
Navigating the Integration of Machine Learning into
Domain Research

Bernie Boscoe
Department of Computer Science

Southern Oregon University
Ashland, Oregon 97520, USA

Tuan Do
Physics and Astronomy Department

University of California, Los Angeles
Los Angeles, CA 90095, USA

Noah Mogenson
Department of Computer Science

Southern Oregon University
Ashland, Oregon 97520, USA

Abstract—Increasingly, scientific research teams desire to in-
corporate machine learning into their existing computational
workflows. Codebases must be augmented, and datasets must
be prepared for domain-specific machine learning processes.
Team members involved in software development and data
maintenance, particularly research software engineers, can foster
the design, implementation, and maintenance of infrastructures
that allow for new methodologies in the pursuit of discovery.
In this paper, we highlight some of the main challenges and
offer assistance in planning and implementing machine learning
projects for science.

I. INTRODUCTION

Machine learning is becoming a useful tool for scientific
research, enabling the discovery of patterns and insights in
large and complex datasets. As a result, research teams seek
to incorporate machine learning into their existing computa-
tional workflows. However, these integrations present numer-
ous challenges, such as the need to augment codebases and
prepare datasets for specific machine learning processes. In
addition, team members involved in software development and
data maintenance, such as research software engineers, must
design, implement, and maintain infrastructures that allow for
new methodologies in the pursuit of discovery. In this short
paper, we aim to address some of the main challenges faced
by research software engineers (RSEs) seeking to implement
machine learning pipelines. While at a slower pace than
industry adoption, machine learning (ML) techniques have
been used in a variety of scientific domains, from physics
and astronomy to biology and medicine, with applications
ranging from image and signal processing to prediction and
classification. For the RSE considering adoption techniques,
robust implementation choices abound as tools from industry
such as TensorFlow and Pytorch enter more stable phases,
allowing for scientific exploration. We will discuss some of the
challenges in integrating these new tools into existing scientific
data infrastructures, pipelines, and software frameworks. The
intended audience of this paper are people who understand ML
concepts and are responsible for planning and implementing
ML pipeline building and maintenance.

As a basis for the recommendations in this paper, we
draw from our ongoing research project, Machine Learning
in Astronomy, where we interview astrophysicists who are

Presented at USRSE2023, Chicago, IL, October 16-18, 2023.

incorporating machine learning into their research. We have
collected common threads from researchers that are adopting
machine learning methods either to replace or augment more
traditional tools in their field. We also utilize our own experi-
ence building machine learning pipelines in our Astrophysics
Data Lab at UCLA.

II. CODES AND CADENCES

Machine Learning (ML) tool development in the technology
industry has accelerated at a blistering pace. In 2023 alone
we have seen stunning developments in Large Language
Models (Chat-GPT) [13], and other improvements in edge
computing [2] and face recognition [4]. In industry, rapid
changes in code, models, and data are commonplace as part
of the innovation process; however, in academic research, it
can take considerably longer to achieve results. This is in
part due to the importance of the scientific method: tracking
and recording preliminary results, and using the appropriate
metrics to determine successful results. So, too, do publication
cycles affect project trajectories. For RSEs, these differences
in scientific production cadences versus library updates can
result in code incompatibilities and deprecation, as well as
complications in the preservation of code that needs to be
made available.

Preservation of processes and outputs are necessary to
justify claims and replicate results [14]. One main difference
between research using ML tools and research with traditional
domain coding methods is that ML tools are increasingly
imported from industry-originating code bases such as Ten-
sorFlow (Google) and PyTorch (Meta). While these code
bases are both open source, their current user and contributor
communities do not prioritize software preservation methods
as needed in academic research such as documenting code
changes, version control, and other related practices [6].

Software in scientific domains traditionally comprises soft-
ware tools developed over the course of many years, has
achieved trust, stability, and is often combined with code
written from scratch for a problem at hand. Oftentimes these
tools have been used for decades, and to introduce a previ-
ously unused, untested library inserts many unknowns into
workflows, much like adding a new instrument to a study. The
RSE might opt for stable libraries as opposed to developing
bespoke code for a team. In this case, the RSE might be



tasked to choose between TensorFlow and PyTorch; and while
they have similar capabilities a code maintainer might find it
easier to focus on just one. For RSEs, the additional work
effort to maintain code used for ML might stand in stark
contrast to traditional code base maintenance. For example,
TensorFlow code (and hence models produced from it) written
as recently as a few months prior might not run today, resulting
in reproducibility and replicability issues [3].

