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Abstract

Current research in text simplification has
been hampered by two central problems:
(i) the small amount of high-quality par-
allel simplification data available, and (ii)
the lack of explicit annotations of simplifi-
cation operations, such as deletions or sub-
stitutions, on existing data. While the re-
cently introduced Newsela corpus has al-
leviated the first problem, simplifications
still need to be learned directly from par-
allel text using black-box, end-to-end ap-
proaches rather than from explicit anno-
tations. These complex-simple parallel
sentence pairs often differ to such a high
degree that generalization becomes diffi-
cult. End-to-end models also make it hard
to interpret what is actually learned from
data. We propose a method that decom-
poses the task of TS into its sub-problems.
We devise a way to automatically identify
operations in a parallel corpus and intro-
duce a sequence-labeling approach based
on these annotations. Finally, we provide
insights on the types of transformations
that different approaches can model.

1 Introduction

Text Simplification (TS) is the task of reducing the
complexity of a text without changing its meaning.
Simplification can be applied at various linguistic
levels, from lexical substitution to more global op-
erations such as sentence splitting, paraphrasing or
the deletion or reordering of entire clauses.

Existing corpora for TS generally come in one
of two variants. The first focuses on very spe-
cific sub-problems, such as sentence compression
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(Bingel and Søgaard, 2016) or the identification
of difficult words (Paetzold and Specia, 2016a),
and typically encodes relevant simplification op-
erations as discrete labels on tokens. The other
variant includes more general, higher-level types
of simplifications that often entail the rephras-
ing or re-structuring of sentences, with content
added or removed. These “natural” simplifications
are often created for end-users rather than for re-
search purposes. Examples of the latter simplifi-
cation resources include the Newsela (Xu et al.,
2015) and Simple English Wikipedia corpora (Zhu
et al., 2010; Coster and Kauchak, 2011b). These
resources generally encode interdependencies be-
tween different types of simplification better than
single-purpose resources and may thus seem fa-
vorable for learning simplifications. However, the
freedom given to editors and lack of explicit la-
bels on the modifications performed makes gen-
eralization much more difficult, especially when
existing resources are relatively small in compari-
son to corpora for other text-to-text problems like
machine translation (MT). Nevertheless, these cor-
pora have been extensively used to learn phrase-
based statistical and neural models for end-to-end
TS systems that bear resemblance to MT mod-
els (Specia, 2010; Zhu et al., 2010; Coster and
Kauchak, 2011b; Wubben et al., 2012; Narayan
and Gardent, 2014; Xu et al., 2016; Zhang and La-
pata, 2017; Zhang et al., 2017; Nisioi et al., 2017).

Adaptability and interpretability MT-style
models are essentially black boxes that offer
little or no control over the way in which a given
input is modified. Additionally, in most cases the
types of modifications that are actually learned
are limited to paraphrasing of short sequences of
words. We believe a middle ground is missing in
terms of resources and approaches for TS, where
models are learned from a more informed labeled



dataset of natural simplifications, and can then
be applied in a controlled way, e.g., in adaptive
simplification scenarios that prioritize different
ways of simplifying (e.g. compression or sentence
splitting) depending on a particular user’s needs.

The only previous work on TS via explicitly
predicting simplification operations is that by Bin-
gel and Søgaard (2016), who create training data
from comparable text to label entire syntactic units
and train a sequence labeling model to predict
deletions and phrase substitutions in a complex
sentence. Our approach is different in that it cap-
tures a larger variety of operations in a more global
fashion, by using sentence-wide word alignments
rather than surface heuristics. Furthermore, we
use a more reliable (professionally created) corpus
and our approach is more flexible as we do not rely
on syntactic parse trees at test time.

Contributions This paper introduces the fol-
lowing main contributions: (1) We provide an
in-depth analysis on the potential and limitations
of the dominant approach to TS: end-to-end
MT-style models; (2) We devise a method to
automatically identify specific simplification
operations in aligned sentences from complex-
to-simple simplification corpora. This results in
a corpus that can be used to study how human
experts perform simplification tasks, as well as
to train simplification models to address specific
problems; and (3) We propose a sequence labeling
model built from such a corpus to predict which
simplification operations should be performed
as a first step for a complete simplification
pipeline. This approach is highly modular: once
operations are identified, different methods can
be applied to cover each simplification operation.
We show that this operation-based TS approach
is able to produce simpler texts than end-to-end
models. The code for extracting the simpli-
fication operations is available at https://
github.com/ghpaetzold/massalign,
while our sequence labeling model is released
at https://github.com/jbingel/
ijcnlp2017_simplification.

