
 1

 2

Creating an Additional Class Layer with 3

Machine Learning to counter Overfitting in an 4

Unbalanced Ancient Coin Dataset 5

 6

Sebastian Gampe*1, Karsten Tolle1 7

 8
1 Big Data Lab, Goethe-Universität – Frankfurt am Main, Germany 9
 10
*Corresponding author 11
Correspondence: gampe@em.uni-frankfurt.de 12

13

14

ABSTRACT 15

We have implemented an approach based on Convolutional Neural Networks (CNN) for mint 16

recognition for our Corpus Nummorum (CN) coin dataset as an alternative to coin type 17

recognition, since we had too few instances for most of the types (classes). However, this shift 18

increased an existing problem with our dataset: the extremely unbalanced number of 19

instances per class. While some of our classes consist of only 20 instances, others consist of 20

several hundred. After training our VGG16 model we unsurprisingly observed an overfitting 21

of these “big” classes within the confusion matrix. To reduce this problem, we tried to split 22

the dominating classes with the most images into several smaller ones and called them 23

additional class layers. We use three different machine learning (ML) approaches to perform 24

this breakdown. One is an unsupervised clustering method without additional manual work. 25

The other two are supervised approaches which explicitly take into account the motifs of the 26

coins themselves: a) an Object Detection model that predicts trained entities, and b) a Natural 27

Language Processing (NLP) method to find entities in the textual descriptions of the coins. 28

Based on the combination of obverse and reverse results from these two approaches new 29

additional class layers were defined for each of them independently. After retraining our mint 30

recognition model with these new classes, we evaluated the results based on the confusion 31

matrix. In our case, the best results could be observed by forming an additional class layer 32

based on the NLP method. Unfortunately, in our situation the overfitting problem could only 33

be reduced and not eliminated. 34

 35

Keywords: Machine Learning, Image Recognition, Convolutional Neural Networks, Unbalanced 36

Dataset, Ancient Coins 37

 38

 39

 40

Introduction 41

In our current project D4N4 – Data quality for Numismatics based on Natural language processing and 42

Neural Networks (D4N4 n.d.) we want to implement a Machine Learning (ML)-based coin type recognition 43

model that covers as many coin types as possible from the “Corpus Nummorum” (CN) (Corpus Nummorum 44

n.d.) dataset. The goal is to use it to improve and verify the data quality of existing data, and also use it to 45

help the process of entering new coins. The CN dataset features about 19,600 different coin types and 46

more than 49,000 coins from four different ancient landscapes (Thrace, Moesia Inferior, Troad and Mysia). 47

This dataset contains coins from several different museums, institutions and collectors. The largest part of 48

our images comes from the Berlin-Brandenburgische Akademie der Wissenschaften, the Münzkabinett 49

Berlin and the Bibliothèque nationale de France, Département des Monnaies, médailles et antiques. We 50

published the images from these three institutions (due to existing copyrights) as a dataset for ML research 51

on Zenodo (Corpus Nummorum 2023). A coin in the database is generally represented by images of the 52

obverse and reverse of the original, or by a plaster cast. In rare cases, both representations are assigned to 53

a coin record. For our ML dataset, we merged the obverse and reverse images of a coin into a single image 54

showing both (as can be seen in fig. 1). 55

The biggest challenge for our type recognition is the ratio of an average of approximately two coin 56

images per type. In previous experiments we learned that 20 coin images per class threshold is a reasonable 57

starting point to achieve good results in the training for our data. This means that for most of the types our 58

dataset currently has too few coins (Gampe 2021, Gampe and Tolle in print 2019). Currently only 179 of 59

the 19,600 type classes can meet the condition. The VGG16 model, which was pretrained on the ImageNet 60

dataset (ImageNet 2021), achieves a Top-1 Accuracy of 82% (tab. 1) based on those types that meet the 61

threshold (>20 images), with the drawback that 99% of the type classes in the CN dataset are not part of 62

the training1. We are constantly increasing the number of our images and we have been able to double the 63

number of trainable types since the start of the project. 64

 65

Figure 1 – The merged images of CN coin 2377 (CN type 763; mint : Maroneia) and CN coin 18232 66
(CN type 11944; mint: Pergamon) with black bars for the quadratic input format of the CNNs (Photos : 67
Münzkabinett Berlin) 68

