT UML). . . . 13

6 Package diagram of RS PDF. 23

7 Class diagram of RS PDF. 25

8 RS Rate characterized as an extension having a popup action. 28

9 The login page of RS Rate. 29

10 The rating page of RS Rate. 29

11 The user registration page of RS Rate. 30

12 The rating page of RS Rate after a “save for later” request. 31

13 A publication link-annotated through RS Rate. 31

14 The server-side interface to rate a publication. 32

15 The profile page of RS Rate. 33

16 Readers’ interaction modalities with the Readersourcing 2.0 ecosystem. . . . 36

3

List of Tables

1 Subset of the RESTFul interface of RS Server. 10

2 Environment variables of RS Server. 20

3 Command line options of RS PDF. 26

4 Parameters available for the Seeder Jupyter notebook. 35

5 Parameters available for the Readersourcing Jupyter notebook. 35

4

1 Introduction

The Readersourcing 2.0 ecosystem has been built within a research project co-funded

by SISSA Medialab1 and University of Udine.2 It has been presented by Soprano et al. [5]

during the IRCDL 2019 Conference.3 The paper can be found also on Zenodo.4 The code

and the related documentation is available on GitHub.5

Initially, a recap of its general architecture is presented, followed by a brief description

of the role and purpose of each of its components. Specific aspects, such as the technology

used, the internal architecture, and the structure of the database, are also discussed. This

is achieved through the use of different types of diagrams adhering to the UML standard

(unless otherwise specified), which are drawn according to the style rules for that standard

proposed by Fowler [2].

2 General Architecture

Readersourcing 2.0 is an ecosystem composed of more than one component. Specifically,

it includes RS Server [9] (presented in Section 3), which acts as a server to gather all the

ratings given by readers, and RS Rate [8] (presented in Section 5), which acts as a client,

enabling readers to rate publications. Although all operations can be carried out directly

on the web interface provided by RS Server, another component, RS PDF [6] (presented

in Section 4), is responsible for annotating PDF files using a dedicated software library.

This component is utilized by the server-side application. Additionally, RS Py (presented

in Section 6) provides a fully functional implementation of the RSM and TRM models

described by Soprano et al. [5].

Figure 1 provides an overview of the architecture of Readersourcing 2.0, and in the

following, we briefly describe these four components. We summarize the capabilities of the

ecosystem in Section 7.

3 RS Server

RS Server [9] is the server-side component that has the task of collecting and aggregating

the ratings given by readers and using the RSM and TRM models described by Soprano

et al. [5] in order to compute quality scores for readers and publications. An instance of

RS Server is deployed along one of RS PDF. Then, there are up to n different browsers along

with their end-users, which communicate with the server: each of them is characterized by

an instance of RS Rate. Both RS PDF and RS Rate are described in the following.

1https://medialab.sissa.it/
2https://www.uniud.it/
3https://ircdl2019.isti.cnr.it/
4https://zenodo.org/record/1446468
5https://github.com/Miccighel/Readersourcing-2.0

5

https://medialab.sissa.it/
https://www.uniud.it/
https://ircdl2019.isti.cnr.it/
https://zenodo.org/record/1446468
https://github.com/Miccighel/Readersourcing-2.0

Figure 1: Architecture of Readersourcing 2.0 (NOT UML).

This setup facilitates interactions between readers and the server through clients installed

on readers’ browsers or by utilizing the stand-alone web interface provided by RS Server.

These clients are responsible for managing the registration and authentication of readers,

handling rating actions, and managing the download actions of link-annotated publications.

During the design phase of RS Server, strategies were adopted to ensure extensibility

and generality. This includes:

(i) Straightforward addition of new models.

(ii) A shared input data format among all models.

(iii) A standard procedure for models needing to save values locally in the RS Server

database.

3.1 Implementation and Technology

RS Server is developed in Ruby on Rails,6 which is a framework that allows building

applications strongly based on the Model-View-Controller (MVC) architectural pattern.

The technology used to develop RS Server is an open-source web application framework

called Ruby on Rails (also referred to as RoR or Rails only). More specifically, Rails is

the framework built above Ruby, the actual programming language. It allows building

applications strongly based on the Model-View-Controller (MVC) architectural pattern.

6https://rubyonrails.org/

6

https://rubyonrails.org/

Figure 2: Intuitive scheme of the MVC pattern (NOT UML).

The MVC pattern allows for the separation of the control logic of the program from

data presentation and business logic. Therefore, it facilitates the creation of an effective

architecture from the initial design phase. Figure 2 provides an intuitive representation of

the structure that this pattern enables. The structure comprises three distinct entities: the

Controller, responsible for managing control logic; the Model, tasked with encapsulating

business logic; and the View, responsible for implementing data presentation.

The Controller has direct access to both the Model and the View. Typically, it receives

user input from the View and, based on this input, updates the internal state of the Model

using its methods. Subsequently, the Controller sends the updated Model to the View,

which then utilizes this information to obtain and display the results of the processing. In

a generic software system, there can be more than one Controller, and each Controller may

manage multiple instances of the Model. In MVC frameworks designed for web applications,

such as Rails, it is common practice to have a number of Controllers equal to the entities

modeled within the application domain. Additionally, there may be more than one View

implementation to present the internal state of a specific type of Model.

The use of the MVC pattern is not the sole foundational principle of Rails. One of

the most crucial principles shaping Rails for the development of high-quality applications is

“Convention Over Configuration”. In essence, the framework aims to reduce the decisions

developers need to make during application construction by embracing standard conven-

tions that can be modified for increased flexibility if necessary. To delve deeper into the

foundational principles of Rails, one can refer to the “Rails Doctrine”.7

As a final note, Rails is a dynamically evolving framework widely employed in the indus-

try by prominent players such as GitHub, SoundCloud, and others. It is a widely embraced

and esteemed technology with an active community and abundant learning resources.

7https://rubyonrails.org/doctrine/

7

https://rubyonrails.org/doctrine/

3.2 Communication Paradigm

A modern MVC framework like Rails provides the capability to develop various types of

web applications. One such possibility is the creation of a Web Service, which is a software

component capable of executing various operations made remotely accessible through the

exchange of messages encoded in a standard interchange format such as JSON. This is

facilitated by a transport layer built on top of basic Internet protocols like HTTP. However,

the implementation of this functionality must adhere to a paradigm that precisely defines

the available functionalities (resources and operations) and specifies the required messages

for accessing them.