Reasons for failed runs are often due to library incompat-
ibilities, resulting in unresolvable conflicts among the many
libraries necessary to run scripts. In this case an RSE must
decide whether to use older, possibly deprecated versions of
libraries, downgrade to earlier versions of libraries, or craft
solutions of both to run scripts. An RSE might want to
consider the goals of the research team with respect to the
differences in reproducibility versus replicability, and reason-
able expectations in preservation and maintenance of ML code.
For example, does the team want to obtain the same results
themselves using the same data, code, and hardware? Should
other teams be able to accomplish similar results on different
hardware and software? If code produces non-deterministic
results, what are acceptable outputs? Documenting language
versions, library versions, hardware specifications, OS, and
software drivers to enable GPUs are examples of metadata
necessary to produce verifiable results.

Using ML to explore large datasets in any domain nec-
essarily requires the training and testing of many models;
discarding the ineffective ones. ML APIs such as Keras for
TensorFlow have developed over time to enable pipelines
to be built and executed with a small amount of code,
democratizing ML to be easily used by domain scientists
yet creating issues for the RSE with respect to maintenance.
For example, at present there are numerous ways to save
training models, including saving only the model architectures
or saving both architectures and weights. While current ML
tools have architecture and model saving capabilities built into
the APIs, the rapid evolution of the libraries themselves can
cause issues with preservation [12]. For RSEs, staying abreast
of current guidelines in research software development can
help to inform best ML practices, for example utilizing code
reviews and sprints, encouraging organizational tools like issue
trackers and repositories that facilitate software reuse and code
optimization [11, 10].

Another outcome of large companies such as Google and
Meta influencing ML open source development is the choice
of Python for APIs. While lower layers of code architectures
are commonly written in C/C++, an RSE not well-versed in
Python might need to learn the intricacies of open source
libraries and, unfortunately, the ‘dependency hells’ they in-
evitably create. Researchers and other team members that
write code might not take incompatibilities into consideration,
as many researchers write code specifically for their own
experiments. An RSE might create standardized pipelines for
PIs, postdocs and students to follow, or even develop custom
APIs.

In industry, the job title of Machine Learning Engineer

is evolving to include pipeline developers and maintainers,
sometimes called ML Ops specialists. The RSE will likely
have to wear several hats as the software specialist. Putting
models into production is a skill with a somewhat steep
learning curve, and additional training is likely necessary for
a software engineer, as the field is so new. The RSE should
work with their team to determine the type of production the
team seeks; it could be as basic as using fixed data and models
to deploying a continuous integration pipeline. All pipelines
require maintenance, and upkeep is likely due to rapid changes
in ML libraries, as well as data drift if new data is being fed
to the model.

The combination of the fragility of code libraries, the
architecture that libraries are built on, and speed of develop-
ment permeates all corners of scientific software development,
and is at odds with the RSE’s goal of stability and the
consistency necessary to do good science [9]. Not only do
the code, libraries, and ways to save models change, but
the environments themselves are equally as fragile. Docker
and Kubernetes containers, Jupyter notebooks, Conda or other
environments must be kept alive or archived in such a way
that the information can be obtained. Additionally, commercial
platforms such as GitHub can also change over time, as
corporate influences may change availability and cost of code
and tools. Cost in terms of software is vague and difficult to
define, but is important to consider, as it can have far-reaching
implications regarding the practicality of research. There are
always tradeoffs, and while cost can refer to monetary value,
it can also refer to labor costs. Time spent learning a new
(theoretically better) tool is time that could be spent using
a familiar tool to perform another task. A typical cost-benefit
analysis in ML determines whether to maintain a local instance
of GPUs or to use cloud-based computing.

III. MACHINE LEARNING-READY DATA

One potential pitfall facing RSEs is that their research
group’s data is not in a suitable form for machine learning
pipelines [5]. We assume here that the RSE has sufficient
data available to them, but the data has not been created or
collected with the intention to be analyzed by downstream ML
processes. A preliminary consideration is the file format(s) in
which the data is stored. File formats might not be amenable
to ML processes, for example, proprietary data formats from
domain-based instruments are likely not able to be ingested by
common ML tools without considerable transformation efforts.
For newcomers to these tasks, a great deal of planning and
preparation is needed to shape data to conform to ML tools.
Whereas many datasets are created to be evaluated by a human
end user, ML datasets must be read by machines as well as
humans.