In order to get better coverage and still generate something useful, we trained a different model to 69

recognize another important aspect of our coins: the mint in which the coin was produced. Predicting a 70

coin’s mint could also reduce the workload for our numismatists since the presorting of a larger number of 71

coins by mint can save a lot of time. We kept our VGG16 setup and only needed to change the training and 72

test set. Currently there are 122 mints in our data set. With the 20-coin image threshold, 98 of them are 73

eligible for training. This way we could use about 40,000 (~80%) of our images for this approach. The 74

remaining 24 mints have less than 200 images combined. The accuracy values here are comparable to the 75

type recognition (Top-1 Accuracy: 79%, tab. 1) in spite of the fact that the individual mint classes are much 76

more disparate than the type classes. Most mint classes consist of several different coin types which differ 77

1 The Top-1 Accuracy shows the percentage of correct results of the predictions with the highest probability. The

Top-5 Accuracy is the percentage of correct predictions within the five most likely predictions.

more or less from each other, Pergamon for example has 653 different coin types (630 are currently 78

published on the website)2. 79

Table 1 – Metrics for the models with and without the additional class layers 80

CNN Architecture Class Type Additional Class Layer

Number of Perinthos /

Pergamon classes Top–1 Accuracy Top–5 Accuracy

VGG16 Types None 1 82% 98%

VGG16 Mints None 1 79% 94%

VGG16 Mints DeepCluster 15 / 15 73% 91%

VGG16 Mints DeepCluster 10 / 10 74% 92%

VGG16 Mints Object Detection 8 / 10 78% 93%

VGG16 Mints Object Detection 4 / 4 77% 93%

VGG16 Mints NLP 16 / 16 76% 92%

VGG16 Mints NLP 8 / 9 78% 93%

 81

However, we still encounter the problem of having an unbalanced dataset when training the mint 82

recognition. The advantage of the significantly higher number of usable images comes with the problem of 83

a clearly higher amount of instances in a single class. Due to the different production patterns of the mints 84

and the disparity in the number of coins of each ancient city in our area of interest, we also have 85

significantly different coin image numbers for each city. Some of them have only the threshold value of 20 86

images while others have several hundred (fig. 2). 87

Such big differences in the number of images per class can lead to a phenomenon known as overfitting. 88

A CNN model learns to recognize some classes better than others due to the larger number of images, with 89

the result that the weights in the trained network can be more tuned to these classes during training. 90

Subsequently, it is possible that images of other smaller classes are predicted preferentially as belonging 91

to one of these overfitted classes. Overfitting can also appear by too many epochs during the training. In 92

our case and in this paper this source for overfitting is neglected and we concentrate on the inhomogeneity 93

of the data set as a basis for overfitting. A good way to determine if overfitting is present in a model is to 94

create the so-called Confusion Matrix (CM) (fig. 3). The CM is a common way to make overfitting visible for 95

individual classes in a multiclass problem. In the CM the predictions of the model and the true classes 96

(ground truth) are confronted. In the case of a model that is 100% correct for all predictions, the diagonal 97

of this matrix should be deep red. Recurring errors for one class create visible points off the diagonal. 98

Traces of vertical lines for one or more classes are a good indicator for the overfitting problem. The CM of 99

our most recent model shows these traces (fig. 3). They are clearly visible for the cities that have the most 100

associated images like Pergamon and Perinthos (fig. 2). Every city with more than 1500 assigned images 101

shows clear signs of overfitting on the CM. This overfitting is probably also responsible for the poorer 102

performance of the model. The Pergamon line is the most prominent. Although Perinthos also has a large 103

number of images, the overfitting problem is less pronounced here than with Pergamon. These differences 104

and the fact that both mints produced very different looking coin types and thus present a challenge when 105

dividing into new smaller classes make them a good case study in our view. 106

One idea for solving the overfitting problem is limiting the number of training images per class. The 107

problem for the image limitation is the number of types which belong to a mint. For example, for the mint 108