One of the communication paradigms for Web Services is RESTful (REpresentational

State Transfer). In this paradigm, the functionalities of a Web Service are represented by

resources identified through different URIs, and the type of HTTP message sent determines

the operation to be performed. The result of the operation initiated by the received message

from the Web Service is a new message encoded in the same interchange format as the one

sent. It is the client’s responsibility to accurately interpret and utilize the response from the

Web Service.

RS Server is a Web Service (Server API-Only in Rails terminology) following a communi-

cation paradigm based on RESTful interfaces. It operates through the exchange of messages

encoded in JSON format, utilizing the transport layer provided by the HTTP protocol.

The communication interface of RS Server is continuously evolving. Given the dynamic

nature of its development, providing a comprehensive inclusion in this document is impracti-

cal. However, interested parties can freely explore the evolving interface, including examples

of requests, by visiting the following URL.

https://documenter.getpostman.com/view/4632696/RWTiwfV4?version=

latest

To illustrate, Table 1 presents a subset of the RESTful interface of RS Server. These

operations encompass all functionalities related to managing one of the entities within the

application domain, specifically, publications. Suppose a user initiates a “show” operation

for a publication with an identifier equal to 1 by accessing the corresponding endpoint. In

response, RS Server would provide a JSON-encoded response similar to the example below.

1 {
2 "id": 1,

3 "doi": "10.1140/epjc/s10052-018-6047-y",

4 "title": "Uncertainties in WIMP dark matter scattering revisited",

5 "author": "John Ellis",

6 "creator": "Springer",

7 "producer": null,

8 "...": ...,

8

https://documenter.getpostman.com/view/4632696/RWTiwfV4?version=latest
https://documenter.getpostman.com/view/4632696/RWTiwfV4?version=latest

9 "created_at": "2018-08-02T13:27:46.988Z",

10 "updated_at": "2018-08-02T13:27:49.135Z",

11 "...": ...,

12 }

3.3 Database

To facilitate the implementation of functionalities such as the storage of link-annotated

publications and user authentication, a database schema has been defined, as illustrated in

Figure 3. Within the application domain of Readersourcing 2.0, three main entities have

been modeled:

• Users: models the users of the system, characterized by their personal data. Users

may have an optional ORCID and a boolean indicating whether they wish to receive

emails. Additionally, various attributes are utilized to store different types of tokens,

enabling operations such as password reset.

• Ratings: represents the ratings provided by readers for publications. These ratings

are characterized by a numerical score. The entity also includes a boolean to indicate

whether a rating is anonymous, and another boolean to track whether it has been

edited at a later time.

• Publications: models the publications that have been rated by readers. These publi-

cations are characterized by an optional DOI, various metadata, and a set of attributes

used to manage server filesystem paths. These attributes ensure the storage of both

the original and link-annotated files, both encoded in PDF format.

In addition, each of these entities is further characterized by additional attributes (steadiness,

informativeness, . . .), representing the scores or parameters computed by the Readersourcing

models.

Figure 3 also depicts two relationships (gives and related to) that exist between these

three entities. These relationships facilitate the “tying together” of the entities they reference

and ensure compliance with the referential integrity constraint.

In particular, the gives relation establishes that a user can give [0, . . . , n] different ratings,

with the constraint that a single rating can be expressed at most by a user. The multiplicity

equal to 0 regarding users in Figure 3 may seem unusual at first glance. However, this

constraint is intended to allow the expression of anonymous ratings.

Similarly, the related to relation establishes that a rating is associated with a specific

publication, while a publication can be characterized by [1, . . . , n] different ratings. This

structure naturally accommodates other constraints, such as the condition that if at least

one publication does not exist, no ratings need to exist.

9

Endpoint
HTTP

Message
Operation Description

/publications.json GET Index Fetches the entire collection of

Publications.

/publications/list GET List Fetches the entire collection of

Publications (server-side view).

/publications/1.json GET Show Returns the Publication with

identifier equal to 1.

/publications/lookup.json POST Lookup Searches for a Publication; if it

doesn’t exists, it is fetched from

the given URL.

/publications/random.json GET Random Returns a random Publication.

/publications/1/is rated.json GET Is Rated Checks if the Publication with

identifier equal to 1 has been

rated by at least one reader.

/publications/1/is saved for later.json GET
Is Saved For

Later
Checks if the Publication with

identifier equal to 1 has been

saved for later by the current

user.

/publications.json POST Create Creates a new Publication.

/publications/is fetchable.json POST Is Fetchable Checks if the provided URL con-

tains a fetchable Publication.

/publications/extract.json POST Extract Extract the rating url from a

link-annotated Publication.

/publications/fetch.json POST Fetch Fetches a Publication from the

given URL.

/publications/1/refresh.json GET Refresh Fetches again the Publication

with identifier equal to 1.

/publications/1.json PUT Update Updates the Publication with

identifier equal to 1.

/publications/1.json DELETE Delete Deletes the Publication with

identifier equal to 1.

.

Table 1: Subset of the RESTFul interface of RS Server.

10

Figure 3: Entity-Relationship schema of the RS Server database (NOT UML).

3.4 Class Diagram

Figure 4 shows a diagram of the main classes of RS Server. As one can see, the con-

vention for which there is an MVC triple for each of the entities modeled in the application

domain is followed, althought Views are not shown in the diagram because in this case

they are just simple methods. The Controller methods represent actions that a user can

perform on individual entities or on collections of them, thus mapping the endpoints of the

communication protocol used in order to allow the communication between RS Server and

the instances of RS Rate. As for the Models, their attributes represent the characteristics

of the reference entity, while their methods encapsulate the business logic.

Additionally, there are two controllers—namely, the Application Controller and the Au-

thentication Controller—tasked with managing user authentication. As mentioned earlier,

RS Server functions as a Web Service. In this setup, the user interface is presented directly

on instances of RS Rate. Consequently, these instances send messages to which RS Server

responds once the necessary processing is complete, following the RESTful communication

paradigm.

Due to this design choice, the traditional server-side approach to user authentication,

where information about the logged user is stored in session data, is not viable. This is

because the RESTful paradigm is stateless. To authenticate themselves, users must attach a

token to each request, identifying their validity within the system. Therefore, a token-based

authentication approach has been implemented.

