
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Challenges and Strategies for
Testing Automation Practices at
Sandia National Laboratories

Miranda Mundt, Jonathan Bisila, Reed Milewicz, Joshua
Teves, Michael Buche, Jonathan Compton, Jason Gates,
Kirk Landin, Jay Lofstead

17 October 2023

First Conference of the US Research Software Engineer
Association (US-RSE’23)

Icons used from Flaticon by artists Uniconlabs, wanicon, Iconjam,
Freepik; Illustrations taken from undraw.co

SAND2023-10769C

Introduction: Automation for Software Development

2

• Automation has been a topic of
conversation in software
development for decades
Ø Automate repetitive, labor-

intensive tasks in order to
improve overall developer and
project productivity

Ø It enables reproducibility through
automated workflows, verification
through testing, and better
interdisciplinary teaming

The Challenges in Computational Science and
Engineering

• Scientific software benefits
from a range of testing
practices – but have limited
effectiveness

• Only half of CSE teams have
software engineering
training

• Many institutions have
heterogeneous software
environments

3

Our Research Questions

4

• RQ1: What are the challenges experienced by Research
Software Engineers (RSEs) in testing automation at a
large US national laboratory?

• RQ2: What strategies have been employed by
Research Software Engineers (RSEs) to address these
challenges?

Our Approach

5

• Conducted a participatory action
research study to collect and analyze the
experiences of RSEs at Sandia National
Laboratories.

• Recruited RSEs to share experience
stories: detailed narratives of challenges
faced and accomplishments made in
automation work at the laboratories.

• Analyzed their challenges and lessons
learned through the lens of the scholarly
literature on automation in industry
contexts, and iterated on results with
participants to build consensus

7

Results

6

• Collected and
analyzed 8
experience stories

• Compared results to
industry
automation studies

Summary of Experience Stories

(S1) Using pytest, nbmake, and GitLab pipelines to handle a
specific dataset and environment

(S2) Using Rust to provide a computational back-end while
providing an interface for Python and Julia

(S3) Creating a pipeline layer and a machine orchestration layer
to manage a separation between the two

(S4) Creating randomized tests that check an invariant property

(S5) Distributing software components across two hosting
services
(S6) Writing a simplified test with no compute for speed

(S7) Testing machine learning code by using small unit tests and
checking expected invariants; running the program to see if it
will crash as a basic test

(S8) Creating an automated pipeline to get performance
benchmarks

Themes

Continuous Integration

8

The development of exascale codes on bleeding-edge
hardware requires testing across a variety of

heterogeneous machines. For each machine, there may
be multiple supported programming environments,

and for each environment, there may be multiple ways
to configure the code. Ensuring the code clones,

configures, builds, tests, installs, and runs successfully for
the plethora of desired permutations is a daunting task.

When considering the testing of multiple long-lived
branches, and the desire to have both development and

production versions of the CI infrastructure, you’re looking
at maintaining hundreds of jobs.

Heterogeneous Computing Environment

9

We developed one set of testing routines for Stitch-IO in
Python that focused on ensuring that things functioned
(not quite unit testing, but slightly more complex). We
also had a test written in C that was supposed to
represent how the application works in practice, but
without the physics so it would be fast.
In spite of both the Python and C tests all working
correctly, the application was having data corruption
issues. The tests should have revealed the source of the
errors, but they did not. After some analysis, we
determined that the C application representation was
not moving through the computational space exactly as
it would for a production run. The simplification
should not have mattered, but it turns out that it
did.

Interdisciplinary Collaboration Requirements

10

Creating a “one build script to rule them all” in
Python removes cognitive load from
scientific subject-matter expert developers.
Making it easy for them to do the right
thing helps everyone. Also, providing a
means for the team to contribute back to the
“one script” allows flexibility to explore
outside the box while still controlling things
as much as possible.

Lack of Professionalization

11

Randomized property-based testing, despite all of its
successes, is still not widely known in the software

engineering world. I think that is mainly due to lack
of education, and our schools need to do a better

job of including it in their curricula. It is still viewed as
an “Advanced Topic” despite being very accessible. I

think that part of this view is that successfully
employing this testing requires the developers to

formulate invariants, etc., and this is another skill that
is not taught very well in schools.

Addressing the
Research
Questions

12

RQ1: Challenges in Test Automation

Challenge Category[1] Challenges[1] Stories

Behavioural • Process adherence
• Organizational change
• Too high expectations
• Process deviations

• S3, S5
• (N/A)
• S1, S3, S4, S6, S8
• S3, S5

Business and Planning • Cost of ownership and operation
• Automation too expensive for small projects
• Lack of time, people, and funding

• S1, S3, S4, S5, S8
• S1
• S1

Skills • Diversity
• Steep learning curve

• S1, S2, S3, S5, S8
• S1, S2, S3, S4, S5, S6, S7, S8

Test System • Inadequate development practices
• Testware architecture
• Untested test environment
• Limitations in externally sourced tools
• Environment configuration

• S1, S3, S4, S5, S7
• S1, S3, S4, S5, S8
• S1, S3, S6
• S1, S2, S3, S4, S5, S6, S7, S8
• S3, S5

System Under Test (SUT) • SUT speed
• SUT testability
• Platform limitations

• S3, S4, S6
• S1, S2, S3, S4, S6, S7
• S1, S2, S3, S5, S6, S8

[1] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, “Impediments for software test automation: A systematic literature review,” Software Testing, Verification and Reliability, vol. 27, no. 8, p. e1639, 2017.

RQ2: Recommendations for Improvement

14

Challenges[1] Recommendations[2]

• (Behavioural) Too high expectations
ü Involve key stakeholders in strategy development
ü Keep test professionals motivated about automation
ü Define an effective test automation strategy
ü Adjust the test automation strategy to the changes

• (Business and Planning) Cost of ownership and
operation ü Provide enough resources

• (Skills) Diversity
• (Skills) Steep learning curve
• (Test System) Inadequate development practices

ü Share available test automation knowledge
ü Allow time for training and the learning curve
ü Have competent test professionals
ü Promote collaboration

• (Test System) Testware architecture
• (Test System) Limitations in externally sourced tools

ü Select the right test tools
ü Arrange testware in good architecture

• (SUT) SUT testability ü Design the SUT for automated testability

• (SUT) Platform limitations
ü Define test automation requirements
ü Have control over changes of test automation requirements
ü Arrange testware in good architecture

[1] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, “Impediments for software test automation: A systematic literature review,” Software Testing, Verification and Reliability, vol. 27, no. 8, p. e1639, 2017.
[2] Y. Wang, M. V. Mäntylä, Z. Liu, J. Markkula, and P. Raulamo-jurvanen, “Improving test automation maturity: A multivocal literature review,” Software Testing, Verification and Reliability, vol. 32, no. 3, p. e1804, 2022.

Conclusion

15

• As software becomes more integral to the
advancement of science, so do the processes
and procedures used to create scientific
software.

• In our study, we collected experiences from
RSEs at a US national laboratory. We analyzed
the commonalities and differences between
industry and scientific software testing
automation practices.