Two common forms of data for ML are images and tabular
data. ML tools are most successful at ingesting well-defined
data. For images, each image should be of a similar size and
dimension to the others in the set, and for tabular data, each
column, also known as a feature, represents a measurable prop-
erty in some kind of standardized form. Data types for column



features should be both internally and externally consistent.
Internal consistency refers to each data point’s characteristics
being consistent with all the members in the column. External
consistency refers to the appropriate scaling done on the
columns, typically performed in a pipeline process, to prepare
data for model training or during predictions.

Because ML tools read in data in multidimensional arrays
(tensors), data records (rows) should all be of the same dimen-
sions. The tradeoffs of ML data involve using the maximum
amount of features and information that allow for a reasonable
training compute time.

Over the years, a large number of datasets have been
developed to train and test ML models, and many of these
datasets are readily available; but topics are limited to ap-
plications important to industry and computer science, and
may contain ethically problematic biases. Well known datasets
include MNIST, a set of black and white images of hand-drawn
numerals from 0-9, and ImageNet, containing over 14 million
images (typically 256x256) and associated label information.
One particular challenge for the RSE is the lack of generic,
domain-based datasets for learners to use. Thus, while students
may have learned basic ML techniques, they may not have
experienced the challenges of transitioning to training and
testing data from their respective domains. In domain sciences,
ML datasets are typically not publicly available, and/or too
specific in scope to allow for general tinkering.

PyTorch and TensorFlow libraries have been developed to
optimally ingest specific types of data containing the smallest
amount of information possible to yield results and minimize
compute power, such as png and jpg for images, and csv
files for tabular data. For image data, size in dimensions
and pixels are considerations for both model intake and the
amount of compute power needed to handle them. For tabular
data, the number of columns, the data types stored within the
columns, and the number of rows can all be serious factors
in designing batching systems that consider limitations of
RAM, training time, and compute power. Even for research
teams who are comfortable with analyzing large datasets with
long compute periods on, for instance, a cluster using a job
scheduling software such as Slurm, might not be familiar with
the resources required to train and evaluate an ML model.

Because of the way datasets may be separated into distinct
subsets that are used to train models in ML, it is important to
create well-defined datasets that adhere to scientific processes.
If datasets are to be split, they must be divided into training,
test, and possibly validation subsets and great care should be
taken so that no contamination between sets takes place. If
data is used to create a model then is subsequently used to
validate the same model, this causes data leakage, resulting
in overfitting as well as invalidating scientific inquiry. A data
versioning system is needed to show which datasets were used
to create specific models. In addition to deciding what data
to build a model with, data might undergo changes within a
pipeline, for example, feature engineering might take place.
This involves selecting only important columns or combining
columns of data into more statistically or categorically useful

features. Versioning datasets in preprocessing and throughout
model building is a critical component to ensure scientifically
robust ML processes.

A. Dataset versioning

The granularity of data versioning is also an important
design consideration. For example, how data versions are
affected if data engineering takes place, new data is added
to the set, or augmentation takes place should be documented.
An RSE might opt to implement a data versioning system
similar to software versioning, or like approaches taken within
ML domains [8, 1]. As Gebru writes in [8], since there is no
standardized way to describe datasets, careful consideration
must be given to describe the origins of the data, particularly
if data containing information about individuals is used. Doc-
umentation in the form of readme files external to the data, as
well as internal data information located within files are both
important for contextual evidence to the scientific inquiry.

Introducing dataset versioning and labeling to a research
group unfamiliar with these practices can be time-consuming
and difficult. Getting buy-in from PIs is necessary when chang-
ing traditional team workflows. We recommend an approach
that releases a first version dataset as soon as possible, with
improvements to follow in later iterations. This approach
eschews planning phases, with an emphasis on implementa-
tion. Publications should align to specific datasets, and when
possible, datasets should be stored in actual repositories such
as Zenodo and Github, and when allowable, made publicly
available. Zenodo DOIs can aid the process of versioning
datasets relating to publications; however, ML datasets might
be too large for current repositories, a vexing problem when
trying to make data and code publicly available.