Pergamon there are over 3600 coin images, which are split over 653 different coin types. This means that 109

if we want to represent each type with at least one coin image in the training set the Pergamon class would 110

still be significantly larger than many other classes. A limited dataset can also lead to lower model 111

2 Overview of the 630 published types in the CN dataset:

https://www.corpus-nummorum.eu/search/types?type=quicksearch&mints%5B%5D=74 [accessed 15 December

2023].

performance because mint classes whose coins occur very often in archaeological finds will not have proper 112

training for their range of types. The accuracy for the types which are very common in that mint will not 113

be as good as it could be with an unlimited training set. Another method we tried in the overfitting context 114

is the “compute_class_weight” algorithm from the scikit-learn package (scikit-learn n.d.). It computes class 115

weights for every class for an unbalanced dataset like ours in order to avoid overfitting. The computed 116

weight of a class with many images is significantly lower than that of a class with few images. Unfortunately, 117

the performance of the trained model with such class weights was unacceptable. We got a Top-1 Accuracy 118

of less than 1%. We also experimented with the “sparse categorical focal loss” function for our case (focal-119

loss n.d.). The function makes easy-to-classify images contribute less than hard-to-classify images during 120

the training. However, training with this loss function had no positive effect at all. 121

 122

Figure 2 – Number of images for each mint in the Corpus Nummorum dataset. (Graphic: S. Gampe, 123
Big Data Lab) 124

This paper deals with the problems we encountered when applying an image recognition (IR) approach 125

to an ancient coin dataset. The focus is on our main challenge of a very unbalanced dataset consisting of 126

classes with very few images and others with several hundred images. This means we focus here not on 127

the improvement of machine learning (ML) algorithms as such, but on the setup, in particular the handling 128

of the datasets and the definition of the result classes for the training. 129

 130

Figure 3 – Confusion matrix for the mint model without the additional class layer. (Graphic: S. Gampe, 131
Big Data Lab) 132

The goal was to improve our mint recognition model by breaking down large classes with many input 133

images into several smaller ones. For this purpose we used three different methods: 1. DeepCluster – an 134

unsupervised clustering method, 2. Object Detection based on a Region Based – Convolutional Neural 135

Network (R-CNN) and 3. our Natural Language Processing (NLP) pipeline (Gampe and Tolle in print 2019). 136

The DeepCluster model is available on GitHub (GitHub – facebookresearch / deepcluster n.d.). The Object 137

Detection approach trained for this paper is based on TensorFlow and Keras (Keras n.d., TensorFlow n.d.). 138

The already existing NLP Pipeline was developed with the spaCy application programming interface (spaCy 139

n.d.). Our Image Recognition models, which are based on a pretrained VGG16 model, are implemented 140

with TensorFlow and Keras (Gampe and Tolle in print 2019, TensorFlow n.d., Keras n.d.). All of the above 141

methods run on Jupyter Notebook and are written in Python programming language. 142

In another Project (ClaReNet) the DeepCluster Method was used to cluster a coin hoard with celtic 143

coins. The already existing typology and the allocation of coins to them was checked with the method. The 144

R-CNN based Object Detection was utilized to crop the area of a portrait on imperial roman coins to prevent 145

a CNN from making decisions based on the legend (Gampe 2021). Our NLP approach has been in 146

development for some time (Klinger et al. 2018, Gampe and Tolle in print 2019) and is now also used for 147

other reasons within the CN-project. We therefore wanted to check whether it could also be used to solve 148

our overfitting problems. 149

Our idea for addressing this problem is to break down big classes like Pergamon and Perinthos into 150

smaller ones. We call this the additional class layer. The term “layer” is well known from neural networks 151

like the CNN, which has different layers (fig. 4). The last layer in such networks is called the softmax and is 152

responsible for transforming the incoming numerical values from the preceding layers into the class’s 153

probabilities (Amidi and Amidi n.d.). We call this layer also the class layer. Our idea is to add an additional 154

layer for large classes on top of the existing ones (fig. 4). 155

 156

Figure 4 – Overview of a convolutional neural Network, its different layers and the additional class 157
layer. (Photo: Corpus Nummorum. Graphic: S. Gampe, Big Data Lab) 158