2 Related Work

In what follows we give a brief description of pre-
vious work on statistical and neural models for
TS. We first compare methods using versions of
Simple English Wikipedia data (Zhu et al., 2010;
Coster and Kauchak, 2011b), before considering

recent work that relies on the professionally edited
Newsela corpus (Xu et al., 2015).

Simple English Wikipedia Zhu et al. (2010)
propose a syntax-based translation model for TS
that learns operations over the parse trees of
the complex sentences. They outperform sev-
eral baselines in terms of Flesch index. Coster
and Kauchak (2011b) train a phrase-based ma-
chine translation (PBMT) system and obtain sig-
nificant improvements in terms of BLEU (Pap-
ineni et al., 2002) over a baseline. Coster and
Kauchak (2011a) extend a PBMT model to in-
clude phrase deletion and outperform Coster and
Kauchak (2011b). Wubben et al. (2012) also train
a PBMT system for TS with a dissimilarity-based
re-ranking heuristic, outperforming Zhu et al.
(2010) in terms of BLEU. Narayan and Gardent
(2014) built TS systems by combining discourse
representation structures with a PBMT model,
which outperforms previous approaches. Xu et al.
(2016) modify a syntax-based MT system in or-
der to use a new metric – SARI – for optimization
and to include special rules for paraphrasing. Al-
though their system does not outperform previous
work in terms of BLEU, it achieves the best results
according to SARI and human evaluation. Zhang
et al. (2017) train a lexically constrained sequence-
to-sequence neural network model for TS, based
on the encoder-decoder architecture for MT. The
system outperforms baseline systems (including a
PBMT system) in terms of BLEU. Finally, Nisioi
et al. (2017) propose a model for TS that is able
to perform lexical replacements and content re-
duction. They use a neural encoder-decoder ap-
proach where they combine pre-trained (general
domain and in-domain) word embeddings for the
source and target sentences. They also perform
beam search, finding the best beam size using ei-
ther BLEU or SARI. Their best model outper-
forms previous PBMT-based approaches in terms
of BLEU.

Newsela corpus To the best of our knowledge,
Zhang and Lapata (2017) is the only work that
explores MT-based approaches on the Newsela
corpus. They train an attention-based encoder-
decoder model (Bahdanau et al., 2014) and use
reinforcement learning with a reward policy com-
bining SARI, BLEU and cosine similarity (to mea-
sure meaning preservation). Their approach shows
improvements over a PBMT system in terms of
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BLEU and SARI, but no insights are given with
respect to the transformations that are actually
learned or how distant from the original sentences
the simplifications are. They also experiment with
the Simple Wikipedia corpus, yet do not outper-
form Narayan and Gardent (2014) on this data.

The neural end-to-end model we implement as a
baseline in this paper is equivalent to that in Zhang
et al. (2017) without the lexical constraints, while
the statistical model is equivalent to the one in
Coster and Kauchak (2011b).

3 Simplification via End-to-End Models

In addition to requiring large amounts of train-
ing data, MT-based approaches to TS are limited
because of their black-box way of addressing the
problem. As we are going to show in this sec-
tion, standard end-to-end systems without special
adaptation to TS do not succeed in learning alter-
native formulations of the original text. With a few
exceptions (by the neural model), they tend to re-
peat the original text. We conjecture that this is be-
cause, for most original-side material, TS corpora
do not consistently enough offer alternative sim-
plified formulations: in the majority of instances,
most words are kept as in the original.

To study the potential and limitations of end-to-
end translation models for TS, we build models us-
ing state-of-the-art MT-based approaches and the
Newsela corpus, arguably the most reliable (pro-
fessionally created) and realistic (aimed at a target
audience rather than research) resource to date.

The Newsela Corpus.1 Newsela is a multi-
comparable corpus where each document comes
in up to six levels of simplicity, from 0 (original)
to 5 (simplest). In our experiments, we only use
sentence pairs stemming from adjacent levels of
simplicity within the same document.2

Translation approaches require data aligned at
the sentence level. Given the original Newsela

1The Newsela Article Corpus was downloaded from
https://newsela.com/data, version 2016-01-29.