When a user initiates the first request to RS Server after a period of inactivity, they are

required to fill in the login form. If the provided credentials exist in the database, they are

encrypted to form a payload. This payload, combined with a unique signature, results in an

11

Figure 4: Class diagram of RS Server.

12

Figure 5: Representation of the token-based authentication process (NOT UML).

alphanumeric JSON string—the actual token. The generated token is then sent to the user’s

RS Rate instance, which securely stores it in a cookie with an expiration date. Subsequent

requests to RS Server from the RS Rate instance include the previously obtained token in

the Authorization header of the HTTP payload, demonstrating that the user has successfully

completed the authentication procedure.

For RS Server, upon receiving a request, if a token is present, it is extracted and de-

coded. If the decoded token corresponds to one saved in the database, the user identified

by the payload is authorized to proceed. Figure 5 provides an intuitive illustration of this

authentication process.

Additionally, there is another set of classes serving purposes beyond representing MVC

triples for the entities in the application domain. Specifically, these classes are internally

utilized by the model containing the business logic to manage given ratings and are respon-

sible for implementing the Readersourcing models. The structure of these classes adheres

to a design pattern known as Strategy (specifically, Readersourcing, ReadersourcingStrategy,

RSMStrategy, and TRMStrategy). The use of the Strategy pattern allows for the integra-

tion of new models at a later time without necessitating radical changes to the structure of

RS Server.

3.5 Deploy

There are three main modalities that can be used to deploy a working instance of

RS Server in the development or production environment. The former environment must be

used if there is the need to:

• add custom Readersourcing-based models;

13

• extend/modify the current implementation of RS Server;

• simply to test it in a safe way.

In the following, three deployment modalities to obtain a working instance of RS Server

are described along with their requirements. The first two modalities allow for starting

RS Server on the local machine, enabling the editing of its source code, and building a

Docker image that can be deployed via local containers in a production-ready environment.

The third modality enables deploying RS Server as a Heroku application.

It is strongly suggested to read the section dedicated to the environment variables (Sec-

tion 3.5.4), as RS Server will not function properly without them.

3.5.1 Modality 1: Manual

This modality allows for manually downloading and initializing RS Server’s codebase on

a local machine. It is the most demanding in terms of prerequisites, as it assumes having

a full and working installation of Ruby, JDK (Java Development Kit), and PostgreSQL.

Despite these requirements, it offers greater flexibility.

3.5.1.1 Requirements

• Ruby == 2.7.8;

• JDK (Java Development Kit) == 11.0.19;

• PostgreSQL >= 11.2.

3.5.1.2 How To

Clone the RS Server repository,8 and navigate to its main directory using a command line

prompt (you should see app, bin, config, etc., folders with an ls or dir command), then

type gem install bundler. This gem (dependency) provides a consistent environment for

Ruby projects, like RS Server, by tracking and installing the exact gems (dependencies) and

versions needed.

To fetch all dependencies required by RS Server, type bundle install and wait for the

process to complete.

The next two commands are necessary only before the first startup of RS Server because

they will create and set up the database. Ensure that the PostgreSQL service is started and

ready to accept connections on port 5432. Type rails db:create to create the database

and rails db:migrate to create the required tables.

Now, create a .env file as explained in Section 3.5.5 and set the required environment

variables.

8https://github.com/Miccighel/Readersourcing-2.0-RS_Server

14

https://github.com/Miccighel/Readersourcing-2.0-RS_Server

Optionally, you can type rails db:seed to seed some sample data into the database.

After these commands, everything is ready to launch RS Server in development or production

mode. To do that, type cd bin to move inside the bin directory, and then type

rails server -b 127.0.0.1 -p 3000 -e development

with the proper values for -b, -p, and -e options. If the sample values are used, RS Server

will be started and bound to the 127.0.0.1 IP address with port 3000 and the development

environment. Every HTTP request, therefore, must be sent to the http://127.0.0.1:3000

address.

3.5.1.3 Quick Cheatsheet

1. cd to main directory;

2. gem install bundler;

3. bundle install;

4. rails db:create;

5. rails db:migrate;

6. create and populate the .env file;

7. cd bin;

8. rails server -b <your_ip_address> -p <your_port> -e development or

rails server -b <your_ip_address> -p <your_port> -e production.

3.5.2 Modality 2: Manual Way (Using Docker)

This modality allows you to download and initialize RS Server’s codebase on a local

machine using a faster and less frustrating approach based on Docker, despite being less

flexible. Docker is a project that automates the deployment phase by distributing an image

of an application inside a container.

An image is a lightweight, standalone, and executable package of software that includes

everything needed to run an application: code, runtime, tools, libraries, and settings. This

means that there is no need to manually install the runtimes, libraries, or dependencies

needed to run an application since the Docker Engine will automatically initialize everything.

A container is a standard unit of software that packages up code and all its dependencies

so the application runs quickly and reliably from one computing environment to another.

Only a working installation of Docker Desktop CE (Community Edition) is required.

3.5.2.1 Requirements

• Docker Desktop CE (Community Edition);9

9https://www.docker.com/products/docker-desktop

15

https://www.docker.com/products/docker-desktop

3.5.2.2 How To

Clone RS Server repository10 and navigate to its main directory using a command line

prompt. Now, type ls or dir. You should see a docker-compose.yml file and a Dockerfile.

If you do not see them, please make sure you are in the main directory of the cloned

repository.

Before proceeding, ensure that your Docker Engine is running. Otherwise, the following

commands will not work. At this point, two different scenarios can unfold.

Scenario 1: Deploy With Remote Images If there is no need to edit the source code of

RS Server, the Docker Engine can fetch the dependencies required in the docker-compose.yml

file and initialize the application. The dependencies specified in the file are an image of Post-

greSQL for the database and one of RS Server itself, released on the Docker Hub.11

To do this, open the docker-compose.yml file and uncomment the following section and,

additionally, comment out the remaining lines of code in the file.

----------- SCENARIO 1: DEPLOY WITH REMOTE IMAGES ----------

----------- END OF SCENARIO 1: DEPLOY WITH REMOTE IMAGES ----------

Next, from the command line prompt, type docker-compose up and wait for the process

to finish. Note that it may take several minutes. Once the Docker Engine completes the

process, a container with a working instance of RS Server will be started.

