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ABSTRACT 15 

We have implemented an approach based on Convolutional Neural Networks (CNN) for mint 16 

recognition for our Corpus Nummorum (CN) coin dataset as an alternative to coin type 17 

recognition, since we had too few instances for most of the types (classes). However, this shift 18 

increased an existing problem with our dataset: the extremely unbalanced number of 19 

instances per class. While some of our classes consist of only 20 instances, others consist of 20 

several hundred. After training our VGG16 model we unsurprisingly observed an overfitting 21 

of these “big” classes within the confusion matrix. To reduce this problem, we tried to split 22 

the dominating classes with the most images into several smaller ones and called them 23 

additional class layers. We use three different machine learning (ML) approaches to perform 24 

this breakdown. One is an unsupervised clustering method without additional manual work. 25 

The other two are supervised approaches which explicitly take into account the motifs of the 26 

coins themselves: a) an Object Detection model that predicts trained entities, and b) a Natural 27 

Language Processing (NLP) method to find entities in the textual descriptions of the coins. 28 

Based on the combination of obverse and reverse results from these two approaches new 29 

additional class layers were defined for each of them independently. After retraining our mint 30 

recognition model with these new classes, we evaluated the results based on the confusion 31 

matrix. In our case, the best results could be observed by forming an additional class layer 32 

based on the NLP method. Unfortunately, in our situation the overfitting problem could only 33 

be reduced and not eliminated.  34 
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Introduction 41 

In our current project D4N4 – Data quality for Numismatics based on Natural language processing and 42 

Neural Networks (D4N4 n.d.) we want to implement a Machine Learning (ML)-based coin type recognition 43 

model that covers as many coin types as possible from the “Corpus Nummorum” (CN) (Corpus Nummorum 44 

n.d.) dataset. The goal is to use it to improve and verify the data quality of existing data, and also use it to 45 

help the process of entering new coins. The CN dataset features about 19,600 different coin types and 46 

more than 49,000 coins from four different ancient landscapes (Thrace, Moesia Inferior, Troad and Mysia). 47 

This dataset contains coins from several different museums, institutions and collectors. The largest part of 48 

our images comes from the Berlin-Brandenburgische Akademie der Wissenschaften, the Münzkabinett 49 

Berlin and the Bibliothèque nationale de France, Département des Monnaies, médailles et antiques. We 50 

published the images from these three institutions (due to existing copyrights) as a dataset for ML research 51 

on Zenodo (Corpus Nummorum 2023). A coin in the database is generally represented by images of the 52 

obverse and reverse of the original, or by a plaster cast. In rare cases, both representations are assigned to 53 

a coin record. For our ML dataset, we merged the obverse and reverse images of a coin into a single image 54 

showing both (as can be seen in fig. 1).  55 

The biggest challenge for our type recognition is the ratio of an average of approximately two coin 56 

images per type. In previous experiments we learned that 20 coin images per class threshold is a reasonable 57 

starting point to achieve good results in the training for our data. This means that for most of the types our 58 

dataset currently has too few coins (Gampe 2021, Gampe and Tolle in print 2019). Currently only 179 of 59 

the 19,600 type classes can meet the condition. The VGG16 model, which was pretrained on the ImageNet 60 

dataset (ImageNet 2021), achieves a Top-1 Accuracy of 82% (tab. 1) based on those types that meet the 61 

threshold (>20 images), with the drawback that 99% of the type classes in the CN dataset are not part of 62 

the training1. We are constantly increasing the number of our images and we have been able to double the 63 

number of trainable types since the start of the project.  64 

             65 

Figure 1 –  The merged images of CN coin 2377 (CN type 763; mint : Maroneia) and CN coin 18232 66 
(CN type 11944; mint: Pergamon)  with black bars for the quadratic input format of the CNNs (Photos : 67 
Münzkabinett Berlin)   68 