In this process, classes like Pergamon are divided based on the similarity of their different types and 159

new smaller classes are added. Then we add the old class layer with the new ones to get a new train and 160

test set. To realize this approach, we use three different Machine Learning based methods: 161

1. Unsupervised “DeepCluster” 162

2. Region Based – CNN based Object Detection 163

3. Natural Language Processing 164

By creating these new classes and reducing the old large ones we tried to reduce the amount of overfitting 165

and potentially increase the accuracy of our models. To test these approaches, we applied them to two 166

different mints: Pergamon with c. 3600 images and Perinthos with c. 1800 images. Pergamon was chosen 167

because it is the mint with the most associated images. In contrast Perinthos has just half as many images, 168

however, this city has types that differ greatly from those from Pergamon due to the fact that the city 169

belongs to another region (Pergamon – Mysia, Perinthos – Thrace). These differences are important to 170

ensure the applicability of the three approaches to different mints. 171

Unsupervised “DeepCluster” 172

Our first method, DeepCluster from Facebook Research (Caron et al. 2018), combines unsupervised and 173

supervised elements. An integrated CNN extracts features from the input images. Afterwards, these 174

features are clustered with a k-means algorithm and the resulting clusters are used as pseudo labels. These 175

newly labeled images serve as input for further CNN training. The number of clusters depends on the input 176

parameter “k”, which can be freely selected before the start (Caron et al. 2018). One big benefit of this 177

approach is the fact that DeepCluster needs no time-consuming adaptations to our problem. Values for a 178

few parameters have to be chosen, such as the number of clusters “k” and the amount of training epochs. 179

We chose 200 epochs for each attempt. The number of clusters was set to 15 and 10 because we didn’t 180

want to create a large number of small classes. DeepCluster’s Algorithm uses all of our images from 181

Pergamon and from Perinthos to form the 15 clusters for each mint separately. This means that both 182

original classes have been completely split up and therefore no longer exist as classes in the training. 183

However, it is possible that DeepCluster forms very inhomogeneous clusters with a lot of different looking 184

types. 185

For our first attempt of dividing the Pergamon and Perinthos classes into smaller ones we had 15 186

clusters each (Pergamon_01 to Pergamon_15 and Perinthos_01 to Perinthos_15). Although both classes 187

have different numbers of images, we have chosen an equal number of new classes to investigate the 188

effects on these different sized classes. After the training most clusters had a size of 50 to 100 images for 189

Perinthos and 100 to 200 for Pergamon. Both mints also had one cluster with many more images than the 190

others: DeepCluster tends to build what we call “garbage clusters”, which contain all images that could not 191

be assigned to the other clusters (Pergamon_10 and 12, Perinthos_02 and 11). They are somewhat 192

comparable to the original classes with the leftover images from our two other approaches (see below). 193

The 30 clusters built with DeepCluster are now incorporated as new classes in our train and test set 194

replacing the original Pergamon and Perinthos classes. After the training we could observe that the Top-1 195

and Top-5 Accuracy values were below those from the unmodified model (tab. 1). We also created the 196

confusion matrix for the new model on the test set (fig. 5). 197

 198

Figure 5 – Confusion matrix for the DeepCluster approach. (Graphic: S. Gampe, Big Data Lab) 199

What is immediately noticeable is that there is a clear vertical line in the area of the new classes. This 200

means that these classes are often confused with each other. A look at the composition of the clusters 201

indicates that this is due to the inhomogeneity of the assigned images within each cluster. While many 202

clusters share images of the same or very similar types, the two biggest “garbage clusters” from both mints 203