Optionally, you can type docker-compose run rails db:seed to seed some sample

data in the database. RS Server will be started and bound to the 0.0.0.0 IP address with

port 3000 and the production environment. Every HTTP request, therefore, must be sent

to the http://0.0.0.0:3000 address.

As can be seen, there is no need to manually start the server by specifying its IP address,

port, and environment, or to create and migrate the database. The Docker Engine will

perform that automatically. If you want to set a custom IP address or port or switch to the

production environment, edit the command key inside the docker-compose.yml file.

To stop the container, simply type docker-compose down.

Scenario 2: Deploy With Local Build If the source code of RS Server has been edited,

the application must be built from scratch by the Docker Engine according to the structure

specified in the Dockerfile. After the image build phase, the Docker Engine can fetch the

required dependencies outlined in the docker-compose.yml file and initialize RS Server, as

in the previous scenario.

To do this, open the docker-compose.yml file and uncomment the following section.

Additionally, comment out the remaining lines of code in the file.

----------- SCENARIO 2: DEPLOY WITH LOCAL BUILD ----------

----------- END OF SCENARIO 2: DEPLOY WITH LOCAL BUILD -----------

10https://github.com/Miccighel/Readersourcing-2.0-RS_Server
11https://cloud.docker.com/repository/docker/miccighel/rs_server

16

https://github.com/Miccighel/Readersourcing-2.0-RS_Server
https://cloud.docker.com/repository/docker/miccighel/rs_server

Next, from the command line prompt, type docker-compose up and wait for the process

to finish. Note that it may take several minutes. Once the Docker Engine completes the

process, a container with a working instance of RS Server will be started and bound to the

0.0.0.0 IP address with port 3000 and the production environment. Therefore, every

request must be sent to the http://0.0.0.0:3000 address.

Similar to the previous scenario, there is no need to manually start the server by spec-

ifying its IP address, port, and environment or to create and migrate the database. If you

want to set a custom IP address or port or switch to the production environment, edit the

command key inside the docker-compose.yml file.

To stop the container, simply type docker-compose down.

Quick Cheatsheet

• cd to main directory;

• create and populate the .env file;

• docker-compose up;

• docker-compose run rails db:seed (optional);

• docker-compose down (to shutdown and undeploy).

3.5.3 Modality 3: Deploy on Heroku

Heroku is a cloud platform-as-a-service (PaaS) that simplifies building, deploying, and

scaling web applications and services for developers. This deploy modality enables the use of

its container registry for a Docker-based production-ready deployment of RS Server on the

platform, facilitated by the Heroku Command Line Interface (CLI).12 It’s important to

note that this modality can only be used with the production environment of the application.

Regarding the prerequisites for this modality, the developer must create an app on

Heroku and then provision it with two addons: PostgreSQL13 for the database and one

for mail-related functionalities, such as Twilio SendGrid.14 The Heroku tutorials pro-

vide a comprehensive overview of the platform. Additionally, a working installation of

Docker Desktop CE (Community Edition) on the machine used for deployment is required.

3.5.3.1 Requirements

• Heroku account;

• Heroku application provisioned with:

– PostgreSQL addon;

12https://devcenter.heroku.com/articles/heroku-cli
13https://elements.heroku.com/addons/heroku-postgresql
14https://elements.heroku.com/addons/sendgrid

17

https://devcenter.heroku.com/articles/heroku-cli
https://elements.heroku.com/addons/heroku-postgresql
https://elements.heroku.com/addons/sendgrid

– a mail-related addon such as Twilio SendGrid;

• Heroku CLI;

• Docker Desktop CE (Community Edition);

3.5.3.2 How To

Clone RS Server repository15 and navigate to the main directory using a command line

prompt. Now, type ls or dir. You should see a Dockerfile. If not, please ensure you are

in the main directory of the cloned repository.

Before proceeding, make sure that your Docker Engine is running. Otherwise, the fol-

lowing commands will not work.

Log in using your credentials by typing heroku login. Next, log in to the Heroku

container registry by typing heroku container:login.

To build and upload your instance of RS Server using Docker, type

heroku container:push web --app your-app-name

When the process completes, type heroku container:release web to make it publicly

accessible.

Optionally, you can type heroku run rails db:seed to seed some sample data in the

database, and heroku open to open the browser and be redirected to the homepage of the

<your_app_name> application.

Similar to the previous modality, there is no need to manually start the server by spec-

ifying its IP address, port, and environment, or to create and migrate the database since

Heroku (through the Docker Engine) will take care of that for you.

3.5.3.3 Quick Cheatsheet

• cd to main directory;

• heroku login;

• heroku container:login;

• heroku container:push web --app <your-app-name>;

• heroku container:release web --app your-app-name;

• heroku open --app your-app-name (optional);

• set the environment variables on your Heroku app.

15https://github.com/Miccighel/Readersourcing-2.0-RS_Server

18

https://github.com/Miccighel/Readersourcing-2.0-RS_Server

3.5.4 Environment Variables

Regardless of the chosen deployment modality, the developer must provide values for (at

least a portion of) the environment variables, as they cannot be checked into a repository

due to safety reasons. In the following, each of these available variables is described along

with an explanation of which deployment modality requires their usage.

Environment Vari-

able

Description Deploy

Modality

Environment Where To Set

SECRET_DEV_KEY Private key used to

encrypt strings in

the development en-

vironment.

1 - 2 development .env file

SECRET_PROD_KEY Private key used to

encrypt strings in the

production environ-

ment.

1 - 2 - 3 production .env file, Heroku

App

POSTGRES_USER Username the admin

user of the database

1 - 2 - 3 development,

production

.env file, Heroku

App

POSTGRES_PASSWORD Password of the

admin user of the

database

1 - 2 - 3 development,

production

.env file, Heroku

App

POSTGRES_DB Name of the

database

1 - 2 - 3 development,

production

.env file, Heroku

App

POSTGRES_HOST Hosting address of

the database

1 - 2 - 3 development,

production

.env file, Heroku

App

DATABASE_URL Full connection

PostgreSQL connec-

tion string of the

database.