In order to get better coverage and still generate something useful, we trained a different model to 69 

recognize another important aspect of our coins: the mint in which the coin was produced. Predicting a 70 

coin’s mint could also reduce the workload for our numismatists since the presorting of a larger number of 71 

coins by mint can save a lot of time. We kept our VGG16 setup and only needed to change the training and 72 

test set. Currently there are 122 mints in our data set. With the 20-coin image threshold, 98 of them are 73 

eligible for training. This way we could use about 40,000 (~80%) of our images for this approach. The 74 

remaining 24 mints have less than 200 images combined. The accuracy values here are comparable to the 75 

type recognition (Top-1 Accuracy: 79%, tab. 1) in spite of the fact that the individual mint classes are much 76 

more disparate than the type classes. Most mint classes consist of several different coin types which differ 77 

                                                      
1 The Top-1 Accuracy shows the percentage of correct results of the predictions with the highest probability. The 

Top-5 Accuracy is the percentage of correct predictions within the five most likely predictions. 



more or less from each other, Pergamon for example has 653 different coin types (630 are currently 78 

published on the website)2. 79 

Table 1 – Metrics for the models with and without the additional class layers 80 

CNN Architecture Class Type Additional Class Layer 

Number of Perinthos / 

Pergamon classes Top–1 Accuracy Top–5 Accuracy 

VGG16 Types None 1 82% 98% 

VGG16 Mints None 1 79% 94% 

VGG16 Mints DeepCluster 15 / 15 73% 91% 

VGG16 Mints DeepCluster 10 / 10 74% 92% 

VGG16 Mints Object Detection 8 / 10 78% 93% 

VGG16 Mints Object Detection 4 / 4 77% 93% 

VGG16 Mints NLP 16 / 16 76% 92% 

VGG16 Mints NLP 8 / 9 78% 93% 

 81 

However, we still encounter the problem of having an unbalanced dataset when training the mint 82 

recognition. The advantage of the significantly higher number of usable images comes with the problem of 83 

a clearly higher amount of instances in a single class. Due to the different production patterns of the mints 84 

and the disparity in the number of coins of each ancient city in our area of interest, we also have 85 

significantly different coin image numbers for each city. Some of them have only the threshold value of 20 86 

images while others have several hundred (fig. 2). 87 

Such big differences in the number of images per class can lead to a phenomenon known as overfitting. 88 

A CNN model learns to recognize some classes better than others due to the larger number of images, with 89 

the result that the weights in the trained network can be more tuned to these classes during training. 90 

Subsequently, it is possible that images of other smaller classes are predicted preferentially as belonging 91 

to one of these overfitted classes. Overfitting can also appear by too many epochs during the training. In 92 

our case and in this paper this source for overfitting is neglected and we concentrate on the inhomogeneity 93 

of the data set as a basis for overfitting. A good way to determine if overfitting is present in a model is to 94 

create the so-called Confusion Matrix (CM) (fig. 3). The CM is a common way to make overfitting visible for 95 

individual classes in a multiclass problem. In the CM the predictions of the model and the true classes 96 

(ground truth) are confronted. In the case of a model that is 100% correct for all predictions, the diagonal 97 

of this matrix should be deep red. Recurring errors for one class create visible points off the diagonal. 98 

Traces of vertical lines for one or more classes are a good indicator for the overfitting problem. The CM of 99 

our most recent model shows these traces (fig. 3). They are clearly visible for the cities that have the most 100 

associated images like Pergamon and Perinthos (fig. 2). Every city with more than 1500 assigned images 101 

shows clear signs of overfitting on the CM. This overfitting is probably also responsible for the poorer 102 

performance of the model. The Pergamon line is the most prominent. Although Perinthos also has a large 103 

number of images, the overfitting problem is less pronounced here than with Pergamon. These differences 104 

and the fact that both mints produced very different looking coin types and thus present a challenge when 105 

dividing into new smaller classes make them a good case study in our view. 106 

One idea for solving the overfitting problem is limiting the number of training images per class. The 107 

problem for the image limitation is the number of types which belong to a mint. For example, for the mint 108 