(Pergamon_12 and Perinthos_11) are clearly visible on the CM. These share a particularly large number of 204

coin types with the other new classes. For Pergamon, the overfitting problem has diminished, but some of 205

the brighter points from the unmodified class columns are now spread across the vertical lines of the new 206

classes. For Perinthos we could also observe a slight decrease of the overfitting. However, new overfitting 207

problems can also arise, as it is apparent in the Byzantion column at the level of the new Perinthos classes. 208

We repeated this test with a smaller number of clusters. This time we executed DeepCluster with 10 209

clusters as preset. However, the result barely changed. The confusion between the new classes is still there 210

and the overfitting for both mints is nearly the same as with 15 clusters. We also found a reduction of the 211

Top-1 Accuracy of about 5% in both tests. These results have led us to conclude that the DeepCluster 212

method is not suitable for our problem. 213

 214

Region Based – CNN based Object Detection 215

Our second approach is an Object Detection model from Keras (Keras n.d.). It is based on a Region Based 216

Convolutional Neural Network (R-CNN) which produces a set of region proposals that are likely to contain 217

objects, and uses a CNN to extract features from each region proposal to classify objects within these 218

regions. (Girshick et al. 2014). The way new classes were created here followed a different concept. We 219

trained the R-CNN model on frequently occurring subjects on the coins like “head” or “sitting person”. 220

Most of these subjects are among the most common objects and animals in the CN database (Wirth 2021). 221

The new classes were built based on the combinations of these subjects in the dataset3. The training of the 222

R-CNN model was carried out by Huy Long, who wrote his master’s thesis on this topic (Long 2022). He 223

annotated 20 to 30 images for every subject with a polygonal annotation and with bounding boxes. With 224

a polygonal annotated training set the model can predict the contour of an object, but annotation is more 225

time consuming compared to the annotation of bounding boxes. After training the Object Detection model, 226

it was used to predict subjects on each coin image of Pergamon and Perinthos. Based on these results, new 227

classes had been built manually based on the resulting combinations of obverse and reverse subjects (e.g. 228

Head–Owl). For Pergamon this generated eight and for Perinthos ten classes. These classes have different 229

sizes with around 20 to 200 images assigned to them. This way we reduced the number of images in the 230

original Pergamon and Perinthos classes to 2,520 and 1,170. After training our VGG16 model on the 231

updated train and test set we observed that the top-1 and top-5 accuracy has hardly changed (tab. 1). But 232

the resulting CM shows a problem similar to the DeepCluster approach (fig. 6). Images of the new classes 233

are often attributed to the reduced Pergamon and Perinthos class. Furthermore, the overfitting for both 234

original classes was not reduced as the CM shows. We repeated this test with a reduced number of new 235

classes, where the images of some of the smaller classes had been manually merged back to the Pergamon 236

and Perinthos classes. After retraining, beside a small decrease in the accuracy values, the overfitting 237

problem also remained. 238

Clearly this approach is unfortunately not suitable for solving, or at least reducing our problem. An 239

explanation for this could be the performance of the R-CNN Object Detection model. When examining the 240

new classes, it became apparent that quite a number of objects had not been detected by the Object 241

Detection model. The new classes were not really well distinguishable from the Pergamon and Perinthos 242

ones. The annotation used seems not to cover the whole range of several subjects. 243

3 The following subjects were used for the combinations: 1. Pergamon: “sitting_person”, “head”, “serpent_box”,

“owl”, “serpents”, “eagle”, “podium”, “bull”, “bow”. 2. Perinthos: “sitting_person", "head", "podium", "bull",

"quadriga", "double_horse", "club", "laurel_wreath", "price_crown", "ship", "table", "pot", "standing_person".