1 - 2 - 3 development,

production

.env file, Heroku

App

SMTP_USERNAME Username of the

SMTP mail server

1 - 2 - 3 production .env file, Heroku

App

SMTP_PASSWORD Password of the

SMTP mail server

1 - 2 - 3 production .env file, Heroku

App

SMTP_DOMAIN_NAME Domain of the

SMTP mail server

1 - 2 - 3 production .env file, Heroku

App

19

Environment Vari-

able

Description Deploy

Modality

Environment Where To Set

SMTP_DOMAIN_ADDRESS Full address of the

SMTP mail server

1 - 2 - 3 production .env file, Heroku

App

EMAIL_BUG_REPORT Email address to re-

ceive bug reports

1 - 2 - 3 development,

production

.env file, Heroku

App

EMAIL_ADMIN Email address to re-

ceive general ques-

tions

1 - 2 - 3 development,

production

.env file, Heroku

App

RAILS_LOG_TO_STD When set to true,

forces the applica-

tion to write its logs

to the standard out-

put.

1 - 2 - 3 production .env file, Heroku

App

Table 2: Environment variables of RS Server.

3.5.5 Setting Variables

To set an environment variable in a local .env file, create it inside the main directory

of RS Server. Then, populate it in a key=value fashion. To set an environment variable in

a Heroku app, simply follow the guide.16 In Heroku terminology, environment variables are

called config vars.

To provide an example, the following is the content of a valid .env file.

Listing 1 Content of a valid .env file.

1: SECRET PROD KEY=your secret prod key value

2: DATABASE URL=your postgresql database connection string

3: SMTP USERNAME=your smtp username

4: SMTP PASSWORD=your smtp password

5: SMTP DOMAIN NAME=your smtp domain name

6: SMTP DOMAIN ADDRESS=your smtp domain address

7: EMAIL BUG REPORT=your bug report mail

8: EMAIL ADMIN=your contact mail

16https://devcenter.heroku.com/articles/config-vars

20

https://devcenter.heroku.com/articles/config-vars

3.5.6 Sending Mails

RS Server supports any SMTP-based mail server to send emails for tasks such as con-

firming user registration, reporting bugs, or recovering forgotten passwords.

Understanding the values used to populate the SMTP_ environment variables can some-

times lead to ambiguity. Let’s consider the case of the proposed add-on, Twilio Sendgrid,17

both when deploying RS Server manually and on Heroku. In the first case, after creating

an account, you need to verify a single sender address or a whole domain using the provided

DNS records. To integrate the service into an instance of RS Server deployed anywhere

outside Heroku, you must use a supported SMTP configuration.18 Thus, the values of the

environment variables must be in this form:

SMTP_USERNAME: apikey

SMTP_PASSWORD: <your_api_key_value>

SMTP_DOMAIN_NAME: <your_domain_address>

SMTP_DOMAIN_ADDRESS: smtp.sendgrid.net

However, while using the addon provided by Heroku,19 the values provided for the environ-

ment variables need to be slightly different:

SMTP_USERNAME: <your_sendgrid_account_username>

SMTP_PASSWORD: <your_sengrid_password_account>

SMTP_DOMAIN_NAME: <your_domain_address>

SMTP_DOMAIN_ADDRESS: smtp.sendgrid.net

3.5.7 Connecting To The Database

A full connection string to a PostgreSQL database provided through the DATABASE_URL

variable takes precedence over each POSTGRES_ variable. It is thus important to provide the

former environment variable or the set of the latter ones. This holds for both the development

and production environments. Indeed, the final connection string is built as such:

<%= ENV[’DATABASE_URL’] || "postgresql://#{ENV[’POSTGRES_USER’] || ’postgres’}:#{ENV

[’POSTGRES_PASSWORD’]}@#{ENV[’POSTGRES_HOST’] || ’localhost’}/#{ENV[’POSTGRES_DB

’] || ’rs_server’}" %>

3.5.8 Logging To The Standard Output

An instance of RS Server deployed in development writes its logs to the standard output

as the default behavior. In a production environment, on the other hand, the logs are

written in the logs/production.log file. Thus, forcing Rails to write logs in the standard

output using the RAILS_LOG_TO_STD variable can be useful for quick debugging purposes

when testing the production environment.

17https://sendgrid.com/
18https://app.sendgrid.com/guide/integrate/langs/smtp
19https://elements.heroku.com/addons/sendgrid

21

https://sendgrid.com/
https://app.sendgrid.com/guide/integrate/langs/smtp
https://elements.heroku.com/addons/sendgrid

4 RS PDF

RS PDF [6] is the software library utilized by RS Server to edit the PDF files and add

the required URL when a reader requests to save a publication for later reading.

It is characterized by a command-line interface, allowing RS Server to use it directly.

Since they are deployed together, they can communicate without the need for complex

channels and paradigms.

4.1 Implementation and Technology

The technology used to develop RS PDF is the Kotlin object-oriented programming

language, known for its full compatibility with the Java Virtual Machine. This feature

is crucial because it allows a developer to leverage code contained in any other software

published in JAR format and, more generally, to import any Java class, interacting with

them through the syntax of Kotlin itself.

This programming language has been chosen because it incorporates many modern fea-

tures and receives robust support. Furthermore, it has openings to other platforms, greatly

expanding its potential applications. The most significant reason, however, is that the un-

derlying tool used to edit files encoded in PDF format is PDFBox,20 a software library

developed with Java and proposed as a complete toolkit for editing files in that specific

format. Therefore, RS PDF serves as a wrapper for PDFBox, adding the necessary links

inside the PDFs requested by readers.

Kotlin has been created by JetBrains,21 which, in the first half of 2017, signed an agree-

ment with Google to elevate Kotlin to the status of a first-class language for development

on the Android platform.22 Moreover, in the same year, JetBrains announced the ability to

compile programs written in Kotlin directly into machine language, thus avoiding the use

of the JVM.

On the web, it is possible to find different pages with comparisons between Kotlin and

other languages, including the official one23 made by JetBrains with Java, and several arti-

cles24 by developers enthusiastic about this programming language.

4.2 Package Diagram

Figure 6 depicts a diagram illustrating the packages in which RS PDF is divided. This

diagram offers a high-level overview of the internal architecture of the software, providing

valuable insights into its structure.

In particular, the interaction with RS Server takes place within the program package.

The server-side component itself can utilize the functionalities of RS PDF by executing it

20https://pdfbox.apache.org/
21https://www.jetbrains.com/
22https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
23https://kotlinlang.org/docs/reference/comparison-to-java.html
24https://medium.com/@octskyward/why-kotlin-is-my-next-programming-language-c25c001e26e3

22

https://pdfbox.apache.org/
https://www.jetbrains.com/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://kotlinlang.org/docs/reference/comparison-to-java.html
https://medium.com/@octskyward/why-kotlin-is-my-next-programming-language-c25c001e26e3

Figure 6: Package diagram of RS PDF.

on the JVM with a special set of command-line options. Within this package, the parsing

of the values received for each of these options and the management of the execution flow

based on these values occur.