2The motivations for only using adjacent levels are (i) that
we assume that these are not “naturally” created (i.e. an ex-
pert would not start from an original text and directly generate
a level 5 text, but rather go from 0 to 1, 1 to 2, ..., 4 to 5), and
(ii) that the high degree of linguistic and stylistic differences
between non-adjacent levels makes learning even more com-
plex. For example, the average edit distance for sentences in
the 0-1 group is 0.19, while for sentences in the 0-5 group, it
is 0.65. As far as the first reason is concerned, note that we
could not find any publicly available simplification guidelines
for the Newsela corpus.

corpus, which only aligns different versions of
the same document, we first align sentences us-
ing the algorithms described in (Paetzold and Spe-
cia, 2016b). Their algorithms search for the best
alignment path between the paragraphs and sen-
tences of parallel documents based on TF-IDF co-
sine similarity and an incremental vicinity search
range. They address limitations of previous strate-
gies (Barzilay and Elhadad, 2003; Coster and
Kauchak, 2011b; Smith et al., 2010; Xu et al.,
2015; Bott and Saggion, 2011) by disregarding
the need for (semi-) supervised training, allow-
ing long-distance alignment skips, and capturing
N-to-N alignments. The alignments produced are
categorized as:

• Identical: The alignment is one-to-one and
the sentences are exactly the same (96,909
pairs across all adjacent levels).

• 1-to-1: The alignment is one-to-one and
the original-simplified sentences are different
(130,790 pairs across all adjacent levels).

• Split: The alignment is 1-to-N (42,545 pairs
across all adjacent levels).

• Join: The alignment is N-to-1 (7,962 pairs
across all adjacent levels).

Translation Models. We built two types of
models using state-of-the-art MT-based ap-
proaches: a phrase-based statistical MT model
using Moses (Koehn et al., 2007),3 and a neural
MT model using Nematus (Sennrich et al., 2017).4

The Neural Text Simplification tool (NTS) made
available by Nisioi et al. (2017) was also used for
comparison.5

For our translation-based experiments, we con-
sider two combinations of sentence alignments,
using (i) only one-to-one alignments (1-to-1)
(130,970 sentence pairs), and (ii) all alignments
(all), i.e., the entire sentence-aligned corpus
with identical, 1-to-1, split and join alignments
(278,206 sentence pairs). The first type of data (1-
to-1) is the focus of this paper (see §4). The latter
variant is included in the experiments for compar-
ison, in particular to address the question whether
more (but not necessarily better) data can aid data-
intensive translation-based approaches. For all

3We follow instructions from http://www.statmt.
org/moses/?n=Moses.Baseline

4We use a vocabulary size of 30, 000 and the same param-
eters as in Sennrich et al. (2016).

5We use the same configurations as Nisioi et al. (2017).

https://newsela.com/data
http://www.statmt.org/moses/?n=Moses.Baseline
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Hyp vs. Ref Hyp vs. Orig

System BLEU↑ TER↓ BLEU TER %Same↓ SARI↑

Moses (all) 69.64 30.20 98.77 0.41 93.03 27.45
Nematus (all) 36.46 52.66 45.40 42.30 21.60 22.91
NTS (all) 68.35 31.37 90.52 7.19 72.91 27.36

Moses (1-to-1) 57.79 40.19 98.30 0.86 89.50 24.58
Nematus (1-to-1) 46.90 52.84 76.29 20.10 30.45 29.89
NTS (1-to-1) 53.79 45.24 77.63 16.70 42.76 30.44

Silver operations (1-to-1) 67.33 22.66 61.63 26.01 10.83 61.71
Predicted operations (1-to-1) 41.37 48.72 59.71 25.24 14.06 31.29

Table 1: Performance of translation-based and operation-based TS models (using silver or predicted
operation labels, with only DELETION and REPLACE applied). Metrics are BLEU and TER between
simplified version (Hyp) and reference (Ref) or original version (Orig), the percentage of sentences
copied from the input (%Same), and SARI for the simplifications.

experiments, the respectively used data was first
randomly split into training (80%), development
(10%) and test (10%) sets and normalized for en-
tities (incl. names, locations, numbers).

Simplification Quality. The first and second
sections of Table 1 show the results of translation-
based systems according to several metrics: simi-
larity metrics commonly used in MT, comprising
BLEU (Papineni et al., 2002) and TER (Snover
et al., 2006, minimum edit distance), as well a spe-
cific text simplification metric, SARI (Xu et al.,
2016). SARI measures how good the words added,
deleted and kept by a simplification system are, af-
ter comparing the produced output to the original
sentence and the simplification reference(s). It is
similar to BLEU but rewards copying words from
the original sentence. According to experiments
performed by Xu et al. (2016), SARI is the met-
ric that best correlates with human judgments of
simplicity.