 244

Figure 6 – Confusion matrix for the Object Detection approach. (Graphic: S. Gampe, Big Data Lab) 245

 246

Natural language processing 247

Our final method for dealing with mint overfitting is the application of our Natural Language Processing 248

(NLP) pipeline. We already have trained an NLP model for the textual descriptions of our coins in the CN 249

database (Gampe and Tolle in print 2019, Klinger et al. 2018). This model is able to find numerous entities 250

like “Athena” or “Spear”. The list of trained entities includes four different categories: persons, objects, 251

animals and plants. We wrote a query for grouping all coins with the same entities on the obverse and 252

reverse, and sorted them by the frequency of these individual combinations. To create the new classes, we 253

had to filter these combinations manually because a coin’s description can have several entities assigned 254

to it and overlaps are possible. The example (fig. 7) shows all entities in a coin’s obverse and reverse 255

description. For example, this coin can be assigned to the combination “Athena–Owl” and “Head–Palm 256

Branch”. Filtering is a time-consuming but mandatory step due to the large number of combinations. We 257

also wanted to avoid new classes sharing coin images. 258

 259

Figure 7 – Coin image descriptions and entities found by the NLP model. These descriptions are used 260
for different coins and/or coin types (fig. 1), e.g. coins https://www.corpus-261
nummorum.eu/coins/53267?lg=en and https://www.corpus-nummorum.eu/coins/53408?lg=en 262
[accessed 15 December 2023] for the Athena description shown here. (Graphic: S. Gampe, Big Data 263
Lab) 264

After the filter step the new classes could be built from the remaining combinations. We assembled 16 265

new classes for Pergamon and Perinthos with different combinations of entities4. These classes contained 266

mostly different types that share a similar appearance. The number of images for each class varied from 267

40 to 400 for Pergamon, and 40 to 300 for Perinthos. Using the NLP model, we were able to reduce the 268

number of images in the original Pergamon and Perinthos classes to 1201 and 629. This is a significantly 269

larger reduction than that with Object Detection. Compared to the original model, the values of the metrics 270

after the training are only slightly lower (tab. 1). 271

However, as the confusion matrix shows, the new classes are again often confused with the original 272

Pergamon and Perinthos classes (fig. 8). The overfitting of Pergamon was slightly reduced with this attempt, 273

but the vertical line in the original Pergamon class fields (outside the new classes) is still visible. The 274

reduction of the overfitting for Perinthos, on the other hand, is clearly visible. Due to the confusion of the 275

old with the new classes both overfitting reductions had no influence on the metrics. We repeated this 276

experiment again with a lower number of new classes (eight for Pergamon and nine for Perinthos). 277

However, this had no positive effect on the overfitting problem for Pergamon. In fact, it became worse 278

than before. The overfitting of Perinthos remained at the same level as in the first NLP attempt. 279

For this approach we can say that the NLP method required the most manual work of all three 280

approaches. Our efficient NLP pipeline helped us best to separate the types that share a similar appearance 281

for the new classes from the original classes. It also gave the best results for the overfitting problem based 282

on the observation of the CM. However, the confusion between the new classes shows that the types of 283

one mint very likely share some common features. This is something that could be further explored. 284

4 The following entities were used for the combinations: 1. Pergamon: “Athena”, “laurel_wreath”, “owl”,

“Augustus”, “crepidoma”, “bust”, “Asclepius”, “emperor”, “Telesphorus”, “cista”, “serpent”, “figure”, “head”,

“bow”, “heads”, “temple”, “trophy”, “paludamentum”, “Zeus”. 2. Perinthos: “bust”, “ears_of_corn”, “Herakles”,

“lyre”, “palm_branch”, “patera”, “torch”, “cuirass”, “apples”, “head”, “altar”, “athlete”, “club”, “Dionysos”,

“horses”, patera, “Isis”, “apis”, “radiate_crown” “board”.