Pergamon there are over 3600 coin images, which are split over 653 different coin types. This means that 109 

if we want to represent each type with at least one coin image in the training set the Pergamon class would 110 

still be significantly larger than many other classes. A limited dataset can also lead to lower model 111 

                                                      
2 Overview of the 630 published types in the CN dataset:                 

https://www.corpus-nummorum.eu/search/types?type=quicksearch&mints%5B%5D=74 [accessed 15 December 

2023]. 



performance because mint classes whose coins occur very often in archaeological finds will not have proper 112 

training for their range of types. The accuracy for the types which are very common in that mint will not 113 

be as good as it could be with an unlimited training set. Another method we tried in the overfitting context 114 

is the “compute_class_weight” algorithm from the scikit-learn package (scikit-learn n.d.). It computes class 115 

weights for every class for an unbalanced dataset like ours in order to avoid overfitting. The computed 116 

weight of a class with many images is significantly lower than that of a class with few images. Unfortunately, 117 

the performance of the trained model with such class weights was unacceptable. We got a Top-1 Accuracy 118 

of less than 1%. We also experimented with the “sparse categorical focal loss” function for our case (focal-119 

loss n.d.). The function makes easy-to-classify images contribute less than hard-to-classify images during 120 

the training. However, training with this loss function had no positive effect at all. 121 

 122 

Figure 2 – Number of images for each mint in the Corpus Nummorum dataset. (Graphic: S. Gampe, 123 
Big Data Lab) 124 

This paper deals with the problems we encountered when applying an image recognition (IR) approach 125 

to an ancient coin dataset. The focus is on our main challenge of a very unbalanced dataset consisting of 126 

classes with very few images and others with several hundred images. This means we focus here not on 127 



the improvement of machine learning (ML) algorithms as such, but on the setup, in particular the handling 128 

of the datasets and the definition of the result classes for the training. 129 

 130 

Figure 3 – Confusion matrix for the mint model without the additional class layer. (Graphic: S. Gampe, 131 
Big Data Lab) 132 

The goal was to improve our mint recognition model by breaking down large classes with many input 133 

images into several smaller ones. For this purpose we used three different methods: 1. DeepCluster – an 134 

unsupervised clustering method, 2. Object Detection based on a Region Based – Convolutional Neural 135 

Network (R-CNN) and 3. our Natural Language Processing (NLP) pipeline (Gampe and Tolle in print 2019). 136 

The DeepCluster model is available on GitHub (GitHub – facebookresearch / deepcluster n.d.). The Object 137 

Detection approach trained for this paper is based on TensorFlow and Keras (Keras n.d., TensorFlow n.d.). 138 

The already existing NLP Pipeline was developed with the spaCy application programming interface (spaCy 139 

n.d.). Our Image Recognition models, which are based on a pretrained VGG16 model, are implemented 140 

with TensorFlow and Keras (Gampe and Tolle in print 2019, TensorFlow n.d., Keras n.d.). All of the above 141 

methods run on Jupyter Notebook and are written in Python programming language.  142 

In another Project (ClaReNet) the DeepCluster Method was used to cluster a coin hoard with celtic 143 

coins. The already existing typology and the allocation of coins to them was checked with the method. The 144 



R-CNN based Object Detection was utilized to crop the area of a portrait on imperial roman coins to prevent 145 

a CNN from making decisions based on the legend (Gampe 2021). Our NLP approach has been in 146 

development for some time (Klinger et al. 2018, Gampe and Tolle in print 2019) and is now also used for 147 

other reasons within the CN-project. We therefore wanted to check whether it could also be used to solve 148 

our overfitting problems.  149 

Our idea for addressing this problem is to break down big classes like Pergamon and Perinthos into 150 

smaller ones. We call this the additional class layer. The term “layer” is well known from neural networks 151 

like the CNN, which has different layers (fig. 4). The last layer in such networks is called the softmax and is 152 

responsible for transforming the incoming numerical values from the preceding layers into the class’s 153 

probabilities (Amidi and Amidi n.d.). We call this layer also the class layer. Our idea is to add an additional 154 

layer for large classes on top of the existing ones (fig. 4). 155 

 156 

Figure 4 – Overview of a convolutional neural Network, its different layers and the additional class 157 
layer. (Photo: Corpus Nummorum. Graphic: S. Gampe, Big Data Lab) 158 