For both “all” and “1-to-1” variants, the BLEU
and TER scores between hypotheses and refer-
ences are worse for Nematus, showing that a base-
line neural model tends to be more aggressive
and potentially generate noisier modifications than
Moses equivalents. To measure how strongly the
various approaches modify the input sentences,
these scores are also reported between the gener-
ated simplifications and the original inputs. Again,
these metrics are worse for Nematus-based mod-
els, showing that they indeed perform more mod-
ifications on the sentences. Moses in turn is very
conservative, keeping 90-93% of the test sentences

exactly in their original version. SARI shows low
scores for all systems. NTS is also conservative in
the “all” variant (attested by the high BLEU score
between hypotheses and original sentences). For
“1-to-1”, NTS produces more simplifications, di-
verging more from the original sentences.

Sentence-level Operations. Interestingly, even
though Moses and Nematus are trained on the
same data, they differ substantially with respect to
what they can learn. This is demonstrated by an
automatic inspection we conducted on the simpli-
fications produced by both systems trained over all
types of sentence alignments, i.e. including sen-
tence splits and joins.

Table 2 reports the count and proportion of
instances in the test set representing types of
sentence-level transformation between the origi-
nal and simplified sentence. It can be noted that
Moses is much more conservative than Nema-
tus and simply tends to copy the original as the
output (“Identical” cases). However, as the ma-
jority (57%) of aligned sentences in the profes-
sional Newsela simplifications are edited, we do
not consider copying a valid “simplification” in
most cases. Note also that Moses displays an ex-
cessively high BLEU score between the original
and hypothesis sentences (98.77), while the simi-
larity between the original and reference sentences
is much lower (71.57).

Manually inspecting some of the simplifications
made, we find that when it comes to sentence
splits, both MT-based simplifiers seem to be able
to perform this type of transformation in an accu-



Moses Nematus

Operation Count % Count %

Identical 25,882 93.03 10,906 39.20
1-to-1 1,920 6.90 15,428 55.45
Split 14 0.05 354 1.27
Join 4 0.01 1,132 4.07

Table 2: Count and proportion of instances af-
fected by each type of simplification transforma-
tion performed by Moses and Nematus.

rate way. However, the proportion of such cases
is very low (0.05% and 1.27% for Moses and Ne-
matus, respectively) compared to the proportion in
the gold data (13.5%) of the sentence pairs contain
at least one split.

Moses only joins sentences in four cases, but
these are all spurious instances where a period is
incorrectly removed. Nematus is more successful
at learning this type of operation. In most cases,
it discards entire clauses that contain less relevant
content. For example, it simplifies the sentence
“Lincoln often cried in public and recited sad po-
etry, according to Joshusa Wolf Shenk, who wrote
a book called Lincoln’s Melancholy” to “Lincoln
often cried in public and recited sad poetry”. We
also find a few examples where the content that is
not discarded is rewritten to some extent, mostly
for grammaticality. The Nematus simplification
of “Frank was what the instructors called a ‘rock
star’; he emerged as a leader who worked hard to
keep the group together” onto “Frank was a leader
who worked hard to keep the group together ” is a
good example of that.

When it comes to 1-to-1 transformations, which
can include a number of different operations (see
§4), most transformations made by Nematus con-
sist of segment deletions, some of which are paired
with localized segment rewritings. As for Moses,
most 1-to-1 outputs are identical to the original ex-
cept for a few spurious typographic and punctua-
tion changes. Because of that, Nematus simplifi-
cations are in average four tokens shorter than both
complex originals and Moses simplifications.

A strong limitation of both models is their in-
ability to address lexical complexity, performing
very few lexical replacements. Most of the sen-
tences that are lexically simplified have only one
word replaced by another that does not preserve
its original meaning. Take, for example, the word
clears in the sentence “It clears the way for troops
on the ground with its huge bullets”, which was

replaced by gathers by Nematus, and the word
agribusiness, which was replaced by offering by
Moses in sentence “Older brother Nate has taken
college courses on livestock raising and agribusi-
ness”. Some of these issues become more evident
in the human evaluation we performed comparing
both end-to-end systems to our proposed approach
(§5.2).

4 Simplification via Sequence Labeling

Our approach to TS differs from translation-based
models by explicitly predicting a set of operations
to be applied at different positions in a complex
sentence. Concretely, we tackle simplification as
a sequence labeling problem, predicting opera-
tions at the token level and applying them down-
stream. As there are no high-quality and large-
scale resources from which such operation se-
quences could be learned, we first generate train-
ing data as explained below.6

4.1 Generating Training Data
Given 1-to-1 sentence pairs, our method for data
generation identifies deletions, additions, substi-
tutions, rewrites (replacing or adding non-content
words), and reorderings performed between sen-
tences pairs.