 285

Figure 8 - - Confusion matrix for the NLP approach. (Graphic: S. Gampe, Big Data Lab) 286

 287

Summary and Conclusion 288

Due to our limited dataset and the high number of types, a training on types with sometimes only two 289

or three instances per type results in an unacceptable performance (34% Top-1 Accuracy). By switching to 290

mints (accumulating all types of a mint to one training class), a very unbalanced dataset was generated 291

with some mints (classes) dominating the training. While the performance of our trained models seems 292

sufficient, we saw traces of overfitting for the dominating mints in the confusion matrix. The problem of 293

unbalanced data sets is very common in the domain of numismatics and archaeology in general. The overall 294

preservation quality of the coins we used was relatively good, especially compared to excavation finds 295

where additional problems and uncertainties occur. However, our work could lay the basic foundation to 296

expand the models also to less well preserved material. It is therefore important to solve problems before 297

dealing with less optimal material. 298

We conducted three different machine learning based experiments to solve this overfitting problem 299

with the unbalanced Corpus Nummorum dataset. To do this, we split two mint classes with a large number 300

of images and created an additional class layer for them, and generated another training and test set with 301

it. In our first attempt we created several new classes based on DeepCluster (unsupervised). The generated 302

clusters contained too many different looking coin types (based on a human judgment) which negatively 303

affected the learning process of our VGG16 model. In the second attempt the class layer was created with 304

an Object Detection approach. This generated only a few smaller extra classes and the remaining coins 305

without objects detected still formed a dominating class. It must be stressed that the Object Detection 306

approach was only trained for some very common objects and the overall performance was still limited. 307

Both approaches did not produce appropriate solutions for our problem. In the third approach classes were 308

generated with Natural Language Processing. They were the most distinguishable from the original classes 309

and this approach reduced overfitting the most. However, due the amount of manual work and the 310

confusion of new and old classes, we are currently not following this path either. The accuracy of all newly 311

trained models was below the original mint model. Even the observed visual reduction of the overfitting 312

for the original Pergamon and Perinthos classes in the NLP experiment had no positive impact on model 313

performance. This means that so far we could not solve our overfitting issue with mint prediction in a 314

sufficient way. 315

 These approaches might be useful methods in other cases, however, it shows that a generic approach 316

to an overfitting due to dominant classes has not been found. We are therefore investigating additional 317

ways to tackle this problem. This includes the creation of new coin images using ML-based methods for the 318

individual classes. It can be seen as an augmentation approach for the smaller classes in order to reduce 319

the domination of some huge classes. Furthermore, we started to compare other model approaches than 320

just CNN (VGG16), like vision transformers or multimodal approaches. 321

Our next steps in the D4N4 project are: 322

The domain experts are trying to improve the CN dataset by including more images, especially for smaller 323

classes. We are also working on a Generative Adversarial Network (GAN) approach to create virtual new 324

coin images (that never existed) for those classes with very few coins. Finally, we published our CN dataset 325

for other scientists and students to test their own ML methods, for example those that were recently part 326

of a data challenge course at the Goethe-University: (Corpus Nummorum 2023). 327

Data, scripts, code, and supplementary information availability 328

Google Colab notebook for testing our type and mint model is available online: 329

https://github.com/Frankfurt-BigDataLab/IR-on-coin-datasets 330

NLP pipeline code, models and a Google Colab Notebook for testing are available online: 331

https://github.com/Frankfurt-BigDataLab/NLP-on-multilingual-coin-datasets 332

Conflict of interest disclosure 333

The authors declare that they comply with the PCI rule of having no financial conflicts of interest in 334

relation to the content of the article. 335

Funding 336

The D4N4 project is funded by the Deutsche Forschungs Gemeinschaft (DFG) in the program “e-337

research-Technologien”. 338

References 339

Amidi, Afshine, Shervine Amidi. Convolutional Neural Networks cheatsheet. n.d. 340

<https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks> 341

[accessed 8 August 2023] 342

Caron, Mathilde, Piotr Bojanowski, Armand Joulin, Matthijs Douze. 2018. Deep Clustering for Unsupervised 343

Learning of Visual Features. <https://doi.org/10.48550/arXiv.1807.05520> [accessed 8 August 2023] 344