B. Dataset analysis and storage platforms

Big data storage and access can be an expensive issue
for academic research groups. Additionally, having access to
compute power is a separate and perhaps more challenging
issue. Research groups may opt to use cloud computing,
purchase their own equipment, or utilize existing institutional
resources. For an RSE, how much compute power is actually
required is challenging to determine. Factors include size and
number of datasets, architectures used, and estimated length of
training needed. Having team members with scant knowledge
of virtual machine instance costs can prove to be an expensive
endeavor.

Institutional cluster resources might be a safer choice, but
may come with limited support and expensive pricing models,
such as buying a node on the cluster in a yearly subscription.
Some institutions and universities provide High Performance
Computing (HPC) environments for ML, but these might be
difficult to use, because the setup might not be optimized
for machine learning. Finally, a research team might opt to
purchase their own servers with GPU cards, avoiding mistakes
of letting jobs run too long, but also likely requiring that the
team itself is responsible for the upkeep, maintenance, server



patching, and necessary environment configurations to enable
research.

Presently, platforms like Amazon Web Services (AWS)
allow for large, relatively inexpensive storage compared to the
cost of server upkeep, but continuously running ML pipelines
comes at a financial cost. In current climes, for a medium
sized research group using ML, cloud solutions are likely too
expensive, and a group-owned server, even with its drawbacks,
is the likely most economic solution due to researchers needing
to tinker, by running RAM-intensive jobs for long periods of
time.

Some institutions might offer access to a cluster, for a fee
or at no cost, with the added bonus that research groups have
already had experience utilizing these resources. However,
job allocation software such as Slurm might not work well
with ML model building runs [7]. This is due in part to
Slurm being general purpose. Users would have to imple-
ment such functionality themselves (which can be done, see
https://github.com/y0ast/slurm-for-ml), or rely on additional
tool integrations. However, this requires a deeper knowledge
of the requirements of ML model training and the libraries
being used. As noted previously, research teams without prior
experience in the domain may not have such knowledge. Each
additional software layer added to an ML pipeline will increase
complexity, and lower-level tools like Slurm will have their
own ways of interacting with hardware.

IV. MACHINE LEARNING HARDWARE

RSE’s hardware expertise is important for machine learning
because many software libraries are device-dependent. Support
and documentation for device drivers for GPUs, required for
machine learning, may be limited. Environments containing
the correct GPU card drivers and libraries like CUDA are
critical to ML processes, and may be difficult to configure.
Likewise, libraries are needed to coordinate data being passed
between the CPU and GPU(s), and code might need to be
parallelized to maximize performance. CUDA and Python
solutions are perhaps the easiest to implement, and the RSE
might need to familiarize themselves with the abstraction
hierarchy and where their expertise will match with the
researchers’ computational needs. Tools like NUMBA allow
one to write their own CUDA kernels in Python, allowing
for custom algorithms, or the research output can be satisfied
using TensorFlow or Pytorch with no other customizations
necessary. In requirements gathering, the RSE should attempt
to pinpoint exact needs to determine the appropriate hardware
configurations.

V. GETTING CREDIT

RSE’s can provide essential contributions to machine
learning-enabled domain research. As an RSE’s career path
develops, it is wise for them to track accomplishments. Au-
thoring publications can be a key metric associating software
engineering work with domain research. RSEs can contribute
their expertise and results in process papers and dataset
creation papers, to name a few examples to receive credit

for scientific work. Publications, such as the Journal for Open
Source Software (JOSS), can document software package con-
tributions for scientific aims. An RSE might opt to submit to a
general ML journal, or specify their work for their respective
domain; and care should be taken to follow domain norms of
publication style and content. Publications are evolving over
time to include more detailed information about data and code
used in scientific research, and so opportunities for the RSE to
showcase their work are increasing. Additionally, participating
in publication activities as a reviewer will only serve the RSE
gains a better understanding of the processes to publish. Lastly,
organizations such as The United States Research Software
Engineer Association (US-RSE) and The Software Sustainabil-
ity Institute foster communities supporting the efforts of RSEs
and their contributions to science via software development.

VI. CONCLUSION

Incorporating machine learning techniques and software
into scientific research is an exciting, growing field. Initial
transitions to ML software implementations will likely prove
challenging, as domain researchers will have to alter their
traditional software tooling methods, and learn new techniques
unfamiliar to them. For RSEs, adopting new computational
techniques can only serve to cement the necessity of tech-
nological expertise in collaborations with domain researchers.
Our aim is to highlight possibilities for these special collabora-
tions, in the spirit of furthering scientific exploration utilizing
machine learning.