Automatic operation annotation. The annota-
tion process uses the following set of operation la-
bels: DELETE (D), REPLACE (R), and MOVE (M)
in the original (source) sentence; ADD (A) in the
simplified sentence; and REWRITE (RW) in both.7

We first generate word alignments between the
original and simplified sentences using the aligner
by Sultan et al. (2014). Based on these align-
ments, we perform a word-level annotation for la-
bels DELETE and REPLACE. Our heuristics are
that if two words are aligned and are not an exact
match, then the corresponding label is REPLACE.
If a word in the original sentence is not aligned, it

6For the experiments with the proposed TS approach, only
1-to-1 alignments are suitable. It is indeed not realistic to
expect that complex operations that involve significant struc-
tural changes (e.g., splitting or joining sentences) could be
modeled using sequence labeling approaches. For such com-
plex operations, we believe explicitly representing the sen-
tences’ syntactic structures and learning abstract syntactic
transformation rules (e.g. as in Woodsend and Lapata (2011)
or Feblowitz and Kauchak (2013)) would be more advisable.
However, we note that, as previously shown, translation-
based end-to-end approaches also fail to learn such complex
operations.

7Target-side annotations serve for analysis; they are ig-
nored in our experiments as they are unavailable at test time.



Figure 1: Example of automatic labeling based on word alignments between an original (top) and a
simplified (bottom) sentence in the Newsela corpus. Unaligned words on the original side receive label
‘D’ (DELETE), while words that are aligned to a different form receive ‘R’ (REPLACE). Aligned words
without an explicit label receive a ‘C’ label (COPY). Sentences are from the Newsela Article Corpus.

Figure 2: Example of automatic annotation for la-
bel MOVE (‘M’). Sentences are from the Newsela
Article Corpus.

must be a DELETE, and if a word in the simplified
sentence is not aligned, it is an ADD. In any other
case, the word receives label C (COPY) or O (not
part of a simplification operation) in the original or
simplified sentence, respectively. For details, see
Algorithm 1 in the supplementary material. Figure
1 presents an example for our automatic labeling
approach. We consider REWRITE labels as special
cases of REPLACE where the words involved are
isolated (not in a group of same operation labels)
and belong to a list of non-content words.

Finally, we label reorderings (MOVE) by de-
termining if the relative index of a word (con-
sidering preceding or following deletions and ad-
ditions) in the original sentence changes in the
simplified one (Algorithm 2). See Figure 2 for
an example. Words or phrases that are kept, re-
placed or rewritten, may be subject to reorder-
ings, such that a token may have more than
one label (e.g. REPLACE and MOVE). For
that, we extend the set of operations by the
compound operations REPLACE+MOVE (RM) and
REWRITE+MOVE (RWM).

Evaluation of automatic labels. To test our al-
gorithms, we compare their output to manual an-
notations for 100 sentences from level pair 0-
1 of the Newsela corpus. The manual annota-
tions were performed by four proficient English
speakers. For 30 of those sentences, we calcu-
lated the pairwise inter-annotator agreement be-
tween annotators, yielding an average kappa value

of 0.57. We obtain an accuracy of 0.92 for all la-
bels, and a micro-averaged F1 score of 0.70 for all
positive labels (i.e. excluding ‘C’ and ‘O’). Ta-
ble 3 presents details on the performance of our
annotation algorithms over the identified opera-
tions. Of the positive labels, the algorithms anno-
tate most accurately additions and deletions. Ac-
cording to the confusion matrix in Table 4, the
relatively low ability of capturing replacements is
due to labeling them as deletions. This is mainly
caused by word miss-alignments and by parser er-
rors that our heuristics cannot recover from. The
same logic applies for labels REPLACE+MOVE and
REWRITE+MOVE. We are also able to capture
most MOVEments (high recall), but our reordering
heuristic still requires improvement.

Label Prec. Rec. F1 Support

A 0.66 0.92 0.77 261
D 0.76 0.90 0.82 371
M 0.17 0.92 0.28 24
R 0.70 0.39 0.50 71

RM 0.22 0.33 0.27 12
RW 0.24 0.07 0.11 57

RWM 0.00 0.00 0.00 6
C 0.99 0.94 0.96 1932
O 0.99 0.95 0.97 2112

avg / total 0.92 0.92 0.92 4846

Table 3: Per-label performance of automatic anno-
tation of operations.