In this process, classes like Pergamon are divided based on the similarity of their different types and 159 

new smaller classes are added. Then we add the old class layer with the new ones to get a new train and 160 

test set. To realize this approach, we use three different Machine Learning based methods: 161 

1. Unsupervised “DeepCluster” 162 

2. Region Based – CNN based Object Detection 163 

3. Natural Language Processing 164 

By creating these new classes and reducing the old large ones we tried to reduce the amount of overfitting 165 

and potentially increase the accuracy of our models. To test these approaches, we applied them to two 166 

different mints: Pergamon with c. 3600 images and Perinthos with c. 1800 images. Pergamon was chosen 167 

because it is the mint with the most associated images. In contrast Perinthos has just half as many images, 168 

however, this city has types that differ greatly from those from Pergamon due to the fact that the city 169 

belongs to another region (Pergamon – Mysia, Perinthos – Thrace). These differences are important to 170 

ensure the applicability of the three approaches to different mints.  171 

Unsupervised “DeepCluster” 172 

Our first method, DeepCluster from Facebook Research (Caron et al. 2018), combines unsupervised and 173 

supervised elements. An integrated CNN extracts features from the input images. Afterwards, these 174 

features are clustered with a k-means algorithm and the resulting clusters are used as pseudo labels. These 175 

newly labeled images serve as input for further CNN training. The number of clusters depends on the input 176 

parameter “k”, which can be freely selected before the start (Caron et al. 2018). One big benefit of this 177 

approach is the fact that DeepCluster needs no time-consuming adaptations to our problem. Values for a 178 

few parameters have to be chosen, such as the number of clusters “k” and the amount of training epochs. 179 

We chose 200 epochs for each attempt. The number of clusters was set to 15 and 10 because we didn’t 180 

want to create a large number of small classes. DeepCluster’s Algorithm uses all of our images from 181 

Pergamon and from Perinthos to form the 15 clusters for each mint separately. This means that both 182 

original classes have been completely split up and therefore no longer exist as classes in the training. 183 

However, it is possible that DeepCluster forms very inhomogeneous clusters with a lot of different looking 184 

types. 185 



For our first attempt of dividing the Pergamon and Perinthos classes into smaller ones we had 15 186 

clusters each (Pergamon_01 to Pergamon_15 and Perinthos_01 to Perinthos_15). Although both classes 187 

have different numbers of images, we have chosen an equal number of new classes to investigate the 188 

effects on these different sized classes. After the training most clusters had a size of 50 to 100 images for 189 

Perinthos and 100 to 200 for Pergamon. Both mints also had one cluster with many more images than the 190 

others: DeepCluster tends to build what we call “garbage clusters”, which contain all images that could not 191 

be assigned to the other clusters (Pergamon_10 and 12, Perinthos_02 and 11). They are somewhat 192 

comparable to the original classes with the leftover images from our two other approaches (see below). 193 

The 30 clusters built with DeepCluster are now incorporated as new classes in our train and test set 194 

replacing the original Pergamon and Perinthos classes. After the training we could observe that the Top-1 195 

and Top-5 Accuracy values were below those from the unmodified model (tab. 1). We also created the 196 

confusion matrix for the new model on the test set (fig. 5). 197 

 198 

Figure 5 – Confusion matrix for the DeepCluster approach. (Graphic: S. Gampe, Big Data Lab) 199 