The utils package is responsible for providing useful tools to the remaining components

of RS PDF. Within this package, shared constants and methods are implemented, enabling

access to the logging functionality. As evident from the diagram in Figure 6, the other

packages depend on it, particularly for some of the values of its constants.

The publications package contains the business logic to handle files encoded in PDF

format that need to be edited. Its classes adhere to the logic of the MVC pattern, although

its utilization is not bound by the technology used, as in the case of an application devel-

oped with Rails. Consequently, there is a Controller that takes into account the execution

parameters analyzed in the program package and updates the internal state of one or more

instances of the Model. The number of instances of the Model corresponds to the number

of PDF files that must be annotated. This operation involves loading the input files and

adding a link to RS Server on a new page, leveraging the functionalities of PDFBox. As

a final note, a View is not necessary because RS PDF simply stores the changes in a new

PDF file and then concludes its execution.

4.3 Class Diagram

Figure 7 displays a diagram of the main classes of RS PDF, providing detailed insights

into the internal structure of the architectural elements outlined in the diagram shown in

Figure 6. The classes within the publications package are structured similarly to what

Rails enforces in RS Server, with the majority of processing occurring within them. The

Model establishes connections with PDFBox, and its methods leverage these connections to

actively edit files encoded in PDF format.

A notable exception to this structure is the use of the Parameters class, which serves

23

solely as a data class—a class dedicated to storing various types of data. Once created,

this instance is transmitted to the Model by the Controller through the interfaces of the

Model itself. If additional data needs to be sent, it can be effortlessly added to the data

class, thereby avoiding modifications to the signatures of the Model’s methods. As for the

contents of the program and utils packages, there isn’t much more to add beyond what was

discussed during the description of the diagram shown in Figure 6.

4.4 Installation

RS PDF comes bundled with RS Server, eliminating the need for manual installation

when deploying the latter. However, if you wish to use RS PDF independently, you can

simply download the attached .jar files from the release section of the repository25 and

place them anywhere on your filesystem.

4.4.1 Requirements

• JDK (Java Development Kit) == 11.0.19;

4.4.2 Commmand Line Interface

The behavior of RS PDF is configured during its startup phase by RS Server through

a set of special command-line options. For this reason, it is useful to provide a list of all

the options that can be used if it is necessary to employ RS PDF in other contexts, modify

its implementation, or for any other reason. However, it is designed to work with a default

configuration if no options are provided. This list of command-line options is shown in

Table 3.

To provide an execution example, let’s assume a scenario where there is a need to edit

some files encoded in PDF format with the following prerequisites:

• There is a folder containing n files to edit at the path C:\data;

• The edited files must be saved inside a folder at the path C:\out;

• The file in JAR format containing the library is called RS_PDF-v1.0-alpha.jar;

• The JAR file containing RS PDF is located inside the folder at the path C:\lib;

• The authentication token received from RS Server is

eyJhbGciOiJIUzI1NiJ9....XpC9PMXOjtjRd4NBCtB1a4SfBEi6ndgqsE3k_cEI6Wo;

• The publication identifier received from RS Server is 1.

The execution of RS PDF is started with the following command:

java -jar C:\lib\RS_PDF-v1.0-alpha.jar -pIn C:\data -pOut C:\out -a

eyJhbGciOiJIUzI1NiJ9....XpC9PMXOjtjRd4NBCtB1a4SfBEi6ndgqsE3k_cEI6Wo -pId 1

25https://github.com/Miccighel/Readersourcing-2.0-RS_PDF

24

https://github.com/Miccighel/Readersourcing-2.0-RS_PDF

Figure 7: Class diagram of RS PDF.

25

Short Long Description Values Required Depends

On

--pIn --pathIn Path on the filesys-

tem from which to

load the PDF files

to be edited. It can

be a file or a folder.

String representing

a relative path.

No --pOut

--pOut --pathOut Path on the filesys-

tem in which to

save the edited

PDF files. It must

be a folder.

String representing

a relative path.

No --pIn

--c --caption Caption of the link

to add.

Any string. Yes No

--u --url URL to add. A valid URL. Yes No

--a --authToken Authentication to-

ken received from

RS Server.

A valid authentica-

tion token received

from RS Server.

No --pOut,

--pIn,

--pId

--pId --publicationId Identifier for a pub-

lication present on

RS Server.

A valid publication

identifier received

from RS Server.

No --pOut,

--pIn, --a

Table 3: Command line options of RS PDF.

26

5 RS Rate

RS Rate [8] is an extension designed to function as a client for the Readersourcing 2.0

ecosystem without requiring access to its website. Compatible with both Google Chrome26

and Microsoft Edge,27 the extension allows users to rate publications directly from their

browsers. This eliminates the need to navigate to the main website, streamlining the process

of providing ratings for publications.

The primary objective of RS Rate is to provide readers with a way to seamlessly rate a

publication with minimal effort—just a few clicks or keystrokes within the Readersourcing

2.0 ecosystem, contributing to a more dynamic online reading experience. RS Rate serves

as the initial client of our project, extending beyond the web-based interface available on

the main portal.

Looking ahead, our vision includes expanding the compatibility of RS Rate by develop-

ing implementations for other major browsers, such as Firefox, Safari, and other popular

browsers. Our commitment is to make this rating tool accessible across a broad range of

browsers, ensuring users can seamlessly interact with content and provide feedback, regard-

less of their preferred browser.

5.1 Implementation and Technology

RS Rate is an extension for Google Chrome and, consequently, also for Microsoft Edge.

These extensions are developed using standard web technologies such as HTML, CSS, and

JavaScript. Therefore, they are simple “collections” of files packaged in a CRX archive.

This particular format is nothing more than a modified version of a ZIP archive with the

addition of some special headers exploited by Google Chrome.

As for the JavaScript component, RS Rate does not actually use the “pure” language

but instead employs jQuery, a library developed with the aim of simplifying the selection,

manipulation, management of events, and the animation of DOM elements in HTML pages.

It also implements AJAX features. These AJAX features are widely utilized by RS Rate to

enhance the user experience during its use.