Corpus Nummorum. n.d. Corpus Nummorum <https://www.corpus-nummorum.eu> [accessed 8 August 345

2023] 346

Corpus Nummorum 2023. Corpus Nummorum - Coin Image Dataset. 347

<https://zenodo.org/doi/10.5281/zenodo.10033992> [accessed 17 November 2023] 348

D4N4. n.d. Data quality for Numismatics based on Natural language processing and Neural Networks. 349

<http://www.bigdata.uni-frankfurt.de/d4n4> [accessed 8 August 2023] 350

focal-loss. n.d. focal_loss.sparse_categorical_focal_loss. 351

 <https://focal-352

loss.readthedocs.io/en/latest/generated/focal_loss.sparse_categorical_focal_loss.html> [accessed 8 353

August 2023] 354

Gampe, Sebastian. 2021. Neuronale Netze zur Bestimmung römischer Kaiser auf Bildern antiker Münzen 355

(master thesis, Goethe-Universität Frankfurt a. M.). <http://www.bigdata.uni-frankfurt.de/wp-356

content/uploads/2022/05/Masterarbeit_Sebastian_Gampe_online.pdf> [accessed 8 August 2023] 357

Gampe, Sebastian, Karsten Tolle. in print 2019. Combination of Machine Learning Methods of Image and 358

Natural Language Recognition of Ancient Coin Data, Computer Applications & Quantitative Methods in 359

Archeology (CAA), Proceedings of the conference in Krakow 2019 360

GitHub - facebookresearch / deepcluster. n.d. Deep Clustering for Unsupervised Learning of Visual Features. 361

<https://github.com/facebookresearch/deepcluster> [accessed 8 August 2023] 362

ImageNet. 2021. ImageNet. <https://www.image-net.org/update-mar-11-2021.php> [accessed 8 August 363

2023] 364

Keras. n.d. Keras: Deep Learning for humans. <https://keras.io> [accessed 8 August 2023] 365

Klinger, Patricia, Sebastian Gampe, Karsten Tolle, Ulrike Peter. 2018. Semantic Search based on Natural 366

Language Processing: a Numismatic example. Journal of Ancient History and Archaeology (JAHA), 5.3 367

68–79. <https://doi.org/10.14795/j.v5i3.334> [accessed 8 August 2023] 368

Long, Hui. 2023. Klassifizierung von Motiven auf antiken Münzen mit Mask R-CNN (master thesis, Goethe-369

Universität Frankfurt a. M.). <http://www.bigdata.uni-frankfurt.de/wp-370

content/uploads/2023/02/Masterthesis-Huy-Luong.pdf> [accessed 8 August 2023] 371

Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv 372

Batra. 2019. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. 373

<https://doi.org/10.1007/s11263-019-01228-7> [accessed 8 August 2023] 374

Girshick, Ross, Jeff Donahue, Trevor Darrell, Jitendra Malik. 2013. Rich feature hierarchies for accurate 375

object detection and semantic segmentation. <https://doi.org/10.48550/arXiv.1311.2524> [accessed 8 376

August 2023] 377

scikit-learn. n.d. sklearn.utils.class_weight.compute_class_weight. 378

<https://scikit-379

learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html> 380

[accessed 8 August 2023] 381

spaCy. n.d. spaCy: Industrial-strength Natural Language Processing in Python. <https://spacy.io> [accessed 382

8 August 2023] 383

TensorFlow. n.d. Tensorflow Object Detection API. 384

<https://github.com/tensorflow/models/tree/master/research/object_detection#tensorflow-object-385

detection-api> [accessed 8 August 2023] 386

Wirth, Alicia. 2021. Einfluss von Bildannotationstechniken auf die Genauigkeit von Machine Learning-387

Modellen zur Objekterkennung (research project, Goethe-Universität Frankfurt a. M.) 388

<http://www.bigdata.uni-frankfurt.de/wp-content/uploads/2021/12/2021_FP_Alicia_online.pdfY> 389

[accessed 18 November 2023] 390