What is immediately noticeable is that there is a clear vertical line in the area of the new classes. This 200 

means that these classes are often confused with each other. A look at the composition of the clusters 201 



indicates that this is due to the inhomogeneity of the assigned images within each cluster. While many 202 

clusters share images of the same or very similar types, the two biggest “garbage clusters” from both mints 203 

(Pergamon_12 and Perinthos_11) are clearly visible on the CM. These share a particularly large number of 204 

coin types with the other new classes. For Pergamon, the overfitting problem has diminished, but some of 205 

the brighter points from the unmodified class columns are now spread across the vertical lines of the new 206 

classes. For Perinthos we could also observe a slight decrease of the overfitting. However, new overfitting 207 

problems can also arise, as it is apparent in the Byzantion column at the level of the new Perinthos classes. 208 

We repeated this test with a smaller number of clusters. This time we executed DeepCluster with 10 209 

clusters as preset. However, the result barely changed. The confusion between the new classes is still there 210 

and the overfitting for both mints is nearly the same as with 15 clusters. We also found a reduction of the 211 

Top-1 Accuracy of about 5% in both tests. These results have led us to conclude that the DeepCluster 212 

method is not suitable for our problem. 213 

 214 

Region Based – CNN based Object Detection  215 

Our second approach is an Object Detection model from Keras (Keras n.d.). It is based on a Region Based 216 

Convolutional Neural Network (R-CNN) which produces a set of region proposals that are likely to contain 217 

objects, and uses a CNN to extract features from each region proposal to classify objects within these 218 

regions. (Girshick et al. 2014). The way new classes were created here followed a different concept. We 219 

trained the R-CNN model on frequently occurring subjects on the coins like “head” or “sitting person”. 220 

Most of these subjects are among the most common objects and animals in the CN database (Wirth 2021). 221 

The new classes were built based on the combinations of these subjects in the dataset3. The training of the 222 

R-CNN model was carried out by Huy Long, who wrote his master’s thesis on this topic (Long 2022). He 223 

annotated 20 to 30 images for every subject with a polygonal annotation and with bounding boxes. With 224 

a polygonal annotated training set the model can predict the contour of an object, but annotation is more 225 

time consuming compared to the annotation of bounding boxes. After training the Object Detection model, 226 

it was used to predict subjects on each coin image of Pergamon and Perinthos. Based on these results, new 227 

classes had been built manually based on the resulting combinations of obverse and reverse subjects (e.g. 228 

Head–Owl). For Pergamon this generated eight and for Perinthos ten classes. These classes have different 229 

sizes with around 20 to 200 images assigned to them. This way we reduced the number of images in the 230 

original Pergamon and Perinthos classes to 2,520 and 1,170. After training our VGG16 model on the 231 

updated train and test set we observed that the top-1 and top-5 accuracy has hardly changed (tab. 1). But 232 

the resulting CM shows a problem similar to the DeepCluster approach (fig. 6). Images of the new classes 233 

are often attributed to the reduced Pergamon and Perinthos class. Furthermore, the overfitting for both 234 

original classes was not reduced as the CM shows. We repeated this test with a reduced number of new 235 

classes, where the images of some of the smaller classes had been manually merged back to the Pergamon 236 

and Perinthos classes. After retraining, beside a small decrease in the accuracy values, the overfitting 237 

problem also remained.  238 

Clearly this approach is unfortunately not suitable for solving, or at least reducing our problem. An 239 

explanation for this could be the performance of the R-CNN Object Detection model. When examining the 240 

new classes, it became apparent that quite a number of objects had not been detected by the Object 241 

Detection model. The new classes were not really well distinguishable from the Pergamon and Perinthos 242 

ones. The annotation used seems not to cover the whole range of several subjects. 243 

                                                      
3 The following subjects were used for the combinations:  1. Pergamon: “sitting_person”, “head”, “serpent_box”, 

“owl”, “serpents”, “eagle”, “podium”, “bull”, “bow”. 2. Perinthos: “sitting_person", "head", "podium", "bull", 

"quadriga", "double_horse", "club", "laurel_wreath", "price_crown", "ship", "table", "pot", "standing_person". 