5.2 Installation

RS Rate is freely available on the Google Chrome Web Store. To use it, simply take

advantage of the following link and install the currently available version by clicking on the

“Get” button shown on the store page. We plan to release a Firefox version in the future.

• Google Chrome version available at: https://chrome.google.com/webstore/det

ail/readersourcing-20-rsrate/hlkdlngpijhdkbdlhmgeemffaoacjagg?hl=it

26https://www.google.com/chrome/
27https://www.microsoft.com/en-us/edge/

27

https://chrome.google.com/webstore/detail/readersourcing-20-rsrate/hlkdlngpijhdkbdlhmgeemffaoacjagg?hl=it
https://chrome.google.com/webstore/detail/readersourcing-20-rsrate/hlkdlngpijhdkbdlhmgeemffaoacjagg?hl=it
https://www.google.com/chrome/
https://www.microsoft.com/en-us/edge/

Figure 8: RS Rate characterized as an extension having a popup action.

5.3 Usage

Figure 8 illustrates a section of a Google Chrome instance with the extension active for

a publication. This scenario depicts the typical situation of a reader visiting a publisher’s

website to access the PDF of a paper they are interested in. The figure also displays the

initial page that a reader encounters when interacting with the client. This page serves as

a gateway to the login page, as shown in Figure 9, or to the sign-up page. From the login

page, a reader who has forgotten their password can access the password recovery page (not

shown), which closely resembles the login page.

If a reader has yet to sign up for Readersourcing 2.0, they can navigate from the page

shown in Figure 8 to the one displayed in Figure 11 and fill in the sign-up form. Once they

complete the standard sign-up and login operations, they will find themselves on the rating

page, as shown in Figure 10.

In the central section of the rating page, a reader can use the slider to choose a rating

value in a 0-100 interval. Once they select the desired rating, they only need to click the

green Rate button, and that’s it; with just three clicks and a slide action, they can submit

their rating. Furthermore, they can also click the options button and, if preferred, check

an option to anonymize the rating they are about to provide. It’s important to note that

the reader has to be logged in to express an anonymous rating to prevent spamming, which

in this case would be a very dangerous phenomenon. When such a rating is processed, the

information regarding its reader will not be used, except for preventing the reader from

rating the same publication multiple times.

If the reader prefers to provide their rating at a later time instead of immediately rating

the publication, they can click the Save for later button. This option allows them to take

advantage of the editing procedure for publications, which stores a reference (an URL link)

28

Figure 9: The login page of RS Rate.

Figure 10: The rating page of RS Rate.

29

Figure 11: The user registration page of RS Rate.

inside the PDF file they are viewing. As soon as such the editing procedure is completed

(usually just a few seconds), the Save for later button transforms into a Download button,

as shown in Figure 12.

The reader can finally download the link-annotated publication by clicking on it. Fur-

thermore, they can also use the refresh button (located to the right of the Download button)

to, as it says, refresh the link-annotated publication. This means that a new copy of the

publication file will be downloaded, annotated, and made available to the reader. This

feature is useful since a publication could be updated at a later time by its author.

As soon as the link-annotated publication is downloaded, the reader will find a PDF

containing a new final page with the URL. In Figure 13, an example of such a link-annotated

publication can be seen; in that case, the reader has chosen to open it with their favorite

PDF reader.

Once the reader clicks on the reference, which is a special link to RS Server, they will be

taken to the server-side application itself. The interface presented allows them to express

their rating independently of the browser extension used to store the reference. Therefore, if

they send their link-annotated publication to a tablet-like device, for example, they can take

advantage of the built-in browser to express their rating. Figure 14 shows the interface that

the reader sees after clicking on the stored reference. The reader is required to authenticate

themselves again as a form of security. Without this step, the stored reference could be used

by anyone who gets a copy of the link-annotated publication.

30

Figure 12: The rating page of RS Rate after a “save for later” request.

Figure 13: A publication link-annotated through RS Rate.

31

Figure 14: The server-side interface to rate a publication.

Every time a reader rates a publication, every score is updated according to both RSM

and TRM models, and each reader can see the result through RS Rate. In the bottom

section of the rating page, the score of the current publication can be seen (one for each

model), as shown in Figures 10 and 12. To view their score as a reader (once again, one for

each model), a user must click the profile button in the upper right corner. Once they do

that, they will see the interface shown in Figure 15. From there, they can also edit their

password since that interface acts as a profile page.

6 RS Py

RS Py [7] is an additional component of the Readersourcing 2.0 ecosystem, providing a

fully working implementation of the models presented by Soprano et al. [5]. These models are

encapsulated by the server-side application of Readersourcing 2.0, as described in Section 3.

Developers with a background in the Python programming language can leverage RS Py

to generate and test new simulations of ratings given by readers to a set of publications.

They are allowed to alter the internal logic of the models to test new approaches without

the need to fork and edit the full implementation of Readersourcing 2.0.

32

Figure 15: The profile page of RS Rate.

6.1 Implementation and Technology

RS Py is a collection of Jupyter Notebooks. Jupyter28 is a Python-powered29 open-

source web application that allows the creation and sharing of documents containing live

code, equations, visualizations, and narrative text. Notebooks can be shared with others

and are composed of cells that can be run independently, providing a step-by-step overview

of the implemented computations.

6.2 Installation

To use RS Py notebooks, it is sufficient to clone its repository30 and place it somewhere

on the filesystem. Ensure that the required Python packages are installed by leveraging a

distribution such as Anaconda31. If a lightweight installation is preferred, an instance of

Python 3.7.3 or higher is needed to install the required packages, such as Jupyter, Pandas,

and others.

6.3 Usage

RS Py is organized into five main folders on the filesystem:

28https://jupyter.org/
29https://www.python.org/
30https://github.com/Miccighel/Readersourcing-2.0-RS_Py
31https://www.anaconda.com/distribution/

33

https://jupyter.org/
https://www.python.org/
https://github.com/Miccighel/Readersourcing-2.0-RS_Py
https://www.anaconda.com/distribution/

• The data folder is used to store the dataset exploited to test the models presented by

Soprano et al. [5].

• The models folder is used to store the output of these models.

• The notebooks folder contains Jupyter notebooks used to generate new datasets and

implement the models presented by Soprano et al. [5].

• The scripts folder contains implementations of the Jupyter notebooks as pure Python

scripts.