We refer to these automatically generated labels
as silver labels. As we describe in the next sec-
tions, the corpus annotated with these labels will
be used to train our sequence labeling approach,
eliminating the need for costly human-annotated
data (i.e. gold labels). As a second way of evalu-
ating the quality of our automatic labeling, we use
these silver labels in a semi-oracle trial where we
apply the actual simplification operations as given
in the annotated corpus. In other words, we sim-
ply take the automatic labels as true and use the



Automatically Annotated
A D M R RM RW RWM C O

A 240 0 0 0 0 2 0 0 19
D 15 333 8 4 5 1 1 4 0
M 0 1 22 0 0 0 0 1 0
R 0 33 0 28 6 0 0 4 0

RM 0 8 0 0 4 0 0 0 0
RW 3 31 4 7 2 4 0 6 0

RWM 0 6 0 0 0 0 0 0 0
C 0 24 98 1 1 1 0 1807 0
O 105 0 0 0 0 9 0 0 1998

Table 4: Confusion matrix of true (rows) and au-
tomatically annotated (columns) operations on the
manually annotated data.

alignments between original and simplified words
to apply the actual operations. This is what we re-
fer to as silver operations in Table 1. Using the
automatic labeling would lead to much more accu-
rate and less conservative simplifications than all
translation-based approaches: it achieves the high-
est SARI and BLEU scores, and the lowest rate of
copied input sentences among all systems tested
using the 1-to-1 alignments. Therefore, the chal-
lenges now are (i) to predict such labels (§5.1), and
(ii) to devise high-performing TS modules to ap-
ply simplification operations for each type of label
(§4.2).

4.2 Application of Operations

For our experiments (§5), we consider two of the
operations that our algorithms can identify with
high precision: DELETE and REPLACE.8 Apply-
ing deletions is straightforward and amounts to
simply omitting the respective token when gener-
ating the hypothesis sentence. For the REPLACE

operation, we use the supervised Lexical Simpli-
fication approach of Paetzold and Specia (2017).
Their simplifier generates candidate substitutions
for target words using parallel complex-to-simple
corpora and retrofitted context-aware word em-
bedding models, selects the ones that fit the con-
text of the target word through the unsupervised
boundary ranking approach, then ranks candidates
using a supervised neural ranking model trained

8We focus on this subset of operations since we currently
lack good models to apply to the remaining operations. ADD,
for example, would presume access to an external resource
such as a knowledge base that would serve as a basis for in-
ferring added content (which is oftentimes background infor-
mation, for example an explanation that a certain person has
a certain function). The results we obtain can thus be viewed
as a lower bound on the simplification quality that can be ex-
pected from a model that integrates other operations.

over manually annotated simplifications. It also
performs a final confidence check step: the target
is only replaced by the highest ranking candidate
if the trigram probability of two words preceding
the target is higher for the candidate.

5 Experiments

Based on the automatic annotation procedure out-
lined above, we generate sequence annotations of
1-to-1 simplification operations in the Newsela
corpus. On this data, we explore the questions (i)
whether we can predict simplification operations
to be performed on unseen data, and (ii) to what
degree the prediction of these operations allows us
to generate good simplifications.

5.1 Prediction of Simplification Operations

To predict simplification operations for each input
word, we train a bidirectional recurrent neural net-
work, with an initial embedding layer of size 300
and two hidden LSTM (Long-Short Term Mem-
ory) layers of size 100. The training is done us-
ing Keras (Chollet, 2015), with a batch size of
64, categorical cross-entropy loss and a dropout
rate of 0.2 after the hidden layers. We optimize
the model with Adagrad (Duchi et al., 2011). We
monitor the tagging accuracy on held-out develop-
ment data and employ early stopping when the de-
velopment loss increases. We repeat this process
ten times with random initializations and select the
best model based on development set accuracy.

Table 5 shows that the LSTM model does not
predict the silver labels very well. In particular, the
model is relatively conservative with respect to the
prediction of simplification operations, and tends
to overpredict the majority class (i.e., to copy a to-
ken).9 DELETE is the operation that our model pre-
dicts best. Table 6 shows the relative confusion of
predicted operations versus the silver labels, and
confirms that the main error type of our system is
to keep a token rather than performing some sim-
plification operation on it. We also see a tendency
for other operations to be predicted as deletions.

The results in the lower part of Table 1 (“Pre-
dicted operations (1-to-1)”), however, show that
even though the operation predictions are far from
the silver labels, our system is able to generate
simple output by only applying the DELETE and

9By weighting the loss function by the ground truth class
support at each timestep, we were able to alleviate the effect
of a predominant majority class to some degree.