 244 

Figure 6 – Confusion matrix for the Object Detection approach. (Graphic: S. Gampe, Big Data Lab) 245 

 246 

Natural language processing 247 

Our final method for dealing with mint overfitting is the application of our Natural Language Processing 248 

(NLP) pipeline. We already have trained an NLP model for the textual descriptions of our coins in the CN 249 

database (Gampe and Tolle in print 2019, Klinger et al. 2018). This model is able to find numerous entities 250 

like “Athena” or “Spear”. The list of trained entities includes four different categories: persons, objects, 251 

animals and plants. We wrote a query for grouping all coins with the same entities on the obverse and 252 

reverse, and sorted them by the frequency of these individual combinations. To create the new classes, we 253 

had to filter these combinations manually because a coin’s description can have several entities assigned 254 

to it and overlaps are possible. The example (fig. 7) shows all entities in a coin’s obverse and reverse 255 

description. For example, this coin can be assigned to the combination “Athena–Owl” and “Head–Palm 256 



Branch”. Filtering is a time-consuming but mandatory step due to the large number of combinations. We 257 

also wanted to avoid new classes sharing coin images. 258 

 259 

Figure 7 – Coin image descriptions and entities found by the NLP model. These descriptions are used 260 
for different coins and/or coin types (fig. 1), e.g. coins https://www.corpus-261 
nummorum.eu/coins/53267?lg=en  and https://www.corpus-nummorum.eu/coins/53408?lg=en 262 
[accessed 15 December 2023] for the Athena description shown here. (Graphic: S. Gampe, Big Data 263 
Lab) 264 

After the filter step the new classes could be built from the remaining combinations. We assembled 16 265 

new classes for Pergamon and Perinthos with different combinations of entities4. These classes contained 266 

mostly different types that share a similar appearance. The number of images for each class varied from 267 

40 to 400 for Pergamon, and 40 to 300 for Perinthos. Using the NLP model, we were able to reduce the 268 

number of images in the original Pergamon and Perinthos classes to 1201 and 629. This is a significantly 269 

larger reduction than that with Object Detection. Compared to the original model, the values of the metrics 270 

after the training are only slightly lower (tab. 1).  271 

However, as the confusion matrix shows, the new classes are again often confused with the original 272 

Pergamon and Perinthos classes (fig. 8). The overfitting of Pergamon was slightly reduced with this attempt, 273 

but the vertical line in the original Pergamon class fields (outside the new classes) is still visible. The 274 

reduction of the overfitting for Perinthos, on the other hand, is clearly visible. Due to the confusion of the 275 

old with the new classes both overfitting reductions had no influence on the metrics. We repeated this 276 

experiment again with a lower number of new classes (eight for Pergamon and nine for Perinthos). 277 

However, this had no positive effect on the overfitting problem for Pergamon. In fact, it became worse 278 

than before. The overfitting of Perinthos remained at the same level as in the first NLP attempt.  279 

For this approach we can say that the NLP method required the most manual work of all three 280 

approaches. Our efficient NLP pipeline helped us best to separate the types that share a similar appearance 281 

for the new classes from the original classes. It also gave the best results for the overfitting problem based 282 

on the observation of the CM. However, the confusion between the new classes shows that the types of 283 

one mint very likely share some common features. This is something that could be further explored. 284 

                                                      
4 The following entities were used for the combinations: 1. Pergamon: “Athena”, “laurel_wreath”, “owl”, 

“Augustus”, “crepidoma”, “bust”, “Asclepius”, “emperor”, “Telesphorus”, “cista”, “serpent”, “figure”, “head”, 

“bow”, “heads”, “temple”, “trophy”, “paludamentum”, “Zeus”. 2. Perinthos: “bust”, “ears_of_corn”, “Herakles”, 

“lyre”, “palm_branch”, “patera”, “torch”, “cuirass”, “apples”, “head”, “altar”, “athlete”, “club”, “Dionysos”, 

“horses”, patera, “Isis”, “apis”, “radiate_crown” “board”.   