• The src folder contains a Python script which converts Jupyter notebooks into pure

Python scripts.

Within the notebooks folder, three Jupyter notebooks are available:

• Readersourcing.ipynb provides an implementation of the RSM model presented by

Soprano et al. [5].

• TrueReview.ipynb offers an implementation of the TRM model.

• The Seeder.ipynb notebook allows the generation of new datasets, which will be

stored inside the data folder.

Inside the src folder, the Convert.py script enables the conversion of notebooks into

Python scripts, and these are then stored inside the scripts folder.

The behavior of Seeder.ipynb and Readersourcing.ipynb notebooks can be customized

by modifying the parameter settings found in the initial rows of both notebooks. Table 4

outlines the parameters available for the former, while Table 5 presents the parameters for

the latter.

To run and use the Jupyter notebooks, navigate to the main directory of RS Py using

a command-line prompt (you should see folders such as data, models, notebooks, etc.)

and type jupyter notebook.32 This command will start the Jupyter server, and you can

access the Notebook Dashboard in your browser at the web application’s URL (typically,

http://localhost:8888).

7 Overview

An overview of Readersourcing 2.0 capabilities is shown in Figure 16. Let us suppose

that there are four readers using RS Rate to rate a publication, P1, namely RD1, RD2, RD3,

and RD4. Both RD1, RD2, and RD3 utilize the Save for later functionality of RS Rate to

express their ratings at a later time. By doing this, they receive a link-annotated version of

P1, namely P1+Link.

32https://jupyter.readthedocs.io/en/latest/running.html#running

34

https://jupyter.readthedocs.io/en/latest/running.html#running

Parameter Description Values

dataset_name Name of the dataset to simulate String

papers_number Number of papers to simulate Positive integer

readers_number Number of readers to simulate Positive integer

authors_number Number of authors to simulate Positive integer

months_number Number of months of activity to simulate Positive integer

paper_frequencies Amount of papers rated by each reader group Array of positive

integers

readers_percent Percentage of readers to assign to a single

group

Positive integer

Table 4: Parameters available for the Seeder Jupyter notebook.

Parameter Description Values

dataset_name Name of the dataset to simulate String

day_serialization Activate serialization of data on a

per-day basis

True, False

day_serialization_threshold Serialize data every X days Positive integer

days_number Amount of days simulated in the in-

put dataset

Positive integer

Table 5: Parameters available for the Readersourcing Jupyter notebook.

35

Figure 16: Readers’ interaction modalities with the Readersourcing 2.0 ecosystem.

After some time, RD1 chooses to open P1+Link with his favorite PDF reader. RD2, instead,

sends it to his tablet, while RD3 simply opens it with his instance of Google Chrome. When

they click on the URL added by RS Server, they are taken to the special page provided by

RS Server where they provide their ratings. On the contrary, RD4 simply chooses to give his

rating as soon as he finishes reading P1 directly through the RS Rate interface.

36

References

[1] Luca De Alfaro and Marco Faella. TrueReview: A Platform for Post-Publication Peer

Review. In: CoRR abs/1608.07878 (2016). arXiv: 1608.07878. url: http://arxiv.

org/abs/1608.07878.

[2] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-

guage. 3rd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

isbn: 0321193687.

[3] Erich Gamma et al. Design Patterns: Elementi per il Riuso di Software ad Oggetti.

Pearson, Jan. 2002.

[4] Stefano Mizzaro. Quality control in scholarly publishing: A new proposal. In: Journal

of the American Society for Information Science and Technology 54.11 (2003), pp. 989–

1005. doi: 10.1002/asi.10296. url: https://onlinelibrary.wiley.com/doi/abs/

10.1002/asi.10296.

[5] M. Soprano and S. Mizzaro. Crowdsourcing Peer Review: As We May Do. In: Commu-

nications in Computer and Information Science 988 (2019), pp. 259–273.

[6] Michael Soprano and Stefano Mizzaro. Readersourcing 2.0: RS PDF. doi: 10.5281/

zenodo.1442598. url: https://doi.org/10.5281/zenodo.1442597.

[7] Michael Soprano and Stefano Mizzaro. Readersourcing 2.0: RS Py. doi: 10.5281/

zenodo.3245208. url: https://doi.org/10.5281/zenodo.3245208.

[8] Michael Soprano and Stefano Mizzaro. Readersourcing 2.0: RS Rate. doi: 10.5281/

zenodo.1442599. url: https://doi.org/10.5281/zenodo.1442599.

[9] Michael Soprano and Stefano Mizzaro. Readersourcing 2.0: RS Server. doi: 10.5281/

zenodo.1442630. url: https://doi.org/10.5281/zenodo.1442630.

37

https://arxiv.org/abs/1608.07878
http://arxiv.org/abs/1608.07878
http://arxiv.org/abs/1608.07878
https://doi.org/10.1002/asi.10296
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.10296
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.10296
https://doi.org/10.5281/zenodo.1442598
https://doi.org/10.5281/zenodo.1442598
https://doi.org/10.5281/zenodo.1442597
https://doi.org/10.5281/zenodo.3245208
https://doi.org/10.5281/zenodo.3245208
https://doi.org/10.5281/zenodo.3245208
https://doi.org/10.5281/zenodo.1442599
https://doi.org/10.5281/zenodo.1442599
https://doi.org/10.5281/zenodo.1442599
https://doi.org/10.5281/zenodo.1442630
https://doi.org/10.5281/zenodo.1442630
https://doi.org/10.5281/zenodo.1442630

	List of Figures
	List of Tables
	Introduction
	General Architecture
	RS_Server
	Implementation and Technology
	Communication Paradigm
	Database
	Class Diagram
	Deploy
	Modality 1: Manual
	Requirements
	How To
	Quick Cheatsheet

	Modality 2: Manual Way (Using Docker)
	Requirements
	How To

	Modality 3: Deploy on Heroku
	Requirements
	How To
	Quick Cheatsheet

	Environment Variables
	Setting Variables
	Sending Mails
	Connecting To The Database
	Logging To The Standard Output

	RS_PDF
	Implementation and Technology
	Package Diagram
	Class Diagram
	Installation
	Requirements
	Commmand Line Interface

	RS_Rate
	Implementation and Technology
	Installation
	Usage

	RS_Py
	Implementation and Technology
	Installation
	Usage

	Overview
	References