Label Prec. Rec. F1 Support

D .30 .49 .37 58,692
M .21 .16 .18 29,719
R .13 .34 .19 7,208

RM .00 .00 .00 2,817
RW .14 .07 .10 646

RWM .00 .00 .00 141
C .68 .51 .58 154,481

avg / total .51 .45 .47 253,704

Table 5: Per-label performance of automatic oper-
ation prediction with the LSTM model.

Predicted
D M R RM RW RWM C

D .49 .06 .07 .00 .00 .00 .38
M .41 .16 .05 .00 .00 .00 .38
R .23 .05 .34 .00 .00 .00 .38

RM .32 .09 .21 .00 .00 .00 .38
RW .38 .00 .00 .00 .07 .00 .54

RWM .62 .03 .00 .00 .04 .00 .32
C .33 .09 .06 .00 .00 .00 .51

Table 6: Confusion matrix of true (rows) and pre-
dicted (columns) operations on the test data.

REPLACE operations. In particular, our method
achieves a better SARI score than all the baseline
systems on the 1-to-1 alignments. As we consider
the extrinsic evaluation of the final TS results to be
more indicative of the quality of our model than its
intrinsic evaluation in the sequence labeling task,
we view this as a positive result.

5.2 Human Evaluation
We finally conduct a human evaluation of 100 sim-
plifications produced by five simplifiers:

• The experts’ Reference simplification.

• The Moses simplifier (1-to-1).

• The Nematus simplifier (1-to-1).

• The NTS simplifier (1-to-1).

• Our Sequence Labeling (SL) simplifier.

Human evaluators (four NLP experts) are given
the original sentence and the simplification in each
of the above versions, and are asked to judge each
of them with respect to their grammaticality (G),
meaning preservation (M) and simplicity (S), us-
ing a Likert scale between 1 (worst) and 5 (best)
for each aspect. We define “simplicity” as the ex-
tent to which the sentence was simpler than the
original and thus easier to understand. A control

set of 20 sentences is evaluated by all annotators
in order to compute inter-annotator agreement.

G M S

Reference 5.00±0.0 4.45±0.9 2.70±1.3
SL 4.16±1.0 3.91±1.1 1.66±0.9
Nematus 4.49±0.9 3.99±1.2 1.46±0.9
Moses 4.98±0.2 4.99±0.1 1.14±0.4
NTS 4.75±0.6 4.08±1.26 1.53±1.0

Fleiss’ Kappa 0.372 0.457 0.342

Table 7: Average scores and standard deviation for
grammaticality (G), meaning preservation (M) and
simplicity (S) for the systems evaluated. The last
row shows the inter-annotator agreement scores in
terms of Fleiss’ Kappa.

Table 7 illustrates the average scores and stan-
dard deviations obtained by each system according
to each criterion. As expected, the Moses simpli-
fier obtains the highest grammaticality and mean-
ing preservation scores, but the lowest simplicity
scores, given that it tends to merely reproduce the
input. Although Nematus and NTS manage to ob-
tain slightly higher simplification scores, they still
average very close to the lower end of the simplic-
ity scale. Our SL approach, in turn, shows signifi-
cantly higher simplicity scores than the other sys-
tems (according to a t-test with p < 0.05). Its less
conservative edits, however, may in some cases
come at the cost of lower scores for grammati-
cality and meaning preservation. The last row in
Table 7 shows the values of inter-annotator agree-
ment in terms of Fleiss’ Kappa for each evaluation
aspect. Table 8 exemplifies some of the sentences
for which our system was rated better and worse
than the baselines. It is important to mention that,
although the first two reference simplifications in
Table 8 feature only minor punctuation changes,
only 2,538 references (0.8%) in the dataset are of
this type.

6 Conclusions and Further Work

We presented a novel approach to sentence sim-
plification that uses automatically labeled training
data from a large simplification corpus. Based on
this annotated corpus, we devise a sequence la-
beling approach to text simplification that predicts
simplification operations for individual words in
the original sentence. Specific modules are then
triggered to deal with each predicted operation.



SL better than other Moses, Nematus and NTS

O Kyarra Garrett has learned how to take blood pressure and perform CPR – and she is not even out
of high school yet.

R Kyarra Garrett has learned how to take blood pressure and perform CPR, and she is not even out
of high school yet.

M Kyarra Garrett has learned how to take blood pressure and perform CPR – and she is not even out
of high school yet.

N UNK Garrett loves out to take blood pressure and perform, and she is not even out of high school
yet.

T Chance Garrett has learned how to take blood pressure.
L Kyarra Garrett has learned how to take blood pressure and perform CPR.