 285 

Figure 8 -  - Confusion matrix for the NLP approach. (Graphic: S. Gampe, Big Data Lab) 286 

 287 

Summary and Conclusion 288 

Due to our limited dataset and the high number of types, a training on types with sometimes only two 289 

or three instances per type results in an unacceptable performance (34% Top-1 Accuracy). By switching to 290 

mints (accumulating all types of a mint to one training class), a very unbalanced dataset was generated 291 

with some mints (classes) dominating the training. While the performance of our trained models seems 292 

sufficient, we saw traces of overfitting for the dominating mints in the confusion matrix. The problem of 293 

unbalanced data sets is very common in the domain of numismatics and archaeology in general. The overall 294 

preservation quality of the coins we used was relatively good, especially compared to excavation finds 295 

where additional problems and uncertainties occur. However, our work could lay the basic foundation to 296 

expand the models also to less well preserved material. It is therefore important to solve problems before 297 

dealing with less optimal material. 298 



We conducted three different machine learning based experiments to solve this overfitting problem 299 

with the unbalanced Corpus Nummorum dataset. To do this, we split two mint classes with a large number 300 

of images and created an additional class layer for them, and generated another training and test set with 301 

it. In our first attempt we created several new classes based on DeepCluster (unsupervised). The generated 302 

clusters contained too many different looking coin types (based on a human judgment) which negatively 303 

affected the learning process of our VGG16 model. In the second attempt the class layer was created with 304 

an Object Detection approach. This generated only a few smaller extra classes and the remaining coins 305 

without objects detected still formed a dominating class. It must be stressed that the Object Detection 306 

approach was only trained for some very common objects and the overall performance was still limited. 307 

Both approaches did not produce appropriate solutions for our problem. In the third approach classes were 308 

generated with Natural Language Processing. They were the most distinguishable from the original classes 309 

and this approach reduced overfitting the most. However, due the amount of manual work and the 310 

confusion of new and old classes, we are currently not following this path either. The accuracy of all newly 311 

trained models was below the original mint model. Even the observed visual reduction of the overfitting 312 

for the original Pergamon and Perinthos classes in the NLP experiment had no positive impact on model 313 

performance. This means that so far we could not solve our overfitting issue with mint prediction in a 314 

sufficient way. 315 

 These approaches might be useful methods in other cases, however, it shows that a generic approach 316 

to an overfitting due to dominant classes has not been found. We are therefore investigating additional 317 

ways to tackle this problem. This includes the creation of new coin images using ML-based methods for the 318 

individual classes. It can be seen as an augmentation approach for the smaller classes in order to reduce 319 

the domination of some huge classes. Furthermore, we started to compare other model approaches than 320 

just CNN (VGG16), like vision transformers or multimodal approaches.  321 

Our next steps in the D4N4 project are: 322 

The domain experts are trying to improve the CN dataset by including more images, especially for smaller 323 

classes. We are also working on a Generative Adversarial Network (GAN) approach to create virtual new 324 

coin images (that never existed) for those classes with very few coins. Finally, we published our CN dataset 325 

for other scientists and students to test their own ML methods, for example those that were recently part 326 

of a data challenge course at the Goethe-University: (Corpus Nummorum 2023).    327 

Data, scripts, code, and supplementary information availability 328 

Google Colab notebook for testing our type and mint model is available online:  329 

https://github.com/Frankfurt-BigDataLab/IR-on-coin-datasets 330 

NLP pipeline code, models and a Google Colab Notebook for testing are available online: 331 

https://github.com/Frankfurt-BigDataLab/NLP-on-multilingual-coin-datasets 332 
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