REFERENCES

[1] Rabe Abdalkareem, Md Atique Reza Chowdhury, and
Emad Shihab. A Machine Learning Approach to De-
termine the Semantic Versioning Type of npm Packages
Releases. arXiv:2204.05929 [cs]. Apr. 2022. DOI: 10.
48550/arXiv.2204.05929. URL: http : / /arxiv.org/abs /
2204.05929.

[2] Patricia Arroba et al. Sustainable Edge Computing:
Challenges and Future Directions. arXiv:2304.04450
[cs]. Apr. 2023. DOI: 10.48550/arXiv.2304.04450. URL:
http://arxiv.org/abs/2304.04450.

[3] Vishnu Banna et al. An Experience Report on Ma-
chine Learning Reproducibility: Guidance for Practi-
tioners and TensorFlow Model Garden Contributors.
arXiv:2107.00821 [cs]. July 2021. URL: http : / / arxiv.
org/abs/2107.00821.

[4] Aaditya Bhat and Shrey Jain. Face Recognition
in the age of CLIP & Billion image datasets.
arXiv:2301.07315 [cs]. Jan. 2023. DOI: 10.48550/arXiv.
2301.07315. URL: http://arxiv.org/abs/2301.07315.

[5] Bernie Boscoe, Tuan Do, and Evan Jones. “Elements of
effective machine learning datasets in astronomy”. In:
NeurIPS, Machine Learning for the Physical Sciences
Workshop (Dec. 2022). DOI: arXiv:2211.14401v2[astro-
ph.IM].



[6] Stephen Crouch et al. “The Software Sustainability
Institute: Changing Research Software Attitudes and
Practices”. In: Computing in Science Engineering 15.6
(Nov. 2013). Conference Name: Computing in Science
Engineering, pp. 74–80. ISSN: 1558-366X. DOI: 10 .
1109/MCSE.2013.133.

[7] Qiyang Ding et al. Mirage: Towards Low-interruption
Services on Batch GPU Clusters with Reinforcement
Learning. arXiv:2306.14086 [cs]. June 2023. DOI: 10.
48550/arXiv.2306.14086. URL: http : / /arxiv.org/abs /
2306.14086 (visited on 07/07/2023).

[8] Timnit Gebru et al. “Datasheets for Datasets”. In:
arXiv:1803.09010 [cs] (Mar. 2018). arXiv: 1803.09010.
URL: http://arxiv.org/abs/1803.09010.

[9] K. Hinsen. “Dealing With Software Collapse”. In:
Computing in Science Engineering 21.3 (May 2019),
pp. 104–108. ISSN: 1521-9615. DOI: 10.1109/MCSE.
2019.2900945.

[10] Daniel S. Katz and Michelle Barker. The Research
Software Alliance (ReSA). en. other. News, Apr. 2023.
DOI: 10.54900/zwm7q- vet94. URL: https://upstream.
force11.org/the-research-software-alliance-resa.

[11] Daniel S. Katz et al. “Research Software Develop-
ment & Management in Universities: Case Studies
from Manchester’s RSDS Group, Illinois’ NCSA, and
Notre Dame’s CRC”. In: 2019 IEEE/ACM 14th Inter-
national Workshop on Software Engineering for Sci-
ence (SE4Science). arXiv:1903.00732 [cs]. May 2019,
pp. 17–24. DOI: 10.1109/SE4Science.2019.00009. URL:
http://arxiv.org/abs/1903.00732.

[12] Migrate the SavedModel workflow — TensorFlow Core.
en. URL: https : / /www. tensorflow.org /guide /migrate /
saved model.

[13] OpenAI. GPT-4 Technical Report. arXiv:2303.08774
[cs]. Mar. 2023. DOI: 10.48550/arXiv.2303.08774. URL:
http://arxiv.org/abs/2303.08774.

[14] Roger D. Peng. “Reproducible Research in Computa-
tional Science”. en. In: Science 334.6060 (Dec. 2011),
pp. 1226–1227. ISSN: 0036-8075, 1095-9203. DOI: 10.
1126/science.1213847. URL: http://science.sciencemag.
org/content/334/6060/1226.


