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Synopsis
Myocardial perfusion imaging is an essential tool for characterising ischemic heart disease. Moreover, quantitative myocardial perfusion methods

that provide pixel-wise quantitative myocardial perfusion maps are increasingly being applied as an alternative to visual inspection. Newer methods

combine quantitative imaging with acceleration techniques and motion compensation to overcome current limitations of the technique, and thus,

improve spatial resolution and heart coverage, reduce image degradation due to motion and accurately detect perfusion defects. In addition, fully

automated work�ows are facilitating the integration of quantitative myocardial perfusion into clinical practice by making it faster and easier to use.

Introduction
First-pass perfusion cardiac MR (pCMR) enables the non-invasive detection of ischemic heart disease.  This technique captures a series of images

during the rapid passage of a contrast bolus through the heart. Acquisitions are electrocardiogram (ECG)-synchronised with the cardiac cycle and

patients are instructed to hold their breath for as long as they can, to reduce image degradation due to cardiac and respiratory motion. Thus,

conventional pCMR only permits the acquisition of 3-4 non-contiguous short-axis slices with moderate spatial resolution (~2.5mm). Moreover,

diagnostic accuracy of pCMR may be compromised by respiratory motion artefacts because breath-holding can be challenging for patients,

incomplete heart coverage, and dark-rim artefacts (false positives) due to low image resolution. In addition, images are often interpreted based on

visual assessment, which only has high diagnostic accuracy when performed by highly trained operators.  Recently, there has been a growing

interest in developing automated pCMR methods that provide pixel-wise quanti�cation of myocardial perfusion since they provide operator-

independent, objective and reproducible results.

Technical Aspects
Quantitative imaging: Tracer kinetic modelling

Perfusion quanti�cation refers to the estimation of physiological parameters related to the microvascular environment (e.g., myocardial blood �ow

in ml/min/g, MBF) from the contrast enhancement obtained during the �rst pass of the contrast bolus, through the cardiac chambers and

myocardium (Fig. 1).  Quantitative imaging requires knowledge of the contrast agent concentration in the myocardial tissue and arterial input

function (AIF; typically measured in the left ventricle blood pool). It is often assumed that there is a linear relationship between the MR signal

intensities and the contrast agent concentration.

Quantitative pCMR has been performed using either the Fermi deconvolution method or (more complex) tracer-kinetic modelling.  The Fermi

method determines MBF through deconvolution of the AIF from the myocardial tissue concentration curve and by �tting an empirical-mathematical

model. On the other hand, tracer-kinetic models are based upon physiological assumptions about the interaction between the contrast agent and

di�erent tissues and thus, can be used to extract several quantitative physiological parameters. However, the �tting problem can be less stable.

Sequences for quantitative pCMR: How to get data for accurate quanti�cation of myocardial perfusion

The most commonly used pulse sequence for pCMR is a 2D saturation recovery pulse sequence. One major challenge with quantitative imaging is

the lack of linearity between the MR signal intensity and the contrast agent concentration at high contrast agent concentrations. The concentration

of contrast in the blood is much higher than in the myocardium, resulting in the saturation of the AIF.

The dual-bolus and dual-sequence methods have been proposed to handle the AIF saturation.  The dual-bolus method uses a low dose bolus to

measure the AIF followed by a high dose bolus for myocardial imaging. The dual-sequence method acquires a low-resolution slice with a short

saturation-recovery time to estimate the AIF, together with high-resolution myocardial slices, without the need for additional contrast injection, but

requires specialised CMR software.

Accelerated pCMR: Quantitative imaging with high resolution and/or heart coverage

Parallel imaging, compressed sensing and low-rank reconstruction methods have been proposed to accelerate 2D pCMR scans and achieve the

necessary spatial resolution to eliminate dark-rim artefacts and improve diagnostic con�dence.  These methods explore the redundancies or

compressibility of pCMR images to reduce the amount of (k-t)-space data required for image reconstruction. However, these methods still su�er

from limited cardiac coverage. 2D simultaneous multi-slice sequences have been combined with undersampling techniques to improve both spatial

resolution and coverage.  3D pCMR with whole-heart coverage has been achieved using advanced k-t undersampling strategies without ECG-

synchronisation and/or breath-holding.  However, 3D pCMR methods often sacri�ce spatial resolution.

Typically, acceleration methods indirectly generate quantitative myocardial perfusion maps by �rst reconstructing individual dynamic contrast-

enhanced images, which are then converted to contrast agent concentration and, �nally, tracer-kinetic modelling is used to generate quantitative

maps (Fig.1). Recently, a model-based reconstruction method has been proposed to directly estimate quantitative perfusion maps and achieve

extremely high acceleration rates.

Deep learning-based methods have gained popularity in CMR due to their potential to signi�cantly speed up reconstructions.  Unfortunately, large

amounts of fully sampled reference data are required for training these methods, which are not available in pCMR. Therefore, self-supervised deep

learning pCMR methods have been proposed to reconstruct the dynamic pCMR times series from undersampled data without requiring fully

sampled data.

Automated work�ows: Making quantitative pCMR easier to use and more accessible

Quantitative pCMR can be complex and time consuming, requiring manual segmentation and labelling of regions of interest in a large number of

images. Automatic in-line vendor speci�c and vendor neutral commercial quantitative pCMR solutions have been proposed to enable fast,

reproducible and operator-independent estimates of myocardial perfusion.  These methods include respiratory motion correction, automatic

detection of the AIF, segmentation and pixel-wise estimation of perfusion maps.

An in-line dual-saturation multi-echo Dixon QFPP-CMR framework (FOSTERS), with low-rank and sparsity constrained reconstruction, has been

proposed to facilitate free-breathing and high-resolution pCMR.  It automatically estimates non-rigid respiratory motion from fat-only images and

generates high-resolution pixel-wise perfusion maps from motion-corrected water-only images.

Arti�cial intelligence-based solutions have also been proposed to automate the time-consuming and subjective pre-processing step of quantitative

pCMR, such as segmentation and identi�cation of the AIF.
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Conclusions
Quantitative pCMR is an established non-invasive test for the detection of ischemic heart disease. However, accurate quanti�cation requires time-

consuming manual processing steps and expert knowledge. This has prevented the widespread clinical adoption of quantitative pCMR. Recently,

fully automated quantitative pCMR methods have been proposed to provide operator-independent, accurate and reproducible results in a faster

and simpler way. These methods automate several tasks, such as reconstruction, motion correction, segmentation, AIF estimation and pixel-wise

estimation of myocardial perfusion maps. Automated qCMR methods can also be combined with acceleration techniques to increase the spatial

resolution and/or heart coverage, to improve the detection of perfusion defects.
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Figures

Figure 1. The general steps of quantitative myocardial perfusion MR. 1) Acquire perfusion CMR perfusion data, 2) reconstruct, 3) convert signal

intensity data to contrast agent concentration and 4) estimate the quantitative myocardial perfusion maps.
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