O in her mind she stops at particular locations to pick up the correct cookie crumbs.
R in her mind, she stops at particular locations to pick up the correct cookie crumbs.
M in her mind she stops at particular locations to pick up the correct cookie crumbs.
N she stops at particular locations to pick up the correct cookie UNK.
T in her mind she stops at particular locations to pick up the correct cookie momentum.
L in her mind she stops at particular areas to pick up cookie crumbs.

SL worse than Moses, Nematus or NTS

O despite the limitations, Palestinian cooking is not without its fans.
R despite the limitations, Palestinian cooking has its fans.
M despite the limitations, Palestinian cooking is not without its fans.
N Palestinian cooking is not without its fans.
T even Palestinian cooking is not without its fans.
L despite the limitations, Palestinian cooking is not without its fans.

O “we always thought there has to be a more efficient way of doing this,” Zach Fiene said.
R he said he always thought there had to be a better way of doing it.
M “we always thought there has to be a more efficient way of doing this,” Zach Fiene said.
N “we always thought there has to be a more efficient way of doing this,” said Zach Ghani, who is

the 18-year-old said.
T Zach Fiene said there has to be a more efficient way of doing this.
L “we always thought there has to be more efficient way doing this said.

Table 8: Example including original (O) and reference (R) sentences from the Newsela Article Corpus,
and outputs generated by Moses (M), Nematus (N), NTS (T) and our sequence labeling approach (L).

The experiments reported here cover only dele-
tions and lexical substitutions as operations.

Our approach has several theoretical advantages
over end-to-end translation models, including eas-
ier interpretability of the types of simplification
learned, as well as the possibility for late decoding
for adaptive simplification. In practical terms, we
showed that our system outperforms translation-
based approaches on a number of metrics and
overcomes the problems of excessive repetition of
the original content.

According to human evaluation, our system
achieves higher simplicity scores than the base-
line systems, although this comes at the cost of

slightly lower meaning preservation and grammat-
icality. We hypothesize that some of the problem-
atic cases stem from not realizing the addition op-
eration. In general, our approach will likely profit
from good models for the remaining operations,
especially those that can also operate on spans of
several tokens, making research on such models a
natural direction for further work.
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A Supplementary Material

Algorithm 1: Initial word-level annotation
Input: O: list with tokens of the original sentence, S:

list with tokens of the simplified sentence, A:
list with word alignments.

Output: SLO: simplification labels for each token in
O, SLS: simplification labels for each token
in S.

// labeling tokens in the original
sentence

1 for i← 1 to len(O) do
// get the indexes of the tokens

in S to which the ith token in
O is aligned to

2 IS ← FindAlignments(A, i, ‘s’)
3 if len(IS) > 0 then // it is aligned
4 if len(IS) = 1 and Oi = SIS0 then
5 SLOi ← ‘C’ // keep
6 else // not an exact match
7 SLOi ← ‘R’ // replace
8 end
9 else // not aligned

10 SLOi ← ‘D’ // delete
11 end
12 end

// labeling tokens in the simplified
sentence

13 for j ← 1 to len(S) + 1 do
// get the indexes of the tokens

in O to which the jth token in
S is aligned to

14 IO ← FindAlignments(A, j, ‘o’)
15 if len(IO) > 0 then // it is aligned
16 SLSj ← ‘O’
17 if len(IO) > 1 then

// the current token in S
replaces a phrase in O

18 foreach k ∈ IO do
19 SLOk ← ‘R’
20 end
21 end
22 else
23 SLSj ← ‘A’ // add
24 end
25 end

Algorithm 2: Annotation of reorderings
Input: SLO: simplification labels for each token in

original sentence, SLS: simplification labels for
each token in simplified sentence, A: list with
word alignments.

Output: SLO modified.
1 shift left← 0
2 for i← 0 to len(SLO) do
3 if SLOi ∈ [‘D’, ‘R’] then
4 shift left← shift left+ 1
5 else
6 IS ← FindAlignments(A, i, ‘s’)
7 if len(IS) > 0 then
8 k ← IS0 // index of the

aligned token in the
simplified sentence

9 else
10 k ← i // index of the token

in the original sentence
11 end
12 shift right← 0
13 for j ← 0 to k do
14 if SLSj ∈ [‘AC’, ‘RW’] then
15 shift right← shift right+ 1
16 end
17 end
18 if i− shift left+ shift right ̸= k then
19 switch SLSi do
20 case ‘C’ do SLSi ← ‘M’
21 case ‘R’ do SLSi ← ‘RM’
22 case ‘RW’ do SLSi ← ‘RWM’
23 end
24 end
25 end
26 end


